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Abstract
We consider a simple quantum system subjected to a classical random forc:. Under certain
conditions it is shown that the noise-averaged Wigner function of the system follows an integro-
differential stc-hastic Liouville equation. In tke simple case of polynomial noise-couplings this
equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new “quantum
difflusion” terms arise that have no counterpart in the classical case. Two special examples that are
not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with

a spatially modulated noise source.

1. Stochastic Licuville Equations

Stochastic equations have long been used in physics to model various phenomena.
Brownian motion, spin relaxation, and critical dynamics may be cited as obvious
examples. At a formal level there are two wzys to set up such equations (1) as ezact
equations [1][2] or (2) as pact of a phenomenological description [3]. In either case one
typically encounters equations that are nonlocal in time and involve stochastic forcing
terms usually called “noise.” Such Langevin equations exist at both the classical and
quantum levels. As expected the situation is more complicated in the latter case;
while in <lassical problems it is often possible to approximate the “noise” as being
Gaussian and white, and further to replace a nonlocal kernel by one local in time
(the Markov approximation), such simplifications do not easily obtain in quantum
mechanics. Nevertheless, simple approximate approaches a:e valuable in that they
often capture some essential physics, or even make some technical point, with less
calculational clutter when compared to a more comprehensive method of attack. The
work outlined here is in this spirit. It owes much to Kubo's work on the stochastic

Liouville equation [4] and a presentation of it given by Zwanzig [5]. Different aspects



of ihis work have been considered in detail elsewhere [6]. Nonlinear couplings to an
oscillator environment have been studied in the independent oscillator m.odel in Ref.
[7] where quantum diffusion has also been shown to exist.

In this paper, all quantum calculations will be done in the Wigner framework of
quantum mechanics. Partly this is because quantus.i distribution functions defined
on a mock phase space can be easily compared to their classical counterparts. Fur-
thermore, in the models that will be discussed, stochastic Liouville equaticas written
in terms of the Wigner function will be obtained directly from the stochastic Hamil-
tonian. This enables us to bypass the somewhat delicate question of how to derive
quantum Fokker-Plaack equations starting from Langevin equations for quantum op-
erators. A nice feature of the phase space approacl. s that the quantum derivation
of the stochastic Liouville equation closely parallels the classical derivation; there is
no need to invoke path integrals. Finally, this approach also enables us to discuss the
singular nature of the # — 0 limit for both the systematic and the diffusive terms in
the stochastic Liouville equation.

We begin with the Hamiltonian (a generalization of the randomly forzed oscillator
considered earlier by Merzbacher [8]):

p
H =21V - Flug(a), (1)

where p, z are the dynamical variables characterizing the motion of the system. The
functions V(z) and g(z) are assumed to be differentiable. F(¢) is an external pertur-
bation that is taken to be Gaussian, white noise, i.e., (F(t))y = 0, and

(F(281)F(ta)) y = 2B(t1)6(t1 — ta), (2)

with the usual restrictions on the higher moments. The ( ), denotes an average over
the realizations of F'. The delta function in (2) is taken never to be exactly realized,
but is treated just as an idealization of a sharply peaked, symmetric function. This
corresponds to interpreting the noise in the sense of Stratonovich [9].

One way to write the equations of motion is to use the Liouville equation for the
phase space distribution function. We introduce the distribution function f(r,p;t).
which satisfies the probability flux conservation equation (Liouville’s theorem),

ad J |OH 0| 0H
Ef(r,mt) =3 [Ef(I,P;t)] ~ 9 [—a—xf(-‘t‘m:t)] ) (3)

the right hand side of (3) defining the Liouville operator L.
Following Kubo's analysis [4] applied to the Hamiltonian (1), we proceed to derive
the noise-averaged stochastic Liouville equation. With Lo the Liouville operator
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correspoading to the systematic part of the evolution. we obtain,

3-\2/ 52\
%(f(”),v = —Lo(f(t)y + [B(l) (3—1) (f—p,)] F(O)y - (4)
a Fokker-Planck equation for the noise-averaged distribution function. Since f 1s a
phase space distribution function, (4) is a two-variable Fokker-Planck, or Kramers,
equation. In the absence of noise it reduces to the usual Liouville equation. \Ve
observe that whatever V(z) and g(z) may be, (f(t))y will always satisfy a Fokker-
Planck equation. This will not be true in the quantum case, to waich we now proceed.
As in the classical case we wil. work with the stochastic Hamiltonian {1). Be-
cause of the noise, this Hamiltonian will evolve pure states to mixed states. Thus
it is apprupriate to study not the time dependent Schrodinger equation but rather
the quantuin Liouville equation for the density matrix, given here in the coordinate
representation,

.y O . .
ihgep(z1,22) = [H(z1) = H(za)"] plz1, 72). (5)
We wish to write (5) in the Wigner formalism of quantum mechanics [10] and then

to noise average just as in the classical case. This derivation is given in the first and
third papers of Ref. [6] and here we quote only the final result:

gt'(f“'(xv kl t))N = _LO (fW(X‘I k:t))N - ./_: u'p (fW(X!k +p;t\)N KS(-X’PJ).
(6)

where B(t) oo
Ke(Xomt) = 2 [7 de Hr (X +2) - g(X = 2 (7

and Lo is the systematic quantum Liouville operator. When g(.X) can be profitably
Taylor expanded, the above equation can be written as

q,. .. j
a7 (Sw(t))y = —Lo (fw(t))y + [BOOLY] (fw(t))y (8)
where
_ (99 & dg L (R\* [0 @
v = (%) 2a+2(a%) Z(z) (%) oem
L (A" (D (39 o'+
c ) (6%) 6 e g

2. Quantum Diffusion

The conditions under which (8) will reduce to a Fokker-Planck form are when both
V(X) and g(X) are of the form Az + Biz?. In this case. Lg = 0, and the quantam
Liouville equation reduces to the classical one. The difference hetween the two cases
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then lies not in the dynamical equation. but in the different constraints imposed on
the initial value of the respective distribution functions.
We now study different choices for g(.X). If g(X) = AX. with .\ a constant, then
L2 = \" % a -onventional diffusion term. This is the simple model equation often
employed 11 studies of quantum decoherence [11].
Consider now the case, g(X) = AX + eX3, where
2 1

N 1 o, ., 0
T (! LAY S 2y 32 214
L (A +eX?) T 6(.\+cX )eh 3k‘+ 1445 h 3"

Notice the appearance of the purely quantum mechanical, higher even derivative

(16)

“diffusion” terms. The classical limit A — 0 is singular not only for the systematic
quantum Liouville operator [12][13] but also for the stochastic terms arising from
quantnm diffusion. It is easy to see that all the quantum diffusive terms, when acting
on “fast” (cf. Refs. [12]13]) pieces ~ exp(ikX/h) of a Wigner function, are of
O(1/k?). The highest order quactura diffusion term dominates at large distances and
always acts to increase the linear entropy 1 — [ dXdk f? [6]. The effect of the quantum
diffusion terms with regard to decoherence is to rrduce the decoherence time at large
length scales [6](7].
3. Two Illustrative Examples

As we have seen, the stochastic quantrm Liouville equation written in terms of the
Wigner distribution function is in general a complicated integro-differential equation.
If the coupling to the noise is through a polynomial in the system variable, then
this equation -an truncate to a finite order partial differential equation. However.
there are cases of physical interest where the coupling to the noise cannot be reduced
to such a form. We will now exhibit two such cascs, coupling the system (i) to a
localized noise source, and (2) to a spatially modulated noise source. The first case is
of interest in quantum tunneling through a stochastic barrier while the second applies
to the noise in a microwave cavity. More details can be found in the third paper of
Ref. [6].

A localized noise source can be modeled by setting g(X) = Aexp(—eX?/2). In
this case,

d 2BA? +
g kD = Lo (X ki = oo [ " dp Uw(X kit
X [cos(2pX/h) - c"'ﬂ] e~P/N, (11)

A spatially modulated noise source, g(.X) = asin(.X/h), leads to

‘% Sw(X,kit))y = ~Lsy (fw(X,kit))y
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—f:_;:‘msz(j“-”)[(fu'(.‘/..k: 1)y
! I
2 (fwl X k= ity = 5 (fw(X.E 4+ -i:fl).-\'] (12)

It is clear that these equations are very different from the corresponding classical
Fokker-Planck equations.
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