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UNCLASSIFIED

ABSTRACT

oacn

Following a suggestion by Kistiakowsky and Peierls (LAMS-188) an anelysis
has been made of the effect of a finite reaction zone on the velocity of a detonation
viave, and in particular of the difference in this phenomenon between plane and expand-
ing waves; this analysis is limited to the asymptotic bshavior of the velocity as it
increases toward the Chapman-Jouguot limit. In the case of plane waves the veloocity
delecl decronses up (&/fﬁjg where £ is the age of the wave and < is the distance
behind the front at which the ChepmanJougs: oondition is epproximately attained,
while for expanding waves the decrease is of the order (d/,e). Tho steady veloocity
of a wave in & slab of explosive is &lso found in the limiting case where the thick-
ness is large compared with the reaction zone (the behavior in a finite stick should
be similar). 1In this case the law is (cl/Z)}4 where 2£ is now the thickness of the
slab. Numerical values have been calculated for a particular model of the detonation
process, showing that deviations of about 57 are to be expected between plane and
spherical wavea that have travelled distances of the order of 10 cm; calculations for

slightly varied models suggest that the absolute values are not very sensitive to the

choice of model.
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UNCLASSIFIED

EFFECT OF REACTION ZONF. ON DETONATION VELOCITY

1., Introduction

The propagation of a symmetric detonation wave in 1, 2, or 3 dimensions is
well known in the ideal conditions that the size of the reaction zone is neglected,
the Chapman-Jouguet condition is satisfied, and the equation of state of the exploded
gases follows a.g-iaw; solutions have been given by T&ylorl) (these solutions are re-
ferred to below as the "ideal" solutions). The phenomena 3nvolved in the reaction
zone are too complicated and i1l understood to permit any exact mathematical treat-
ment; we hava attempted here only to find the asymptotie form of the deviations from
the ideal solutions in some special problems, namely the variation of detonation
velocity with age in aleymmetrio wave, and the steady velocity of a wave travelling
along an unconfined seni-infinite slab (this being the simplest approximation to a
stick of explosive).

Our results Are.based on a particular model of the detomation process,
which, we believe, takes account of its eignificant features, at least in conditions
not far from the steady state. This is based on the hypotheses of von Neumann as to
the general structure of the wavea); according to this theory the detonation front
consists of an initigl shock in which the pressure is highor (by perhaps 50%) than
the normal Chapmen-Jouguet pressure, followed by a narrow region in which the reac-~
tion takes place and the pressure falls steeply. It is believed that this zone is

generally rather less than 1 cm thick.

1) G. I. Taylor, B¥-L9, Ac=659
2) J. von Neumann, OSRD No. 549; reported in LA-165, "Shock Hydrodynamics".
UNCLASSIFIED
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P le~ceeae -~ c———-Chapman-Jouguet point

«—— Hugoniot curve for detonated explosive

Bugoniot ocurve for
undetonated explosive—

Fig. 1

This is illustrated graphically in the p-v diagram of Fig. 1. The point A
represents conditions in the undetonated explosive¢ The shock wave reises discone-
tinuously the pressurs to a value Ppk on the curve AB which is the Hugoniot shook
curve for the undetonated explosive. The reaction begins and the representative
point in this diagram of a particle describes the line BC, C being the "Chapman-
Jouguet"” pointlon the Hugonidt curve CD for the fully detorated explosive; the slope
of the line ABC is proportional to the squﬁre of the detonation velocity. This ap-
plies only to the steady state in which the pressure and density are functions only

of the distence bshind the front: until this is attaineﬁ the initial shock will raise
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the pressure to a somewhat lower pressure (or higher pressure in ths case of "persis-
tence") corresponding to a point B! on the curve AB, From there the path of the
representative point will move towards some asymptotic adiabat which will in general
be different from that reached in the steady state.
Ve describe these phenomena mathematieally as follows: the asymptotic/ adia-
bat for any particle is taken in the form
p = wx) v (1.1)
where x is a coordinate labelling the particle under consideration, Bafpre the
reaction is completed pressures will be highser than given by this equation. We
therefore write
p = wx) v - nex.e)) (1.2)
where N(x,t) —» 0 as t .y 0. The value of vy 1is a measure of the amount of reaction
as yot uncompleted. Ve now assume thet the time variation of = is described by an
equation
an/et = - 2n/1(p,v) (1.3)
where 1(p,v) is some given function of the pressure and volume. The factor 2 is in-
serted for convenience in the éase when 1t(p,v) is constant. Then w« e"ab/ T and this
1 corresponds more nearly to the usual definition of the reaction time as that time
after which the reaction is essentially complete (in this case (l-e~2) = 85% complets).
One further assumption is needed to render these equations definite, nemely
an equation to fix the initial wvalue no(x) of a particle when it is reached by the
shock front. We have here assumed for simplicity that
n‘;(x) = constant (1.h)

but it could be replaced by aizy relation between vj(x) and p(x). We are now ready to

APPROVED FOR PUBLI C RELEASE
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2. Units, Coordinates, and Equations for a Symmetric Wave

We take as unit of doneity the density of the undetonated explosive; the
unit of velocity will be the ultimate detonation welocity (which in the case under
consideration, a velocity approached asymptotically fram below, will be shown to be
ihe Chapmsn-Jouguet velocity as we should expect); the unit of length is not
specified, ‘

The coordinate x will denote the position of a partiole when it is crossed

by the shock; at a later time t, this particle "x" has a position y; p,v denote

pressure and specific volume. Then in k dimensions (k = 1,2,3) the equation of

motion is
Pyfex® = = (y/x)¥"1 spfox (2.1)
snd the equation of conservation
(y/x) ayfox = v . (2.2)

These two together with (1.2), (1.3) are four equations for Y.p,V,1 a8
function of x,t. To these must be added some boundary conditions; these we impose
only at the shock front, for the reat we are interested in investigating only solu-
tions asymptotic to the "ideal™ Taylor amolutions. We have already assumed (1l.4); in

addition we have the lugoniot conditions at the shock. The path of the shock will

be given by
x = £(t) (2.3)

Then y[£(t),t) = £(t) (2.4)
pg = (2ov,)[e1(%))° (2.5)

B(ps,vs) = O (2.6)

Here pg = p(t,t), v, = v(t,t) the values of p,v immediately behind the shock and

H(p,v) = O is the equation of the Bugoniot curve AB of Fig. 1.

v e .
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We shall find it convenient 1:50 change the independont variable x 8o that
the path of the shock is fixed in ouf coordinates; ﬁccordingly wo define s(x) by the
equation ‘ |
X+ f(s) (2.7)
where f(s) is as yet an unimown functién. Wo now rewrite our equations taking (s,t)

as independent variables; the equations are

viey ¥ .. (_!__.)““1 2% |
£2(2) ate | £(s) os (2.8)
k-1

%7) g.f . vE*(s) (2.9)
3/t =|= 2q/Up,v) (2.10)
y(t,5) = £(t) ' (2.11)
Pg = (1«=va)[f'(s)]2 (2.12)
H(pgpvg) = O ‘ (2.13)
w,(8) = o = constant (2.14)
pe) = (Y- ne) ™ - g (2.15)
p = uls) 7 - n(s.t) (2.16)

_ 1

5« A Transformation of the Equatioi:s

We shall rearrange and combine (2.8) to (2.16) in the form of en integro;
differential equation for w; <thereby we absorb most of the boundary conditions and
have the equations in a form suitable for an iterative mothod of solution.

From (2.9) aad (2,12)

t A
¥(s,t) = £(t) - I v(@,t) p(w,t) £'(w) dw (3.1)

vhere p(s,t) denotes the "weight factor" [f( 8)/y(s,t )} k=l ' therefore

APPROVED FOR PUBLI C RELEASE
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: t

dy(s,t)/dt = f'(t)[lcvsl = (3pv/et) fr(w) dw (3.2)
and ’ '
¥y(m,t) _ I dv, ¥y . (k=1)(dy/et) .
L5y (t)[1evy) - £0(8) =22 (at)s £2(t) = v, £1(%) P j}ja)

- L P(ov) a(;z;) £r{w) do
3
Now (5%1 = f'(t)[l-va] (from (592)) (3.4)
dv dv dv

ond (375)3 L (3;)3 (3.5)
So

> 2
%y(s,t) _ [r”(t)(l-av ) - 21”(1;) ___ﬁ (kal)(f (t)) vg(l=v, )]

at dt £(t)
v ' - tﬁey._). ¢ w (3-6)
(2) o j () iy 4
Also from (2.8),
( t 3%y
p(s,%) = pg + p(w,t) pve-) () dw (3.7)
s

Combining (3.6), (3.7), we get

' - t
p(s,t)z pg+ { £7(t)(L=vg) = 21"(1:)—-'-] {(k -le é?i]) Y1 )+(§%) fv(t)]” pLY(w)dw
8 8
¢ a2

o , 3.8
J -—-e;b-é— f'(W)(j pf'(t&‘) d&‘))dq ( )
8

s
Consider now

J ﬁgﬁ r'(w)( ? pf'(ﬁ)'dﬁ)dw =

8
d

[t
. [_%..l} r(e) | (een) "“”r
a 1]

o
Js 8

:‘.gl'l [ln(f'(m))amf“(w) f: of 1 () daj da  (3.9)

If we now add (5.8), (3.9) and substitute for p from (2.10) and (2.11) we get the

desired equation, . APPROVED FOR: PUBLI C RELEASE
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Q= ‘
p(s) ¥ $+ v(s,t) = 1 .

t
= u(s) qo{exp(n l r](id:))} +{§’a“'vs° 1} + v(s,t)[l-_p(s,t)]

[ dv v
¢ [£°()(1-vg) = 2£1(t) -—;3] pri(w) dw
L 8

& n, (3.10)
- b_gf.’.‘!).[l a(f'(w))a = £"(w) J pL(w) d‘o’a] dw
Js 9w : B

n

t a(dv) .- .
"], e @ (ere)® aw

nt 62 62 3 ft I - d’)
- 8(3-;2.-;”2 ij () I:Pf(w) wljdw

~

This formula simplifies considerably in the plane case when p 1. The boundary cen-
ditions remaining so that a solution of (3.10) may be a solution of our problem are
(2.13), (2.14), (2.16) which determine PgsV, 8nd (8) in terms of the unknown function

£(=)e.

L, stationary Solution in Plane Case

A stationary solution is one for which f'(s) = 1 and v is a function only
of (t-s); this can only exist for k = 1 and then since bay/éta = Bay/?me, (3.10)
shows that

pP+v =1 (b.1)

and therefore

t

-y { dt )

BTV ev-l= expl - e (L.2)
° “O \ [8 Yi-v,v)

This is an ordinary differential equation for v which may be solved

numerically for any given T(p,v).

5. Similarity Solutions in Ideal Caae

o) Plane case; Vhon k=1 the ideal solution has a simple analytic representation,

APPROVED FOR PUBLI C RELE-
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~10=

12/(r1) g2/ae1) L b )
y-1

(5)7°23'/(Y*1) | (5.1)

(B)a/a*l)ul

with

e+l
)

{
Mo = Pg Ve"’ =¥ /(¥+2 (5.2)

b) Cylindrical and Spherical Cases: For k=2, 3 no simple analytic representa-

tion is possible; the solutions have been determined numerically by Te.ylorﬁ). These
differ essentially from the plane solution in that there is an infinite pressure
gradient immediately behind the shock front; the following expansions have been

determined in the case Y =3,

k =2(cyl) p=1/h-3/8/2 0-5/686° - .... 5.5)
v=3M+3/8/Z 6+17/4 o+ .u.. 23

k =3(spl) p=1/M-3/80-31662-....
(5.4)

v=3ML+3/80+9/1662 ¢....
Hers © denotes +/1- 8/t.

6. Perturbation of [deal Solution (Plane Case)

If we suppose there is a small disturbance y,, Pyr V3 in the wvalues of
Ysp,v given by (5.1) and substitute these values into our equations we £ind
I91= = (vp/v) 5 =- (3/1‘7)"1 V1 (6.1)
Consequently at the front p;+ v; =0 and there is no first order change in
velooity. Therefore we may put £f'=1 in (2.8), (2.9) and eliminating Py vy We arrive

at the differentisl equation for Y
2 Y =1

d d (s o | -
e G R (6-2)

5) G. I. Taylor, ibid, aRERENEERSFOR PUBLI C RELEASE
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For the case {25 this may be solved immediately, having the general
solution
n* #ls/t) + t)f(st) (6.3)
whore @, ¥ are arbitrary functions. The condition (2,12) eliminates the second

term. Consequently

L gas) |
v, = = @8/t
P, (6.4)
15 I 1 g (s/t)
The consequent change in detonation velocity is
clgrl2
- (6.5)
where
¥ H d»H o%H\/an
¢= (2 dpdv  3pe bvz)/sp- (6.5)

H(p,v) is the Hugéniot curve. The solution in higher orders is completely deter-.
mined by the one arbitx;ary function ¢(s/t), 'as we might expect.

The importent point is that p;, v) die away as 1/t and this may be ox-

pected to be true for all y;

7. Perturbation Caused by Reaction Zone in Plane Case

Our objective is to find the alsymptotio form of the perturbation :Ln.velo-
city for a wave of finlte age. We wish to find a solution p,v of our equations which

a) approximates to the solution (5.1) at a distance from the front at late
times.

b) Approaches the stationary solution (L4.2) in the immediate neighborhood
of the shock.

Consider now Eq. (3.10). In view of (b) and the ideal solution, we can be
sure that (02/0t2 - d2/3s2)v will be of small order near the front, If we insert the

ideal solution in this term we get (pi-v-l)ido For small deviations we have

APPROVED FOR PUBLI C RELEASE
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(Pg + V5 = 1) = = 2(1=v,) g(t) (7.1)
where g(t) = 1 = £¢(t) is the change in velocity., The third and sixth terms in
(3.10) vanish identically, and the fourth is of order (t-s) g*(t) a.nd may therefore
be neglected in comparison with g(t) when we are concerned only with wvalues of (t=s)
that are o(t).

In the fifth term the bracket is approximately equal 2g(w), and so long as
(t-8) = o(t) we may write this term as
- 2g(t) r 2T gz - 2g(8)[ve = v(s,8)] (7.2)

8.
If now we make these simplifications (3.10) becomes

K(8) ¥ 4 w(a,8) - 1 = p(a) q(a,) - 2681 - wet)] ¥ [p 4w -] (7.3)
Yorget about the second term; then for (t-s) <« t, {7.3) is easentially
the equation for the stationary cese. Again if t=s > t, the last term dominates
and a solution is obviously p = Pids» Y =Vyq-
However, this is not sufficient since the left of (7.3) has a minimum at
v =V,, say, for which its value is [(‘4-1 )/(]vc-l, The right<hand side must therefore
pass through this walue 3_!}_‘3 also have a gero derivative with respect to t at con-
stant s, at this eaxﬁ-a point; else we shall be on the wrong "branch", and the solu-
tion will not approach the ideal solution. If g(t) be so chosen that these condi-
tions are satisfied then the solution of (7.3) as an algebraic equation in v is our
first approximation té the sclution. |
Now p(s) is defined by (2.16). From (2.13), (2.14) we have
 8p+ bv = = 2(1ev,) g(t)
fp + (= pfdv)y bv =0~ (7L)
8o

bp bv _ 2(1-v§) g(t)

- (= %fv)y T 1 (- dpfav)y - 1

APPROVED FOR PUBLI C RELEA!_ l | I
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Therefore from (2.16) —
=¥+l
S _bp ___,_______a_ z = 2rg(s) ' (7.6)

M Ps Yo U
where
o . Lep/ovly - [op/ovly
| 3p/av], - 1
(IOp/c‘.vla is the slope of the adiabat through pg, vy). Now v, is defined by

(7.7)

vc‘”'-.- {(s8). So ‘
_3_)1&._ 1 8. _ 2rg(s)

Vo It ‘01
Therefore the minimal value of the left side of (7.3) is
!.I_]ch 1= L’.lbvgc_af.ﬁi). (7.8)
I yel

We are interested here in the case of velocities approasched asymptotically
fron below, i.e., g(t) > O, Therefore the minimum value of (7.3) is negative; the
first and last terms are positive and g(t) must supply the difference. Clearly as
% — o0 this minimum must tend to zero i.e., vg — ¢/(y+1), the Chapman-Jouguet
value. (If g(t) ¢ O then since r ¢ 1, Eg. (7.3) obviously cannot be satisfied at
the minimum; that is, the velocity can only exceed the C=J walue if it is maintained
by an artificial high=presoure baocking. )

Denote the right of (7.3) by Q(s,t). Then for a certain 8 =z sg(t) we

demand that
_ 2r
rf 2 = a(e,0)
OQ(S t) (7-9)
ot
These equations suffice to themine the maymptotic form of g(t). Clearly
we may put p(s) = p, in Q. If wo differentiate the first of Eqs. (7.9) totally with

respect to t and suttract the second it follows that

~2e'(s) ds . ds

7.10)
Y+l dt  ds dt (
APPROVED FOR PUBLI C RELEASE
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T
or o
2rpe!
uo—n' + ?s(t)( )*— pev-1dia+ --f;—f—'?—)wo (7.11)

Now obviously if t = s = o(t) the 2nd and Lth terms are of lower order than the first |

and third, Thus the function s(t) is defined by

. On(;:) (p ¥vol)jy =0 (7-12)
Then we find
b(] !‘) g(t) = Po '\(Bpt) * [P vo 1]id (7-15)

L
(Bince g(s) 'zg(t)).

If we introduce a perturbation (of the type considered in 6) into our
"ideal" solution we shall introduce terms of higher order into the term
(bzv/btao 6217/652); therefore the velo;:ity etc. will only be affected in a& higher
order. The defect in velocity (7.13) is independent (asymptotically) of initial
conditions (unless we are concerned with "peraistence" effects, g < 0),

The procedure outlined above clearly supplies an iterative method for
determining higher<order effects; in the noxt approximation, we should have to in-
clude terms arising from the departure of ‘{(p,v) from its stetionary value, and

neglected terms in (3.10).

8. Perturbation of Expanding Waves Due to Resction Zone

The treetment in the cases k = 2, 3 is essentially the same but there are
some differences due to the extra terms in (3.10) and their different relative orders
of magnitude. Of the terms on the right of (3.10) the second and fourth are treated

as before; the fifth will be

t
- 2g(t) J 9&%:_’)_ dw = - 2g(t) [va - 3(s,t) v(s,t)] (8.1)
8

———

APPROVED FOR PUBLI C RELEASE
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Congider the third term; y(s,t) = £(t) - ¥(t-s) where V is some average
value of v over the region between (s,t) and the shock,

Therefore
/ £(s) kell  (k=1)(1<%)(t-s)
(- pet)) = 2 - ~
£(t) - ¥(t-8) t
bacauss of the exponential character of the similarity solution we mey replace ¥

by v, with small error. So the second term is
[(e1)v(1-v)(1=8)] /& (8.2)

The last two terms remain; if in the last term we put the similarity solu-
tion it becomes of order t°5/ 2; in tho stationary solution it is zero, so in this
case we may neglect the last term altogether in first approximation. The sixth term
is also of order t°3/ 2 in the ideal solution; but it does 1_123:_ vanish for the sta.fiona
ary solution, for which however most of its value arises from immediately behind the
shock, and since conditions there will be elmoat stationary at late times we may in-
sert the atationary aoiution into this term.

We have in place of (7.3),

p(s) vie v-1-= Q(s,t) .
p(a) n(s,t) - 2g(t)[l= ov(s,t)] + v(s,t)[1- p(s,t)] (8.3)

t
a(ev) (2-p) dw
g | 0w sty
The same argument applies about the Chapman-Jouguet velocity; and Eg. (7.10) yields

8

in the same approximations as (7.12)

o TR viary 22 0 1)

Now

éﬁ(sot) = (k-1) [f'(s) - pv(s,t)
= e 7 )

Therefore we have

 PRPPROED [terl PR OaHEASE (8.5)
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and also
2(1~ tla
‘(*. r) g8(t) = po n(8,t) + v {1-p,) = Lo [c—ég—)- (leg)]sty des (8.6)

9. Numarical Evaluation

a) Consider first the case when y= 3, 1 is constant and N = 1, 80 that the
peak pressure is about GL4% greater than the Chapnen-~Jouguet pressurs., Then in the

plene case, (5.1) givees, for (t-s) «< ¢,

_a\2
[prv-1],, .%(3%3) (9.1)
while .
q = oR(st)/ 8 (9.2)
The Eq. (7.12) is then ‘
Ll 3 2
% ° 5 %) (9:3)
defining £ = 2(t-s)/T as a function of t/f and
t) = so(t) 'bp/évlﬁ°l 't B}
o) = B18) - AR ele) (9:4)
vhere
2
‘o =ﬂ82+3/16z .
| go(t) (o) (9:5)
b) New consider the cases k = 2,3; the Eq. (8.5) gives
27 v B(k-1) 1
128 ° T 18 t (9-6)

in place of (9.3). To find g(t) we have to cstimate the integral in (8.6). Since

all varisbles are functions of (t-s) we have

8

bv
z -
= 3 (r-ete) e (9-7)
In our case the 2nd integral may be evaluated numerically; & rough esti-

nmate, which is sufficisnt here, gives a valuve

0.11(k=1) Z/2% (9.8)

APPROVED FOR PUBLI C RELEASE
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Consequently we find analogous to {9.5)

kppy . 3(k=1) 7  2T), 0.11(k-1)T '
o (t)-————----16 (t+ t)+——-——-—2t (9-9)

The functions gok(t) for k =1,2,3 are shown in Fig; 2 which givea the
velooity (1-g) as a function of the age of the wave in units of the reaction zome
length.

¢) It is clear from the above that the deviation g,(t) is of the order (a/2)°
(n = 2, plane gase, n = 1, expanding cases), where £ is the age of the wave and 4
is the distance behind the front at which the Chapman-Jouguot conditions are approxi-
' mately fulfilled. The fact that d~ T Lnt/T is a consequence of our particular
model; if the reaction were complete in a finite time then d would tend to a cone
stant. We can consider scme variations of our model tb sea how sensitive to it the
numerical values are. .

First let y=2.5 instead of y= 3., Then

' -5\2
[p+ ve 1}id = 0.230 (1"-5 , (9.10)
So (9.3) becomes
27 -z . 2
o5 o " = 0230 &/(t/T) (9.11)
and instead of g (t)
Ba(t) = 0,115 (22 +22)/(t/1)2 (9.12)

Next suppose o = 0.32 and Y= 3, corresponding to an initial overpressure
of LL0%; this leads to the equations
20675 €% = (3/8) « 2/(t/TD)? (9-13)
and .
8, (8) = [(5/8) = + (316) #2](/D)2 (914)
Finally coneider a model in which the pressure gradient is more steep im-

mediately bshind the shock, such as

APPRGVEEP éov@sﬁﬂ)/ & JQEL EASE (9-15)
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(the factor L is insertod to make more compsrable the values of 71 in (9.16) end

(9.2) ). Thia leads to the equations

a7 o/ * _ 3 :
&, 2/3 16 (¢/1)2 - (9:26)
and ‘ y
3/2, .2

The functions g;, €a+r 21y By 8re given for comparison in Fig. 3. Asymptotically g¢
is of highe; order than the others but the absolute differences are not great; thess
results suggest that the absolute value of the velooity deviation is not very sensi-
tive to the model chosen (for variations of the kind considered above ),

d) With regard to the factor 1/(ler) occurring in (9.L), it is difficult to make
any estimate, but it seems likely that the adiabatic and Hugoniot curves will be
closer than either is to the slope line ABC of Fig. 1. That is, it is likely that

this factor is not much greater than unity.

10. Ideal Solution for Semi-Infinite Slab

Consider a plane detonation-wave of

infinite age travelling parallel to the free

0

surface of a semi-infinite slab of explosive.
Take & coordinate system in which the detone-
tion front OP is stationary and explosive ad- §
vances toward it with velocity D. g e

Then the solution is known to be a <
Prandtl-Meier expansion about the corner 0.
It is convenient to use the notation of the P

theory of characteristics developed by Fuchsh). One system of characteristics (+)

L) K. Fuche in LA-165 (seotion 1), Shock Hydrodynamics.
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are the rays throuéh 0; if such a ray makes an angle ¢'with the detonation front
then it carries a constant value of

a, S +P(Y) =2¥0) - T2 (10.1)
where ﬂ' is the angle the velocity makes with the nmormal to the D=front, f’ is the
Mach angle (sin /¥ = c/u), and (in the case y = 3)

F(PH == - /2 tan"? ("%—Z) (10.2)
The values of a_ &re everywhers the same ’

a« 2 f-¥FP= T2 (10.3)

The function §(0) is

#(0) = -0+ tan"l(\/é tan %) (10.4)

1l. JIdeal Solution for Finite Slad

I% is not possible to find a simple analytic representation for the solu-
tion of this problem; however, all we require for the application of our previous
methods is an expansion near the D=front and near the central plane of the slab.

This we find as followa.

Take the stationary coordinate system as before and let 2a be the thicke-
0 free surface

ness of the slab; take a plane section

nermal to the surfaces so that 00! rep-

regents the D=front. YLet P be some

other point in this section, and 0P,

OtP makes angles #, @' with the D-fromt.

free surface
Near 0, 0' the solution must

be the same as for a semi-infinite slab; thus from 0 there start + characteristics

oarrying values

a, = 2%9) - 1/2 (11.1)
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Similarly from O' these start = oharacteriatios. carrying values

a =72 - 2%(6°) (11.2)
Near O, Q¢ — 0 and ¢ 17/2; therefore the complete solutiocn of the problem could
bs found by an iterative procedure as follows,

1) For any point P, PO, PO* define 8, 6¢; and let at P,
a,s a,*(e), a2, =a_(9').

2) With this as first approximation we may caloulate the slope of the character-
istios through P.

3) Use this to find the deviations of the characteristics from straight lines
and so to find corrected angles @, 8! belonging to an arbitrary point.

We shall carry out this procedure near the point C., With coordinates x, y measured
from C as shown,
tan @ = x/(a~y), tan ©°¢ = x/(a+y) (11.3)

Near C, @, ©? are small, so approximately

@)= = 2 =1/365 ...

@p = T2 2 1/5 03 .. (12,05
So at P,
PUM = - /2 - 1/6(63+ 013) ans)
and - |
Y= [e3+a3)t/5 1.6
also |
g =1/6(0'3-83) (17)

Consider a fixed small 9;-as P varies from O to the central line, ®' goes
from O to 8, Since along a characteristioc,
ay/fax = /2 ¥ (2 )) ) (11.8)

and since 8, 6t are amall we have approximately that along the &=characteristic

APPROVED FOR PUBLI C RELEASE
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-21=
v
3 1/3
A& @
where
a-y:af (11,10)
So that
X = 8(a~y) exp j:“y/a [1 +(§§£—)3 3 -1 9—2— (11.11)
and on the central line y = O
0 = 0.942 x/a (11.12)
Now by Bernoullits theorem ’
c2 +u? z 9/8
go that
@ 9

" 1601+ Zoot? )

or approximately

¢ = (3/)(1 - 02/24/3) (11.13)
on the line y = O. This gives
- 30614 x\b '
p+vels 5275 = 0,186 (;-) (11.14)

12, Effect of Reaction Zone for Finite Slab

1) In Cartesian ccordinates the hydrodynamical equations of a ste'ady-ata.te

motion are

u ° -b:‘:xz = w l 22-
- s p ds (12.1)
div (‘JE) =0

Let us introduce coordinates &z, t into our problem where gz is defined by

(puz) = (32/0y)y; puy = (Bz/bx)y (12.2)
g0 that at the shock front

(32/3%)shock = constant = shock velocity at center (12.3)
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- 220
and t is the time since a particle crossed the D-front. Since zx/"y 2 - uy/ux
z 1is constant along a stream-line,

If we now treat 2z, t as independent wvariables and x, y, p, v, as de-

pendent we find the relations

. 8(xoy)
T a(t,3) (12.4)
2. (8-,
o2/, " \at e \ 02/ dz/y \ot/,
Y (1205)

%
)]
=
]
§

&), &) - &6,

d
3t (p+v) = (Yt Yz *xg xg) "55 + (%t yet = Y6 Xgt) = (xza + Yza - 1) %% (12.6)

From these we get g

Here subscripts denote partial derivetives.

2) Now for the ideal solution the shock velocity = 1 for all ¥, 80 we mey take
2z = y at the D-front, Then x, y, p, v are lnown functions X, Y, P, Vof =z, t,
satisfying (12.6).

When wo take into account the reaction zone let the steady state velocity
be S 80 that z = Sy at the shock front. Then the solution to which we must approxi-
mate behind the front is X* = X(z/s,t), ..... First since X, Y, ..... satisfy (12.6)

d om — 2 * yky Op¥ x o *

30 B+ V%) = 85(0F 4 X§ X7) == + S(Xg Yoy o ¥ Xgy)
%2 | #2 dp*
- {s(xz +Y5°) - 1} P

Then as before we substitute the approximate solution P*, V* on the right of (12.6)

(12.7)

getting

= (o%v) = (4 exg xp) 2 v (K viy- ¥R Kby)
(12.8)

bp*
- x"‘2+ *2
( e V% 3t
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" —
So that eliminating op*/dz from these two equations

d 1L y 1, dp=
Fvy (p+v) = =5 — (F™+V*) + .(1°‘S')(X1.; Yie- YT Xgg) + (1'”;2‘) rrey (22.9)

and by integration with respect to ¢t

p¥v = pgtvy + (1/s2)(P*+ V*=1)

t
+ (1-1/5) ] (x3 Y:taY: x:t) dt
[« ]

+ (1=1/52) r %i.’l". at (12.10)
Q

The last two terms will be of small order at the critical point, so that as before

we get an equation

4 -2t/1

veprTo1: pe - 2(1-v,) glz) + -2% x 0.186 (t/z)% (12.11)
where z 1is to be equal to its wvalue at the center of the slab, 2 = a neglecting
higher powors of (1 - §) = g(a). This may be treated exactly as (7.3); the curve

for g(a) as & funoction of a/Z is shown in Fig. L.
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