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ABSTRACT

We first review recent literature that applies multi-
variate Shewhart and multivariate cumulative sum
(Cusum) tests to detect anomalous data. These tests are
used to evaluate residuals obtained from a simulated
three-tank problem in which five variables (volume,
density, and concentrations of uranium, plutonium, and
nitric acid) in each tank arc modeled and measured. We
then present results from several simulations involving
transfers between the tanks and betweer the tanks and
the environment. Residuals from a no-fault problem in
which the measurements and model predictions are both
correct are used to develop Cusum test parameters which
are then used to test for faults for several simulated
anomalous situations, such as an unknown leak or
diversion of material from one of the tanks. The leak
can be detected by comparing measurements, which esti-
mate the true state of the tank system, with the model
predictions, which estimate the state of the tank system
as it “should” be. The no-fault simulation compares
false alarm behavior for the various tests, whereas the
anomalous problems allow us to compare the power of
the various tests to detect faults under possible diversion
scenarios. For comparison with the multivariate tests,
univariate tests are also applied to the residuals.

INTRODUCTION AND MOTIVATION

For process control and other reasons, new and
future nuclear reprocessing plants are expected to be
increasingly more automated than older plants. As a
consequence of this automation, the quantity of data
potentially available for safeguards may be much greater
in future reprocessing plants than in current plants,
These data will consist of control data and physical and

*This work supported by the US Program for Technical
Assistance to IAEA Safeguards,

chemical measurements of process inputs and outputs
during plant operations. It can also include traditional
data from inventories and transfers of nuclear materials.
Not only will more process variables be monitored, but
data collection will be more frequent than in the past.
If workable methods of authenticating and analyzing
these data can be developed, they should be useful for
safeguards.

Recent developments from two different, but re-
latzd, fields are applicable to the use of these data for
safeguards: 1) process fault detection and diagnosis
results from the chemical engineering field and 2) qual-
ity control assessment methods from the statistical and
quality control field. For this report, our main interest
in the fault-detection literature is the concept of data
redundancy provided by measurements and system
models. Our main interest in the quality control field is
a recent multivariate version of a fault detection
statistic.

Process Fault Detection and Diagnosis

For many years the chemical industry has been
considering process control issues that are directly
applicable to reprocessing plant safeguards. A signifi-
cant amount of recent work has been done in the area of
process fault detection and diagnosis.! A fault or
abnormal condition occurs when some state of the
chemical process, e.g., temperature, pressure, or mass
of plutonium, is outside of acceptable limits. Fault
detection is based on the availability of redundant pro-
cess infonnation. The methods consist of two general
categories based on the kind of redundant information
possessed about a process. Both categories assume the
availability of measurement data. *“Meacurement-based”
methods rely on redundant measurements and include
methods that use historical data as target values or set-
points against which new measurements can be com-
pared. “Analytical-based” methods involve redundant



information obtained from a mathematical model” of
the process. The concept is illustrated in Fig. 1 where
model estimates are compared with measurements to
determine the presence or absence of a fault with some
desired degree of confidence.

USE RESIDUALS
TO MAXKE
DECISIONS

Fig. 1. Process fault detection,

If a process is operating with nc faults, we expect
that all of the redundant information will be consistent
except for the unavoidable presence of modeling and
measurement errors. Fault detection methods are
usually designed to estimate residuals, i.c., deviations
between what is expected and what is observed, based on
this redundant information. So measured values are
compared with model! predictions of the same variable.
For examp}., nuclear reprocessing plants pericdically
calculate the amount of nuclear material that is unac-
counted for (MUF). In this case, a combination of
measurements and materials-balance relationships con-
stitute the redundant data. If the MUF is too large, as
judged by our knowledge of the uncertainty in its calcu-
lation, a possible fault has occurred and some action is
required.

Cusum for Testing Residuals

Having compared the redundant data provided by
the model predictions and the measurements and ob-
tained the residuals, the next stage in fault detection is
determining when the residuals are *“‘arge” enough to
indicate a process fault. At this stage, monitoring resid-
uals is a version of outlier detection that is used in sta-
tistical process control. If a residual is judged to be an
outlie, then the goal is to isolate the location and deter-
mine the cause of the fault. For safeguards, appropriate
action might be to investigate whether a diversion has
occurred and, if so, to determine where and how it
occurred, and to identify appropriate foliow-up action.
Obviously fault diagnosis is more difficult than fault
detection because it requires more detailed knowledge

* Knowledge-based models, such as expert systems, are
also suggested as a type of process model for use in fault
detection. In this report we are only considering mathe-
matical models of the process.

of the processes and more numcrous and specific
measurements.

Many different outlier tests for fault detection have
been proposed in the literature.! They include maxi-
mum likelihood ratio, sequential likelihood ratio, cumu-
lative sum (Cusum), Bayesian and the univariate z or
student ¢ tests. Multivariate residuals with multinormal
distrib:itions can be individually evaluated by univariate
tests or by multivariate tests, such as tests that use the
Mahalanobis distance. In this paper we investigate
recently proposed multivariate Cusum? and Shewhart
tests for evaluation of residuals from 2 three-tank sys-
tem involving transfers of nuclear material between the
tanks and the environment. It may be advantageous io
use muldvariate Cusum tests for testing the long
sequences of data (several hundred successive multivari-
ate observations) expected to be svailable in future
automated reprocessing plants. We know of no pub-
lished attempt to monitor a vector-valued residual as we
are proposing here. In safeguards, Page’s test is the
most commonly used univariate Cusum test.

We now review a few candidate outlier tests that
could be used to monitor a multivariate residual time
series.

Individual Outlier Te:ts
The univariate test statistic for residual p of the
residual vector ry is

z _n

LA m
where o is the known standard deviation of the pth
residual. Test E(rsp) = 0 versus E(ryp) # 0 (E denctes
expected value) by using quantiles of the standard nor-
mal distribution. To correct for multiple testing (there
are p variables), use the conservative Bonferroni
method,3 which replaces the desired false alarm rate o
by a/p.

Individual outlier tests as just described will fail to
detect slow sustained anomalies. Therefore, the univari-
ate Cusum test might be preferred. One univariate
Cusum test for evaluating a particular scalar residual is

Sy=max{0, S;-1+rp-ho} . 0)

Outlier Tests

The vector-valued residual ry, 7y, is expected to be
zero, Hy: E(ryp) = 0 versus the altemative hypothesis
Hy: E(r,p) # 6 The univariale test statistic for variable
pof Ttp is
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The standard deviation o is known. The variable n is
the number of samples used in the calculation (n = 1
fur this wok) and E denotes the expected value. The
critical values 10 which these test statistics are to be
compared come from the normal distribution with a
mean of 0 and a standard deviation of 1, N(0,1). The
user specifies what significance level (o value) will be
used to signal a fault, depending on the number of false
alarms to be tolerated. For uncorrelated multivariate
normal distributions, if we wish t0 maintain the same
overall significance level for detecting a fault, tests for
individual residuals use the Bonferron: method.3 This
method replaces a by a/p to account for the multiple
tests, where p is the number of individual z values
being tested. If the standard deviation is not known but
must be estimated, critical values from the student ¢
distribution are used.

The univariate Cusum version of this test for
evaluating a particular scalar, Fip» Versus a larget value,
a,is

s; =nm[o,s,_1+(r,p—a)—ko] . C))

In this case, G is the standard deviation of r, k>0, and
S0=0. To test for a decrease in the mean, the same
equation can be used if we define r,=-7;.

The multivariate Shewhart test, Hotelling's T2, is

T; =+[ -ty —t']%'

r=+ (-2 (n-t) ’ ©)
where X is the covariance matrix of the r; under no
fault conditions and t is the target vector, which is
assumed to be 0. T, a positive scalar, is compared to
the Shewhart control limit defined by the desired false
alarm rate and, if it is larger, an alarm is sounded. In
the present application, the target vector t is zero. The
T, are compared to user-specified critical values from the
chi-squared distribution with p degrees of freedom.

Clearly, T, tests only the residual at time 1. A
simple scalar-valued cumulative sum of the T; is defined
as follows:

(COT),=max[0,(COT),_ +T; k| ©)

COT0=0 .

(COT), is compared 1o the critical value A specified to
give a desired average run length or false alarm rate.
The value k can be found by simulation. Here & (>0) is

a parameter that is adjusted to obtain a statistic with

In analogy to the univariate Cusum,” Crosier?
describes a vector-valued Cusum (S;) as folows: De-
fine a scalar quantity Cy, the length of S;_; + 1,
according to Eq. 7:

. Vs
C; =[(sl—l +r) S ’(sl-l + ’i)] . Y]
Specify
S;=0 if Cp<k
o S'=(S‘_l+r' )—k if Cl>k (8)

where the vector K is
k=(s'_l+l" )k/C‘ . (9)

By construction, the vector k is in the same direction as
S,—1 + Iy but of shorter length. Thus the effect of Eq.
8 is to shrink the cumulative sum vector S; towards the
origin along its direction. Using Eq. 9, Eq. 8 can be
written &

S¢=(S¢-1+r 1-%/C;) (10
where, as above, the rarget vector that would normally
be subtracted from S,_) + X, is taken to be 0. In thi-

procedure Sg =0 and k> 0. Upon calculation o1
S, ., a scalar is calculated

1r,=(s;}:“s,)}é . 1)
which is tested against the critical value, A, specified to
give the desired false alarm rate.

Three Tank System

We applied the above multivariate Cusum tests to
simulated data from a three-tank system (Fig. 2) con-
taining nitric acid, plutonium, and uranium. More
details can be found in Ref. 4. The dynamics zre
described by a system of coupled differential equations
based on total mass balances and on individual mass
balances for each chemical species for each tank [Eq.
12)].

[Time rate of
change of mass] = [Mass in] - [Mass out] . (12)

* The univariate Cusun: to detect an increase in the mean is
St = max(0, S;.1 + (xy - a) — kG). Where a is the target
value, for the mean, © is the standard deviation oi the x's,
k> 0, and 50 = 0. [or a decrease in the mean the same
equations can be used if we define »; = —x;.



Fig. 2. A three-tank system with three
non-reacting constituents.

For given input flows, initial tank volumes and
initial concentrations of nitric acid, plutonium, and ura-
nium, the differential equations are solved to give the
outputs, i.c., the volumes and concentrations in the
tanks at various times. When density is a linear func-
tion of concentraiion, the equations for Tank 1 are

vy = F11+F12—F‘31 13)

dHjdt = [(HO) Fyy + HO13 Fpp)
-Fr1+F12 Hl/ v,

dPuy/dt = [(Pu®; Fyy +Pu®3 Fp))

-(F11+F12 Pyl /vy
[(U°) Fy + U%2 Fyp)
-F +F) U1/ vy

duy/d

with analogous equations for Tanks 2 and 3. The den-
sity of each tank solution is determined fiom empirical
relationships between densities and concentrations of
nitric acid, plutonium, and uranium.5:6 The system of
cquations is solved by the Euler method for modeling
flexibility. The implementation of the model requires
that initial volumes and concentrations are known from
measurements (including error) at the start of each simu-
lation. Densities are then estimated by using the empir-
ical relationships mentioned above applied to the esti-
mated concentrations. Flow rates are also required for
model simulations, and these are assumed to be avail-
able from measvrements at 6-min. intervals. Thus the
flow rates used in the model Fyy, Fy, etc., are changed
after every six minutes of simulation time. The vol-
ume, density, and concentrations of plutonium, ura-
nium, and nitric acid in each tank are the model predic-
tions that are compared to measured values to give the
residuals that are tested for possible faults. The meas-
ured values are obtained by adding zero-mean Gaussian
random errors having variances determined by the per-
cent standard deviations given in Table I to the known
true values. The measured values are assumed to be
available every 30 min. Thus after cach 30 min. of

elapsed time, the residuals are calculated and tested by
the above Cusum tests. Then the model values are
updated to the new measured values and the simulation
contiiues until all Cusum tests have alarmed. Because
measured values at the end of each 30-min. period are
used both 1o calculate the residuals for that period and to
serve as starting values to generate the next period's
predictions, there will be negative serial correlation in
the residuals (except for the residuals for densities in
cach tank, because of the way density is estimaied). The
presence of serial correlation makes our sequential tests
perform differently than if the residuals were not corre-
lated. We will discuss this effect in the results section.

Table 1. Percent Standard Deviations
Assumed for Measured Flow
Rates, Volumes, Concentra-
tions, and Densities
Flow rates 2.0
Volume 0.2
Nitric acid 1.0
Plutonium 0.2
Uranium 0.4
Density 0.2

No-fault Simulation

Application of the above Cusum te:iis requires
knowledge of the covariance matrix I for no-fault condi-
tions. To prevent creating problems because of a
changing covariance matrix as we step along in time,
the no-fault simulations were performed under steady-
state conditions. One thousand 20-h simulations were
performed as outlined above, and several esiimates of
the covariance matrix Z, corresponding to different
clapsed times, were compared and found to be the same,
within errors attributable to using a finite number of
simulations. Thus one value of I was used for all of
the testing. After acquiring I, a sufficient number of
no-fault simulations were performes and the residuals
tested to find a vaiue for A giving an average run length
of 200, that is, an average false alarm rate of 0.5%. For
all tests except the COT, k values of 0.5 were used.
For COT, k was set to p!/2 following Crosier.2

Anomalous Simulations

Two basically different diversion scenarios were
simulatzd; the first is equivalent 10 a slow leak from
one or more of the tanks and the second is similar to the
first except the removed liquid solution is replaced with
water or water plus nitric acid ai:d uraniasm. These
removals were assumed to occur at a constant rate and to
continuc until an alarm was sounded. Several different
loss rates were tested.



RESULTS AND DISCUSSION

No-fault Simulations

Figure 3 shows the disribution of run lengihs
giving an average run length (ARL) of 260 for the uni-
variate, principal components univaniate, COT, and
Crosier Cusum tests. These distributions are based on
10 000 alarms for each test, but only 1000 run lengths
are plouted in the histograms. Mean and median run
lengths are given in Table II. These “sample means”™
can be considered o be within 2 of the true means in all
cases and in most cases are within 1 of the true means.
That is, in the worst case (longest true average run
length), the standard deviation of the sample average run
length is about 1.5, so an appruximate 95% confidence
interval (CI) for the uue average run length would
extend from the sample mean (mean of the 10 000 run
lengths for each case) plus or minus 3. Most of the
standard deviations of the sample means are much less
than 0.5, so a CI extending from the sample mean plus
or minus 1 would have greater than 95% coverage
probability.

Note from Fig. 3 that the distributions are highly
skewed to the right indicating that most runs alarm at
run lengths less than the average. Nearly two-thirds of
the runs alarm in less than 200 tests. However, once in
a while there are very long run lengths before a false
alarm sounds. As always, it may be preferable to use
the median run length rather than the mean, but we
restrict this discussion to the mean run length. The
ARLs in our simulations were sensitive 1o values of A
in accord with the results of Crosier’s work.2

Anomalous Situations

Results for the simulatons with faults are sum-
marized in Figs. 4 and 5 and Tables 11 and I1I. Figures
4 and 5 compare the run lengih distribution for a 0.3
L/ leak from tank 1 in the two cases: replace the leak
with water (Fig. 4) or do not replace (he leak (Fig. 5).

The run length distributions shown in Figs. 4 and
S are similar to those for the no-fault case in that they
are asymmetric, skewed to the right. These demonstrate
that even though some faults arc rapidiy detected on the
average, there are occurrences when the same fault may
not be detected for an uncomfortably long time using
these tests. They suggest the median may be a better
measurc of the tests’ ability o detect material losses.
A’:0, note the unusually large number of long run
lengths using COT in Fig. 5. We have noticed this
behavior of the COT in several moderately hard-to-detect
anomalous cases. We believe that this unusual behav-
ior resul's vecause of & cancellation effect in the magni-
tudes of the residuals that anses from the negative senial

correlation in the non-anomalous and moderately hard-
to-detect snomalous cases.

Table 11 contains resulis for comparing the four
cumulative sum tests for the gen=ral case when liquid
solution is removed from one or more tanks. Thus
total mass and mass of ecach individual species will
change because the total volume changes. Neither the
concentrations of nitric acid, plutonium, and uranium
nor the densities will change under this type of material
loss. For al] wests, the expected average run lengths are
200 for the no-fault case with 95% confidence intervals
of about 196 10 204. Thus, if a loss is delectable using
process fault detection and these tests, then the mean
values in Tables 11 and 111 should be significantly less
than 200. For the leaks from Tank 1, it appears that
Croiser’s vector Cusum consistentiy alarms at a smaller
run length than do any of the other tests. The univari-
ale Lest using the principal components appears 0 be
the next most sensitive with COT being the least sensi-
tive lest.

Table 11I contains results for the situations when
the Insi liquid is replaced, either by lank solution less
the p'u.onium or tank solution less all constituents.
This acuvity will affect all concentrations and densities
in the tank from which material is lost as well as any
downstream tanks. Thus a diversion from Tank 1 will
affect Tanks 2 and 3, whereas a diversion from Tank 3
will not affect the other tanks in this system. As for
the loss without replacement scenario, Crosier’s Crusum
18 the most sensitive test for loss with replacement with
the two univanate Cusum tests being next and quite
similar in results, whereas the COT is the least sensi-
gve test.

It s instructive to compare the results for the two
different diversion scenarios with respect to the perfor-
mance of a specitic test, e.g., Crosier’s Cusum. The
ARL 10 alarm for the 0.1 L/h leak from Tank 3 with-
out :eplacement was 151, whereas the value for the
same leak with replacement by water was 81, or nearly
twofold less. We attribute this to the fact that when the
diverted tank sofution is replaced with waier 1o bring the
volume back into balance, all of the other measured
variables have been altered by dilution. Thus the redun-
dancy provided by the multiple measurements and the
muluvariate tests provides mcre sensilive detection
when a diverter tries to be clever. This may frequently
be the case as was found in our preceding work using
Shewhart-type tests without cumulative suins4

In conclusion, the Crosier’s Cusum was the most
powerful test of those investigated for the detection of
diversions from a three-tank system using two different
types of diversion scenarios: 10ss of tank liquid without



replacement and lJoss of tank liquid solution with
replacement by another liquid. We were somewhat sur-
prised by the lack of sensitivity of the TOT test for
datecting Josses. Apparently the directionality charscter
of Crosier’'s Cusum test provides a very significant
advantage, at least for this type of problem. We had
expected the univariate test 0 be most sensitive for the
loss without replacement scenario because orly one
variable (volume) is affected. Thus we were somewhat
surprised that Crosier’s Cusum exhibited superior per-
formance for this scenario as well as for the replacement
with liquid scenario, as we thought it might. This is
probably a consequence of the adjustment of the critical
values for the univariate tests needed to obtain the
appropriate run lengths for performing multiple univari-
ate tests. Presumably, if we monitored fewer variables,
the univariate test would be superior. As a partial check
of this conjecture, in one simulation we monitored only
the volume in Tank 1 with a univariate Cusum test, and
in that extreme case the univariate test was the best for
detecting a leak from Tank 1. Finally, as we mentioned
previously, successive values of these residual time
sequences are correlated for all variables except for the
densities in each tank. This is because measured values
are used both to calculate the current residual and as
initial values for modeling to calculate the next predic-
tion, which affects the next residual. This is an inter-
esting a~pect that we are investigating. At present, we
note from Table II that the negative correlation has an
adverse affect op the COT. For small leak rates, the
COT actually takes lone<r to alarm than it does in the
no-leak case. It turns out that the COT test is able to
detect a small gain of volume fairly well but is poor at
detecting a small loss ct volume.
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Table 1I. Mean and Median Run Lengths for Simulations Involving Leaks
With No Replacement of Lost Solution
Simulation Univariate PC Univariate Crosier’s Vector
Conditions Cusum Cusum COT Cusum
Mean | Median | Mean | Median | Mean | Median | Mean | Median

Tank 1 Leak 0.1 201 147 170 115 286 152 150 106
Tank 1 Leak 0.3 103 85 52 38 241 134 24 24
Tank 1 Leak 0.5 14 14 17 i5 133 83 11 12
Tank 3 Leak 0.1 202 149 202 139 286 155 151 108
Tank 3 Leak 0.3 87 71 158 105 238 136 26 25
Tank 3 Leak 0.5 14 14 50 36 135 82 12 12
Leak 0.033 from 202 147 201 135 243 149 185 130
each tank
Leak 0.1 from 183 132 160 106 710 176 90 59
cach tank




Table 1I1. Replacement of Loss Solution: Mean and Median Run Lengths
Simulation Univariate PC Univariate Crosicr’s Vector
Conditions Lusum Cusum COT Cusum
Tank 1 Leak 0.1 196 145 135 93 204 145 124 89
(Pu only)
Tank 1 Leak 0.3 26 25 o 18 151 108 17 17
(Pu only)
Tank 1 Leak 0.5 8 8 9 8 n 54 8 8
(Pu only)
Tank 3 Leak 0.1 190 142 185 128 190 139 g1 62
(All species)
Tank 3 Leak 0.3 16 16 20 19 94 72 1 11
(All species)
o l 'I."-—m —_ . o ’ .'.—- . .
0 500 1000 1500 0 500 1000 1500
Crosier's Cusum run lengths COT run lengths
(=) — l.'.~-— ] . o 4 !Ill.'..—..- . . .
0 500 1000 1500 o 500 1000 1500 2000

Univariate tests run lengths

Principal component univariate run lengths

Fig. 3. Zero leak.
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Fig. 4. Leak of 0.3 L/h, with replacement.
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Fig. 5. Leak of 0.3 L/h, no replacement,



