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ABSTRACT

We fmt reviewrecent literaturethat applies multi-
variate Shewhart and multivariate cumulative sum
(Cusum) tests to detect anomalousdata. 71wsetests are
used to evaluate residuals obtained from a simulated
three-tank problem in which five variables (volume,
density, and concentrationsof uranium, plutonium, and
nitricacid) in each tank are modekd and measured. We
then present results from several simulations involving
transfers between the ranks and between the tanks and
the environment. Residuals from a nctfault problem in
which the measurementsand model predictionsare both
correctare used to developCusum test parameterswhich
are then used to test for faults for several simulated
anomalous situations, such as an unknown leak or
diversion of material tim one of the tanks. The leak
can be detectedby comparingmeasurements,whichesti-
mate the true state of the tank system, with the model
predictions, which estimate the state of the tank system
as it “should” be. The no-fault simulation compares
fnlse alarm behavior for the various tests, whereas the
anomalous problems allow us to compare the power of
the varioustests to detect faults underpoasibk diversion
scenarios. For comparison with the multivariate tests,
univaristetests are also a~lied to the residuals.

INTRODUCTION AND MOTIVATION

For process control and other reasons, new and
future nuclear reprocessing plants ate expected to be
increasingly more automated than older plants. As a
corlsequence of this automation, the quantity of data
potentiallyavailabk for safegutudsmay be muchgreater
in future reprocessing plants than in current plants.
Thcse data will consist of control data and physical and

=Iis work supportedby the US Rogrun for ‘!’echnicat
Assistmce to IAEA !hfegwds,

chemical measurements of process inputs and outputs
during plant oprations. It can also include traditional
data from inventoriesand transfersof nuclear materials.
Not only will mtxe process variables be monitored, but
data collection will be more frequent than in the past.
If workable methods of authenticating and analyzing
these data can be developed, they should be useful for
Aegwds.

Recent developments from two different, but m-
related,fields are applicable to the use of these data for
safeguards: 1) process fault detection and diagnosis
results from the chemical engineering fwld and 2) qual-
ity control assessment methods from the statistical and
quality control field. For this report, our main interest
in the fault-detection literature is the concept of dam
redundancy provided by measurements and system
models. Our main interest in the quality control field is
a recent multivariate version of a fault detection
statistic.

Process Fault Detection and Diagnosis
For many years the chemical industry has been

considering process control issues that are dirwtly
applicable to reprocessing plant safeguards. A signifi-
cant amount of recent work has been done in the area of
process fault detection and diagnosis.l A fault or
abnormal condition occurs when some state of the
chemical process, e.g., temperature, pressure, or mass
of plutonium, is outside of acceptable limits. Fault
detection is based on the availability of redundant pro-
cess information. The methods consist of two general
categories based on the kind of redundant information
possessed about a process, Both categories assume the
availabilityof measurementdata. “Meamrement-based”
methods rely on redundant measurements and include
methods that use historical data as target values or set-
pointa against which new meastnments can be com-
pared, “Artalytical-based”metkds involve redundftnt



information obtained from a mathematical model* of
the process. The concept is illustrated in Fig. 1 where
model estimates are compared with measurements to
determine the pmscmceor absence of a fault with some
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Fig. 1. Process fault detection.

If a process is operating with nc faults, we expect
thatall of the redundant information will be consistent
except for the unavoidable presence of modeling and
measurement errors. Fault detection methods are
usually designed to estimate residuals, i.e., deviations
betweenwhat is expectedand what is obsezved,basedon
this redundant information. So measured values are
comparedwith model predictions of the same variable.
For exatnph;, nuclear reprocessing plants periodically
calculate the amount of nuclear material that is unac-
counts.1 for (MUF). In this case, a combination of
measurementsand materials-balancerelationships con-
stitute the redundant data. If the MUF is too large, as
judged by our knowledgeof the uncertaintyin its calcu-
lation, a possible fault has occurred and some action is
mquimd.

.

Cusum for Testing Residuals
Having compared the redundant data provided by

the model predictions and the measurements and ob-
tained the residuals, the next stage in fault detection is
determining when the residuals are “!arge” enough to
indicatea process fault. At this stage, monitoringresid-
uals is a version of outlier detection that is used in sta-
tistical process control. If a residual is judged to be an
outlier, then the goal is to isolate the locationand deter-
mine the cause of the fault. For safeguards,appropriate
action might be to investigate whether a diversion has
occurred and, if so, to determine where artd how it
occurred, and to identify appropriate foliow-up action.
Obviously fault diagnosis is more difficult than fault
detection because it requires more detailed knowledge

* Knowledge-bssed models, such ss expert systems, ere
elm suggested as a type of process model for use in fault
detection. In this report we xre onty considering mathe-
maticxt models 0? the process.

of the processes and more numtmus and specific
measurements.

Manydifferentoutlier tests for fault delectionhave
bc4n proposed in the literature.] They include maxi-
mum likelihoodratio, sequential likelihoodratio, cumu-
lative sum (Cusum), Bayesian and the univariate z or
student r tests. Mtdtivariate residuals with multinormal
distzibwionscan be individuallyevaluatedby univariate
tests or by mukivariate tests, such as tests that use the
Mahalanobis distance. In this paper we investigate
recently poposed multivariate Cusum2 and Shewhsrt
tests for evaluation of residuals tkom a three-tank sys-
tem involvittg transfersof nuclear material between the
tanks and the environment. It maybe advantageous “a
use multivariate Cusum tests for testing the long
sequencesof data (severalhundredsuuxxwivemultivari-
ate observations) expected to be a’milable in future
automated reprocessing plants. We know of no pub-
lishedattempt to monitor a vector-valuedresidual as we
are proposing here. In safeguards, Page’s test is the
most commonly used univariate Cusum test.

We now review a few candidate outlier tests that
could be used to monitor a multivariate residual time
series.

Individual Outlier Te:4.a
The univariate test statistic for residual p of the

residualvector rl is

yZtp= ~
* (1)

where o is the known standard deviation of the pth
residual. Test E(rrp) = Oversus E(rr ) # O(E denaes

fexpected value) by using quantiles o the standard nor-
mal distribution. To correct for multiple testing (there
are p variables), use the conservative Bonferroni
method,3 which replaces the desired false alarm rate cx
by aI~.

Individualoutlier teatsas just describedwill fail to
&tect slow sustainedanomalies. 71wrefore,the univari-
ate Cusum test might be preferred. One univariate
Cusum test for evaluatinga pattictdar scalar residual is

St=max{O,$-l+ rtp-ha} . (2)

Outlier Tests
The vector-vahtcdreaidtudrt, rtp is expected to be

sero, Ho: E(rt ) = Oversus the alternative hypothesis
H,: E(rtp) ~ ( l%eunivariate test statistic for variable
p of rtp is
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t-
Zfp(a)= = .

&
(3

The standard deviation 0 is known. The variable n is

t.. number of samples usd in the calculation (n = 1
fu this wwk) and E &notes the expected value. The
Ctiticd VdllCSto which tkX tCStSU.iStiCS WC to b

compared come from the normal distribution with a
mean of Oand a standard deviation of 1, N(O,l). The
user specifics what significance level (a value) will be
used to signal a fault, depending on the numberof false
alarms to be tolerated. For uncorrelated multiv~tiate
normal distributions, if we wish to maintain the same
overall significance level for detecting a fault, tests for
individual residuals use the Bonferrmi method.3 This
method replaces a by a/p to account for the multiple
tests, where p is the number of individual z values
being tested. If the Wmdarddeviation is not known but
must be estimated, critical values from the student r
distributionare used.

The univariate Cusum version oi this test for
evaluatinga particular scalar, rfP versus a target value,
a, is

In this,case, c is the standard deviation of r, k>O, and
S0=0. To test for a decrease in the mean, the same
equationcan Ix used if we define q =-rl.

l%e multivariate Shewhart tes~ Hotelling’sT2, is

Yq=+[(rl -t)’Z-l(rt -t)] 2
9 (5)

where X is the covariance ma~wixof the rf under no
fault conditions and t is the target vector, which is
assumed to be O. T, a positive scalar, is compared to
the Shewhart control limit defined by the desired false
alarm rate and, if it is larger, an alarm is sounded. In
the present application, the target vector t is zero. The
T, m compared to user-specifiedcriticalvaluesfrom the
chi-scpred distributionwithp degrees of freedom.

Clearly, Tt tests only the residual nt time t. A
simple scalar-valuedcumulativesum of the T, is defined
as follows:

(COT)t=max[O,(COT),_l+~ -k] (6)

COTO=O .

(COT)f is compared to the critical value h specified to
give a desired average mn length or false alarm rate.
The value h can be found by simulation. Herek (>0) is

a parameter that is adjusted to obtain a statistic with
desiredplvperk.

In analogy to the univari~te Cusum,” Crosie#
describes a vector-valued Cusum (S~)as follows: De-
fine a scalar quantity C t, the length of S(-I * rj,
xWdingto Eq.7

[ 1%C,= (S,.l +r, jS-l(S,_l +r,) . (7)

specify

s~=0 if CrSk

w Sr=(St_l+rt )–k if Ct>k (8)

whuetheveetork is

k=(Sf_l+rl )k/Cr . (9)

By construction,the veetor k is in the same directionas
!$t_l + rt but of shortfx length. Thus the effect of Eq.
8 is to shrink the cumulative sum vector St towards the
origin along its direction. Using Eq. 9, Eq. 8 can be
written&

St =(St_l+rt )(l-k/C1) , (10)

when, as above, the farget vector thatwould normally
besubtrwedfromSt_l+X tistakentobe O. Inth:-
~edure So = O and k >0. Upon calculation 01
St, a scalaris calculated

(11)

which is tested against the critical value, h, specified to
give the desiredfalsealarmrate.

Three Tank System
We applied the above multivariate Cusum tesls to

simulated data from a three-tank system (Fig. 2) con-
taining nitric acid, plutonium, and uranium. More
details can be found in Ref. 4. The dynamics are
described by a system of coupled differential equations
based on total mass balances and on individual mass
balances for each chemical species for each tank [Eq.
(12)].

~ime rateof
change of mass] = [Mass in] - [Massout] . (12)

* The univariste Cusumto detcetan mcnmsein themesn is
St = max(O,St-l + (xl -a) - ko). Where a is tie tsrgct
value, for the mesm u is the msndsrddeviation of the x’s,
k> O,and SO=O. nor a deaease in the mesn the ssme
equations csn be used if we define X1= -xl.
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Fig. 2. A three-tank system with three
non-reacting constituents.

For given input flows, initial tank volumes and
initial concentrationsof nirnc acid, plutonium,and ura-
nium, the differential equations are solved to give the
outputs, i.e., the volumes and concentrations in the
tanks at various times. When demsityis a linear ftmc-
tion of concentdon, the equations for Tank 1are

Clvlkk =

d.1-lptlt =

dPu@t =

du@t =

F1l +F12-F?l (13)

[~”ll FI1 + ~12 F@
-(Fll+F12)H11/vl

[m”ll Fll + P@12F12)
-(Fll+F12.)RJll/v]

[~”ll ’11 + U“lz F12)
- (FIl +F12) ul]/vI

wJh analogous equations for Tanks 2 and 3, The den-
sity of each tank solution is determined fmm empirical
relationships between densities and concentrations of
nitric acid, plutonium, and uranium.“6 The system of
quations is solved by the Euler method for modeling
flexibility. ‘he implementation of the model requires
that initial volumes and concentrationsare known from
measurements(includingermrj at the startof each simu-
lation. Densitiesare then estimatd by using the empir-
ical relationships mentioned abme applied to the esti-
mated concentrations. Ffow rates are ab rquired for
model simulations, and these are assumed to be avail-
able from mea.wements at 6-rein. intervals. Thus the
flowIrates used in the modelF11, F12,etc., are changed
after every six minutes of simulation time. The vol-
ume, density, and concentrations of plutonium, ura-
nium, and nitric acid in each tmk are the model predic-
tions that are compared to measured values to give the
residuals that are tested for possible faults. The meas-
ured valuesare obtained by adding zero-meanGaussian
random enors having variances determined by the per-
cent standard deviations given in Table I to the known
true values. The measured values are assumed to be
available every 30 min. Thus after each 30 min. of

elapsed time, the residuals are calculated and tested by
the above Cusum tests. Then the model values are
updated to the new measured values and the simulation
eontfimesuntil all Cusum tests have alarmed. Because
Ineasurd values at the end of eaeh 30-min. period are
used both to calculatethe residuals frx that pried and to
serve as starting values to generate the next period’s
predictions, there will be negative serial correlation in
the residuals (exmpt for the residuals for densities in
eaeh tank, becauseof the way density is estimated).The
I.xcaenceof serial correlationmakes our sequential tests
performdifferently than if the residuals were not corre-
lated. We will discuss this effat in the results section.

Table 1. Percent Standard Deviations
Assumed for Measured Flow
Rates, Volumes, Concentra-
tions, ●nd Densities

Flow rates 2.0
volume 0.2
Nitricacid 1.0
PMonhurC 0,2
Uranium 0.4
Density 0.2

No-fault Simulation
Application of the above Cusum tests requires

knowledgeof the covariancematrix Z for nofauh condi-
tions. To prevent creating problems because of a
changing covarhmce matrix as we step along in time,
the no-fault simulations were performed under steady-
state conditions. One thousand 20-h simulations were
performed as outlined above, and several estimates of
the covariance matrix Z, corresponding to different
elapsedtimes, wem comparedand found to be the same,
within errors attributable to using a finite number of
simulations. Thus one value of X was used for all of
the testing. After acquiring Z, a sufficient number of
no-fault simulations were performed and the residuals
tested to find a value for h giving an average run length
of 2CXJthat is, an average false alarm rate of 0.5%. For
all tests except the COT, k values of 0.5 were used.
For COT, &was w to pl~ following Crosier.2

Anomalous Simulations
Two basically different diversion scenarios were

simulat?d; the first is equivalent to a slow leak from
one or moreof the tnnkaand the second is similar to the
fmt except the removed liquid solution is replaced with
water or water plm nitric acid mid umnii}m. These
removalswereassumedto occurat a constant rate and to
continue until an alarm was mmded. Several different
10LSSrateswere tested.



RESULTS AND DISCUSS1ON

No-fauII Simulations
Figure 3 shows she disrnbutioa of run kngLhs

giving m SveJageIun length (ARL) of m fa the uni-
variate, pitwipal coqmmenLs univariate, COT, md
Crosier Cuwrn terns. Tlws dismibutiims are Imscxfon
10 COOalmns fro-h ~ but cmly ICKXIrun kngt.hs
m piottel in the histograms. Mean and median run
Len@ are given in Tabk 11. These %arnpie means”
can beccmsidued to bcwilhin3m”thc tfuemea.nsin ali
Cascsand inmoslcascsa rewithinl of thetruerrbcans.
Thnl is, in the worsl case (hngest true average run
kn@), the smulard tkviakm of the sampk avenge run
kngth is about 1.5, 90 an appwximate 95% confidence
intema.1 (Cf) for the true ●verage run lengti would
extend frcnn thesarnpkmean (rtwmof the 10@30 run
kngths fm each case) pius CMminus 3. Most of the
slamlard deviations of the sarnpk means are much kss
than 0.5, so a CI extending from the sample mm plus
or minus 1 would have grealer than 95% covemge
jwobability.

Nole from Eg. 3 tit the distributions are highly
skewed to the nghl indicating tlw most runs alarm al
run iengths less b rlw average. Neariy twmthi.rds of
the runs alarm in kss b 2tXl tesLs. Howcvex, once in
a whiie there are very iong run lengtis &fore a false
alarm sounds. A always, it may be preferable to use
the median run kngth rather than Lhe mean, but we
restrict this discussion to the mean run iength. The
ARLs in our simulations were sensitive to values of h
in accord with he results of CrosEr’s work.2

Anomaious Situations
Resulss for lhe simulations with faults are sum-

marized in Figs. 4 and 5 ar,d Tables 11and HI. Figures
4 and 5 compare the run iengii disu-ibution for a 0.3
IA leak from Lank 1 in the lwo cases: replace the IA
widl water (Fig. 4) W do W replace the leak (Fig. 5).

Tbe run iength distributions shown in Figs. 4 and
5 are similar to those fm & no-faull case in that Lhey
are asymmetric, skewed to the right. These demonstrate
that even though wc fauks arc rapidly detected on tie
avemge, them are occunmws when the same fault may
w ix deteckd fw an uncom[oiubly iong time using
these tes& llwy suggew the median may be a belter
measure of the tcsls’ ability to delett material losses.
A’w, note the unusually iarge number of long run
iengths using COT in Fig. 5. We have no[icul this
LAaviu ti k COT in seveml moderately hard-t.o-demt
mc+na.lous u. We hlieve that this unusual behav-
ior resul!s W.5U* of h canceiialkm effecl in Lbemagni-
tudes of the residuals that arises from tie negative serial

cxxrebtion in lhc ncm-mcnnalous and modaateiy hard-
Kxktetl awnabus -.

Tabk II coimins RSUILS fw cornpming tie f~
cumulative sum USIS fm the genm.1 case when iiquid
mlution is removal from one or rnae tanks, ~us
total mass d IMSS of each individual specks wili
change tmcau.w the tolal volume changes. Neither the
mncentraths of Ntrk ~id. pluumium, and uranium
ncwthedensities wilichangemder this typcofmatcrial
k. F(X dl ksls, w Cxpcmd average run kalgths are
21Xlfcu Ilx no-fault case with 95% confdexe intervals
ofatmut 1% to 204. Thus, if a loss is detcaable using
process fauit demt.ion and these tests, then the man
values in Tabies 11~d 111should be signif~tly iess
dm.n 2CH). For the ieaks from Tank 1, it appears that
Ooi.w’s vector Cusum ccmsistentiy alarms al a gnallex
run kngth than do my of the odwr tests. The univari -
ate lesl using the principal components aplwrs to be
the next most semitive with COT king he least sensi-
ti~e test.

Tat-de 111contains resuiu for h situations when
the IW liquid is repiaxd, eilher by W solution less
k p~umnium or tank soiut.ion iew ali constituents.
This WLivily will affect ali mnccntmtions and densities
in the tank from which material is iost as well as any
downstream tmnks. Thus a diversion from Tank 1 wiU
affect Tanks 2 and 3, whereas a diversion from Tank 3
wiii not affecl the otkr ~ks in this system. As for
Ihe loss without replacaneJM scc.rwio, CrOsier’s Cu.sum
is the most snsitive test for loss wil.h replacement with
the Iwo univariate Cusum lesls king next and quite
similar in results, whereas the COT is the Ieas[ semsi-
tive tew.

I( is instructive to compare the results for the lwo
different diversion samarios with reqmt to tie perfor-
mance of a spilic test, e.g., Crosicr’s Cusum. The
ARL to alarm for the 0.1 L/11leak from Tank 3 with-
out ;epiacement was 151, wherms the value for the
same ieak with repl.aixrncnt by wam was 81, or rtea.riy
rwofold iess. We attribute Ibis to lhc fwl that when the
diverted tank solution is repiad with wdm 10txing the
volume back into balance, all of k mher measured
variables have &n altered by dilutkm. llms the redun-
dancy provided by the multipie measurements and the
muitiva.riate lests provides mere sensitive detection
when a divemer tries tO & cievti. Tlis may frequently
be tie case N WFUSlourtd in w preceding work using
Shewban-typ tests withml cumuitive sums.4

In cmciusicm, he Crosier’s Cusum was the most
~werfui test of those investigated for Ihe detection of
divenions from a three-tank system using [WOdifferem
type-sof diversion scenarios: loss of tank liquid without



replacement and loss of tank iiquid solution with

-tbya-liqtid we~amdmm.
pined by the lack of sensitivity of the .COTtestfor
detecting Iosaes. Apparentlythe direetionalil}character
of Crosies’s Cusurn test provides a very significant
dWlltd&, at kast for this ~ of probkm. We had
expected the utivmiate test to be most sensitive for the
loss without replacement txenario because orJy one
varisbk (volume) is affected. ~us we were somewhat
~ th8t Croak’s Cusum exhibited superior per-
formancefmthisacenarioas wellasforthe re#acement
with liquid sxnario, as we thought it might. This is
probably a Conseqwmceof the adjustmentof the critical
values for the univariete tests needed to obtain the
~~ ~ @@ for ~rf~ing multipk ~iv~-
ate tests. Presumably,if we monitoredfew= variabks,
the univariatetest would be superior. As a partial check
of this conjecture, in one simulation we monitoredonly
the volumein Tank 1with a univariateCusum teq and
in that extreme case the Univariatetest was the best for
detdng a kak from Tank 1. Finally, as wc mentioned
previously, successive values of these residua! time
sequencesare correlated for all variables except for the
densities in each tank. This is becausemeasuredvalues
are used both to calculate the current residual and as
initial values for modeling to calculate the next predic-
tion, which affects the next residual. This is an inter-
esting a“pect that we are investigating. At presen~ we
note from Table 11that the negative cwmlation has an
adverw affect or the COT. For small leak mix, the

COT act mlly takes lonry.rto slam than it does in the
no-leak case. It turns out that the COT test is able to
detect a small gain of volume fairly well but is poor at
de4ectinga small loss c! volume.
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Table II.

Simulation
Conditions

Tank lLeak O.1
Tank 1Leak 0.3
Tankl Leak05
Tank3Leak 0.1
Tank 3 Leak 0.3
Tank 3 Leak 0.5
Leak 0.033 from
each tank
Leak O.1from

dean and Median Run Lengths for Simulations Involving Leaks
Vith No Replacement of Lost Solution

Univariate PC Univariate Crosier’sVector
Cusum Cusum COT Cusum

Mean Medisn Mean Median Mean Median Mean Median

201 147 170 115 2s6 152 150 106
103 85 52 38 241 134 24 24

14 14 17 i5 133 83 11 12
202 149 202 139 2$6 155 151 108

87 71 158 105 238 136 26 25

14 14 50 36 135 82 12 12
202 147 201 135 243II 149 185 130

183 132 160 1(K 710 176 90 59



Table 111. I
Simulation
Conditions

Tank 1Leak O.1
(I%only)
Tsnk 1Leak 0.3
(l% Onty)
Tank 1Leak 0.5
&u only)
Tank 3Lcak 0.1
(All species)
Tank 3 Leak 0.3
JAIIspecies)
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Fig. 3. Zero leak.



0 20 40 80 80 0 600800

Crosierk Cu8umrun lengths COTnmlengths

Univariah tests run lengths

Fig. 4. Leak

Ii

Ill .-. ~
.

g \
o Illm. ..

0 200 4CW

Croaler’s Cusum run lengths

E!
o

of 0.3 L/h, with

1. . . .um ~ —.
o 100 200 300 4m

PrMdpal oomponent univanate run lengths

replacement.

Il. .,kif❑m-_
o 1000 1500

COT run lengths

ll&.
8

b

, 11
i!.

mm-.. =: n&.,o bhlnn.-

0 1000 1500 0 1000 1500
Univariate tests run lengths Principal component univariate run lengths

Fig. s. Leak of 0.3 L/b, no replacement.


