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A AN :ARBITRARY- muumn OF STATE

. by HoAyBethe
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_ ) _pbtg.l equations of the hydrodynamin‘ tfxeory bf SR
‘one .onal shock waves — that s, the; equations of, con="
" &M‘bibh%f ims'ﬁ,‘ tg “mémen tmn, and--of energy — are devel-
qped.,m .;Thege save _mne %0 ca the veloolty; mssa-veioc:{-‘-
' pressure rise in-ghock: ‘waves.in air-and: -
i m&‘bé:". I’Hiﬂidoﬂb* dditlcnal équation, “they siffice to per— i
ﬁwm%gmgf detonation velocities 1N gasedus’ and"i?ﬁ' FoLD
solid explosives, Predictions of :detonation yelooity.as:@. {.f : i
" runstienrar e ‘density ape ‘therety achieved, accurate f?°, e
oD a few percent, Pressures, tamperatureng anq mass-velbefties *
e inside “the explosive are. also Gapputede. The question 4f. 2he:~i
- 'ct:lhﬁavév"é“r ﬂmving the" ﬂq’onnatinq ‘ont in the" explo-
. sivgqis inpestigatedy. . The initial vélocity, pre#sure, and;’
- - so forth, *of the - -shock wave “prgduted. 8t the 'end of. a stick of ..
S etpluaﬁvé‘&i‘é"dlntﬁateﬁmees&m Tha ‘Hying away of ©
SN ghock Waves,y, problem& of raflec,t:i;on and so i’m*t.h, are- also

. discnssed briefly. Do, _;~ L
F . ,._ ._.,":... a » ,,... e “ "'-, . ‘ o '
S, .. ' . ,,‘.(\_. o .--' PN . o .. i ] . .
§ ‘ ’ N - o e R -l : \M Ceewm
Sl T AR %3- INTBODUGS’IO)I». Y I R G te e R »aJ : oz
. B R S SRR O T T 3 ) .
. ., Mo, o - (\ "" _C_ .

. The’ ‘theory T ’%hoék waves ttn:s*far has ‘been d;mloped main]y for

4 '~ o

i:deal’gases. ‘Even ﬁir*imeSe, “the: qﬁéstion 0% phe 8‘Eabillty oi‘ shock ’ )
L < waves has receivea 11ekre’s tention;: “Becéniii"iﬁe problem of 3500“ e
- “waves mwata- ‘hag’ gatined*much prictical ‘33?31‘*-31103- | ‘fheref“e i
 seens, wipthwhils €8 ﬁve‘aii:gaﬁe ‘e prbperties “of "sfiotk maves “nder .

AT w.‘ vy e ‘!" .‘_:'A"_':__‘,. g::'v.'a .

conditiohn ds’ genéraI as%’pcssible. SR shEpa I T

- A s CoE Bl o n..,.;”.: I' s -:~. ,:; A *Si REEN O KXo
L 1. Euation nf state notations'» -as8i ,' , wwetaliefuy nisd
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T Wa aghall consn.dsr a m}erial sharacteriz 2C .3)5‘ a ggr,ba, in eqna;h,ion o
+ ,.‘.__ v -.‘: ', -:. Y d q.lg (‘P "J ‘ ’-‘:-:, ‘

! o of state R - ¥ I e e e
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where 2 is the :pressm'e, V= i;he:.epecltic ‘vulmng and T tha e.bsolu‘he tem-
peratnre. wem assume thatz:!z a unique f\mction of v and I,
- This 11111 cert.ain]y be fulfillad ir- themndwna.mic equilihr:mm is es-

] . B . o
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tablished behind the shock waxe. Moreover, it will also be fulfilled
if there are always the same deqiations from equilibrium,

The most important example of sueh Uregular“ deviations from equi-
librium is the nonoccurrence of phase changes in shock waves in cases
where they would be demanded by the phase-diagram- For instance, Kirk-
wood has shown that water behind a violernt shock wave (pressure about
10,000 atm or higher) would transform into ioe VII if thermodynamlcal
equillbrlum were established. -HOWever, as Kirkwood has pointedfbut,
this will almost certainly not happen since the relaxation time for
crystallizatzonmms-probably many times longer than the duration of a
shock condensation.. In a case like this, we shall use the (meta-
stable) conxznuatzou of the equation of state for liquld water to
higher pressures. . f, A /

For reasons to be explained subsequently, we must gulte general}z
exclude phase changes £rom ‘our theory (see Secs. 13 and 14)s The
function p(V, T) w1ll,_therefore, n’ general refer. to that phase.in
which the material existed before the arrival of the .shock wave, even

if this phase becomes metastable at the densidy and temperature reached
behlnd the shock Wave. . The Justificatjon. for this. procedure is the
above-mentioned fact that the relaxation tlme of . the phase;change will .
be long enough to preserve the ‘metastable. state behind the: shock.wave, .
No assumption aboux the relaxat;on time 1s required when.the densxty
and temperaturempeh;nd the shock wave tnrn out to lie ‘above their .
criticai values; Then this state can be reagped without a phase transe .
ition, both from the ordlnary llquld and from the gaseous state.1

- Besides p, V V, and T, we—shali~use~the energy*E-and'the*entropy'S
both quantltles per gram‘of the substance. If we agree in whlch phase
the material is to be, its state can be described uniquely by E and V,
or by S.and V; for example, “the pressure is a unique function of §
and V, The variables S and V ﬁiiiiﬁurnloui fo be especially convenient,

P

1/Th.e transition of solids to states of extremely high temperatures
and high densities will, in general, not involve any difficulties either,
although there is probably no critical point for a solid (see Secs. 7

and 1l).




Pressure and specific ‘volume,tm’ tin othe!‘m& .m-e.mt ‘:&.mzit-
able pair of mdependent variables.hacause they: dowict, always: defim
‘the state of the substance. uniqualF$ ‘Thus' water at 1 atm-pressure’ 1111
occupy the same specifio volume below and aboves: ).;°c,. -Joe L&t a few: '
atmospheres and 0°C has the same specific volums 'as 1iquid water. at:
about 150°C and the same pressurs,. Both these facts are, otﬂcourse,..
consequences of the nsgative expansion coefficient of water, A negae .
tive.expansion coefficient is not- often found for'.substances other
than water, and even for water ‘the expansion coefficient beonmes posi~ -
tive at higher pressures or. temparatures. However, we wish to keep’
our considerations general and:therefore admit both signs of" the ex- '
pansion coefficlent inclndipg,rntﬁgounaew.tne-possibdlity'of a .
pos1tive coefflclent for certain valuea of V .and T and. g negative-.
coefflclent for other valuea. o

e shall find in the following that- certain assumptions must be"
made concernlng the equation of state 4in order to prove the existence
and uniqueness of the solutlons of Hugoniot‘axahoekdwave equations.‘ o
The most important of these condltlong (see Sec. .3 ) is. R

P . W L
4 st S tia R “'\ - .

/
Since --(ap/aV)S is the' adiabatic: oompression-modulus, conditlon (I)
means that this ‘modulus must-increase with 1ncreaslng compre331on.
Condition (I).is very plausible; its validity will be 1nvest1gatéd
in deta11 in Sec. 12, It will be shown ‘that for all’ 51ngle-phase
systems the condition is very well fulfllled. Only in extreme cases,

as for-a gas at a pressure of 10 REN ‘atm™ (1), the condition is violated
for certain temperatures. . C ke : ARSI .
On the other hand condltlon (I) is violated for most phase ‘:.,.,.
changes (Sec. 13)’, Only for evaporatlon and condensation does cor~
dition (I) remaln true. But for the theory of.compressional waves,
which forms the maln problem of this paper,. .only.:phage transforma-
tions between condensed phases, that.is, from.llquld;to solid, or

from onc solid phase to another, would be of interest, .For-these :@-
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transitions condition'{I) is ’J;g
ey I’oi' mluding phaa"'uaxisii,i‘m

]

o

'l‘he second requirement for oug:

\ RN '..-- Mg '“ ",

proof that compress:.one;l. wavea qun:papnmi ,tq an. incrp#se«éf’ mtr,opy VRS :
(Sec, 5). Condition gm 1@ of. cqme, rglmigd mvemtha aﬁiﬁo i
" stance expands with imrea,s.ing tempemture }(ai;’:;qm@am: asuRe

......

for example, for liquld water at 0 C the legﬁt-pand side ot"cmd‘.f,trjmz. i
(I1) 15 ~0.01 5, ; ] For melting Hce I, V(ap/aE)N Beems o igo-down. ,tc .’j'ust
abogt the crltical value,, namely, -2.1,... Calculat:!.ona for srater. .%nd b
ice mll be .given in Sec. 15, . We believe t.hat ponditiom -(Ip'lQ j.q,n;alid. wr
for all substances ip practlcally a.ll s:bates., R R LT oot
Conditions (I) and (II) are su.fficient for the general proof of
‘the existénce and uniqueness of- the solu'ti\ms bf the shock equation, °

However, in provmg the stabillty of shock waves against breaking up

A &' Wn;- .

Se 1 B g, DRI drib. adr ool
in any" ¥y’ ( C.L 1 ) we also use the inequallty ot .
L et kA e stian marivic L STutig 8 FOTRE LTSRN S B L . S
AR A R (Bp/QV‘)ELo{ 0y ;:—.i.v'.i.‘rai-'.‘:.f:'g "‘(‘,'L'.J.' al {1 ’{'III)""‘ <
rme Durim JEoees sl opoeidn T Dibt 3L o0 Ll xi oL ik

AT TS R e e

Whlch\ age}n is, only 2 suff1c1er;‘s, ;wt a- mecessa:;y g;;;,ga .Of"ﬂt&—ﬂ
blllty. Condltlon (III) ig. obvrxx.ously ful.t‘z.lled f{or ic}eal gaseg.for«ci »-.
Whlch constant energy is equivalent to constant temperature. We: - o o2
have also found 1‘:, tQ Re.valid:foy ;.al}. oneq-phase sxstems R have ine
vestigated - (Sec. _“6,,. . However, it can: beﬁam*that*eogrdxti:qﬁ (’III)

breaks down again for some phase transformatmns, r_xa.mely, .1if the :energy -

and entrOpy change in opposrbe dlrectlons.;; R S TR Y BRSPS S

. .~ e —

2, The shock equations -~ @ = "% ,r U T Toene emng

We shall denote by the subseript 1-the qﬁantities”ref‘ef'i':ing'to the -

NMuanAl cetiirhedll ocrihatormme. <o vt P +3m ol e corm e Tove M Bl oo e



rel'g%ive‘ *t.od:ehe slmcl’ﬁ ﬂﬁ&fﬁ} 1, _!;, 8 gar’é 'volnma?' anargy. .

anh'opy, anﬂ‘:;:rassm, m firgﬂ’. XA :. ‘n'iiantit'iea per ga.m. BJA‘V
8P, a:nd ao forth we ﬂann:ﬁe the m& ot vcluma, preasure, a:nd '80
i‘orth, namely. ST S S ST T

p = p2 Py, AT Ty -, ens sa forth, " (2)

The conservation laws for Jnasa, momantmn,v and energ are, re-~
spect;l.vely, ,' SR i :

=

v‘}';‘g- ' ‘ - (3)

. 2 2 B
. a f.‘ ' | Py +v’£-p2*?2-. S L | _..(‘h)

"%?‘. o

E1+P1-V 1"E "szz*%“zf,“: - 5)

- : [ Y

' . It is convenient t.o ‘t;ransform Eq. (h) by use; of Eq. (3). ‘We obtain

-

B O G

5“? | (6)

Similarly, Eq. (5) may be transformed:

= - = | - L' 2 2\ -
BE =By =By =pVy =P, * 3{uy - uy) . (52)
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L ».‘gfj,«_-;ug =8p(V, *+ ¥,) 5 \.;,' o | (7)
' Fl‘\ _— .‘ - .. . - R N . .“;' P ' P
' Wl P R L

o""\

c o~

Tnserting tnto Bau'(5a), - . PR

IR zv %(p, *pz' K - (8)

'Ihis d.s the famous Hngoniot. equation. It win be noted that the equa—
tion no ,'Longer contains the veloc‘ities u1 or u s bt that it is an _
equation between tbermodynamic quan‘bities only. ) It is, therefore, most
suitable for 3 determination of the possible "£inal states of the '
material behlnd the shock wavexwhen~the “initlal" state (state 1), in
front.of the shock wave, 1’ ngen; :F .a given V%,ﬁ’;p1 and given
v, Eq. (B). gives a lindar relation between E2 and p,. Another re-
lation between the same quantitiés is prqy_ided B& the equatlon of state.
‘At the a.nterSection of these two .relations (if ‘sich an intersection.
exists) we find the possible "final® state of the material for the
given value of Vé - This makes it easy.to determlne all possible flnal
statey for a given initial state, Having determlned P, and Vé, we

can immediately find the correspondlng‘velpcltles u, and u, from Eq. (6).




wave relatrve to the materlal.

-those powers that w1i“w‘wm
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'II. GENERAL THEORY FOR ORDINARY SUBSTANGESZ/

" 3¢ Small shock ﬁaves | ‘ . 34;1j .

Equations (6) and (8) are obviously generalizations o.f 't.he ‘equa-

R LIRS -

" tions for inflnltesmal (sound) waves, Equatlon (8) goes over, for -

1nf1n1tesma1 changes, into ‘ St
DU %"{%=—p§s. o (9)

A

which is the condition for an adiabatic change of state. Equation (6)

then takes ‘the form ' ' o AN

5.

?3‘5""1 ( ) "(“‘g S .(".0)'_

~

>

;\".‘:.. .

- N

. Where p is the density. The rlght-hand side is the weli-known ex=

pressidp for the square of the veloc’:{i’.;:yn of sound- that is, the mate~
rial moves with respect to the "inflnitesimal shock wave“ with the
velocity of sound, and this is, of course, also the veloc:.ty of the

. Clieomeyie s, Ciliese £ef N I
BRSO -} UOTy ISHET B g Ltwn

- éﬂr RN

We shall now cons:.der shock waves oi‘ flna.te but st:L]J. very sma]l

: amplltude. We - choose volume and entroPy as 1ndependent varla‘bles, and
-expand AE and p2" in Eq. (8), in powers of NG and AS. Retaining only

ol B ‘_ 3 .'»,&'T‘:‘

t 'bo be rélevant we i‘m&

<3 < TLE L e Seey, e P 8
. N Ter * .‘ R Braiie TN I *

~I§
. -

All derivatives are to be taken at the orlglnal volmne a.nd entropy,
V, and S Remembering the thermodynamic relations

N A

— = -p e (1) .

O/'S ) . . o ,

and . ' . T - '
E . ) o . ‘ LN )

e
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we find Tty ~!'Hs“':> GO A i
. AR AS R TETE U V% N
- -—? = p + - AV + Z(a sz "', e o o ™ T ﬁ + o"rm-‘-'-«»-—(—iaa)-_-
AL N A P L G
. Coowei I ; e e L Lin <
Likewise, since p = p1, o . . o
. 2 ’
1 1/9 1/d ve 170 L
2\P1 T P 2(2% s L\5y2 ] , 2(5§)V

The last term in Eq, (i2b) 15 Tiegligible compared with the asttern :-
in Eq. (12a) since AV is assumed to be small, Comparisor of+Bysy {12a) .i:
and (12b), whicn must be equal according to Eq. (8), shows that the two
first terms are 1dentica1 aﬁd therefore :

. | 2o\ av |
o e dstegy 2 (a ) AV S L 6 ) I

7

neglectlng hlgher Powers ék AV AL ER R ST m e

w
v - .

We have assumed’ that the shock wave moves into material: 1, whlch
is thereby converted 1nto material 2. If the shock wave is fo be’
thermodynamlcally stable the entropy must 1ncrease in ‘this process; -
that | 1s AS must be p031t1ve. For ac compressive wave A1F 'V, «¥V

2 1
is negatlve- 1f at the same tlme AS 1s ‘to be'posItIVe,'we ‘tmist have -
\:l.'i 2y .-.;.,,n; 'y - .. oo N A Pogl s e
[see Eq. (13)] : . : ; Rt Li R R IR R i
Lo _ . [ S '
. - e e . - - S VY - Ty f LA - D e i(‘:ll
2 e

This condition -seems to be fulfllled for all substances as long as
only one phase is present. ..(Sec, 12). At phase boundarles condltlon {I)
is usually violated (Sec, 13). Therefore, if a phase change has tlme -
to occur, rarefaction waves might be stable and_compreSSLQn waves une-
stable, a case discussed in detail in Sec. 1L,

As was already mentioned in Sec, 1, phase changes usually cannot -

occur because of the long time required for them, We can therefore
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’v consider condition (I) quite "generally as valid, In any case, we shall
assume it to be valid in the main part of this paper (Secs. 3 to 11).

If condition (I) is valid, then Eq. (13) shows that compressive
shock waves of small amplitude AV are thermodynamically stable since
the entropy is greater behind the wave than in front of it. On the
other hand, rarefaction waves (positive 4V) cannot have a finite ampli-
tude.because the entropy would decrease in that case, Therefore, in
any substance obeying condition (I) rarefaction waves will dissolve in-
to tralns of inflnlte51mal waves, a behavior well known from ideal
gases, All these statements have been proven for only small AV —-
small enough to make the higher powers of AV negllglble in Eqs. (123 b).
The general proof will be given in Sec. l. '

e have also shown 1n Eq. (13) that the entropy change is pro—
portional to the third power of’ the volume change. This is under— .. -..
standable since we have seen that 1n flrst approx1matlon the entropy ’
is unchanged [See Eq. (9. Moreover, 45 must be proportiodal to an
odd power of AV because, when the states 1 and 2 are interchidnged, the
sign of both &S and AV must change. The third-powsr relation is thus
the 31mp1est p0531ble.“ o -

We shall NowW celculate the velocity of the shock wave relativeé to
the two media, u, and Use For this purpose, we évaluite the left—hard

gide of Eq. (6):

52
@), -(ZB) .., (1

531_ \a -S1

where we have' neglected terms of order N and of order AS/AV, which
is also proportlonal to AV2 [see Eq. (13)]. The subscript 1 means
that the derivatives are to be taken at V = Vy» S =S5,. Now

2

T . -(gg\. - 2 . ', | (1ka)
‘ : T\ 4 E

where a, 1s the velocity of sound in the medium in front of the shock
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wave, and (B p/aVz)S is p031t1ve (condltlon I). Using Eq. (6), we

;‘flnd then
et VsE) (-l re ... (15)
S -’85 -

Therefore, if state 2 is denser than state 1, V1 >>Vé and

In' other words, the shock-wave .velocity in the medium of smaller. den-
sity (medium 1) is greater than. the velocity of sound in that medium,
ConverSely,‘felative to the denser medium, 2, the shock wave moves

more slowly than sound.- The general proof of.these theorems for

‘arbitrarily large pressure change Py = P4 will be given in Sec, 9,

‘Lbe General proof of the increase of entropy for compression waves

‘We now admit arbitrarily=1arge~6hanges of the variables of state.
» P, E, and S. We shall keep the "initial state" Vi S fixed and
con81der all possible "final" states V2,S which satlsfy the shock
equation, Eq. (8), and the equation of state, BT
We shall prove in this section that in any compression wave. the

entropy must increase, whatever the amount of the compre551on, where-

‘as in the last section this theorem .was proved only for small shock

waves, let V >>Vé and let the states 1 ard 2 be’ connected by the
shock‘equatlon, Eq. (8), namely’

N ST T
- e - e g,

."., "1 0.,‘—.. y .‘ l .. ',~.\ . :

Now let us tonsider that state 1', which has the same specific vol-
ume as state 1 but the same entropy as state 2. Its energy is re-
lated to that of state 2 by the thermodynamic relation, Eq. (11),
which gives upon integration

&

[h
N
E,«E, =/ Lav (177\
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the integral to be taken along the adiabatic passing through the Btates
2 and 1 Now the equation of state has already been assumed to fule
fill the condition - L .

(azz;/éﬂl‘e)'S >o0. | | '_ ' © (1)

Therefore, if V and P are used as coordinates, the adi&batic from 2
to 1' will lie below the straight line joinlng 2 and 1, Expllcitly,

V- V
Mm%)<%+(m-pyg—7- LV, <V<v, . - (18)

Integration of Eq. (17) gives: '
: - » . ‘ , e P
By = By <3(py +pp) (V) « V) a (18a)
Subtracting Eq. (16) from Eg, (182) yields
B = By <#(py = py) (V) = 7,) . 9y

»

We are now going to prove that E1 must be smaller than E For

this purpose let us assume that the reverse is the case that is,
E, - E1 > 0. Then, since v, > V2 by assumption, Eq. (19) requires
that p1 > Pye This means that, for flxed volume V = V » the pressure
rmust decrease with increasing energy (and temperature). This requires
a negative expan81on coefflclent (see Sec. 1), which in itself is
quite possible. y ‘
However, "Eq. (19) requires a1so that the decrease of pressure with
energy should exceed a certain amount. It is most convenient to divide =
both sides of Eq. (19) vy 2(E - E, ), which has been assﬁhed'tﬁ'be’poéi—A
tive; then we get '
‘ 1]
Py - Py
-— (N, =V)>2, (192)
r M 2
Ey - B
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~

where (ap/bE) denotes the average of the derivative between E and E,.
Irv, - v, is small Eq. (20) can certainly not be fulfilled so that
our orlglnal assumption, E >>E1, is proved to be nrong for this case,

e 1) agreement with our results in Sec. 3. However, for larger volume

changes we ¢an assert that Eq.. (20) is false only if (apABE) is
llmlted in absolute value. A certainly sufficient condition is

v(§§)v > =2 R ‘ ‘. (II)
everywhere, because if condition (II) is fulfilled, then Egq. (20) is
certainly false, since V1 - V2 is smaller than V1. It will be proved
in Sec. 15 that condition (II) is very well fulfilled even for water,
The only exception we have found (Sec, 15) 18'nmlt1ng ice I, but in
this case also condition (I) is violated, Ve believe that condition
(II) is probably fulfilled for all substances for which condition (I)
is satisfied, and at least.for all one-phase systems. If condition
(I1) is valid, we have shown that E must be smaller €than E Since,
at constant- volume, the entropy 1ncreases together with the energy,
51 must be greater than 81. But 5 is equal to 82 by definition.
Therefore we have proved that - :

S,>8, 4if V, <V (21)

2 1

-The denser state bounding 2 shock wave has a greater entropy than

the state of smaller density. Hence compressional shock waves are.

always accompanied by an increase. in -entropy and are therefore thermo—

dynamically stablc. Rarefaction waves of finite amplitude are always

unstable,
These results are valid for any substance with. -any arbitrary equa-

tion of state, and for any change of the spe01f1c volumc and of the



pressure in the shock Milfe, provided only conditions (L) and (II) are
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5. Existence of.solutipna _,.ju,lxﬁnj, o o e ;! - fr S T
h‘b axam <~1!,a “Thery ifithere is a golution: SLhE shoclke + v

equations far a given'value of Vé, we- have shown in the preceding

section that 52 >»S’. We ask now whether or not there actually exists

a solution for a given Vé and given "initial" state’ V1,E1.

For fixed V,, V,, and-E,, the shock equation, Eq. (8),

2’

’

is represented by a straight line in a p2,E2-diagram. The equation
of state, again for the same.Vé,'ip represented by another curve in
this diagram, in general not a straight line., The solution (or solu=

'tions) of the shock equation, if any, is glven by the 1ntersectlon of

the two curves. We shall examine $he exlstence -6f such 1ntersect10ns

by 1nvest1gating, at two points Pos which of the two curves lies higher.
(a)e Take the state of volume Vé, which has the same entropy as

state 1; let us call it p, é. ‘Then, in analogy to Egs. (17) and (18a),

S e Y1 .
p = Y ! - .
EZEiﬁgp‘W‘ ?(‘_‘?1.-;.'1.",2.).(‘{1;_-f_‘fz);'. ()

.y

Denotlng by E2 the value of the energy obtalned from the shock equation,
Eq. (16), for p2 a pz, we.see that

. E. <E! . (22a)

In words: Far the pressure pg the equation of state gives a lower
energy than the shock equation. :
(b). Take a state of extremely high energy (temperature) and of

specific volume Vé. The high temperature will cause all molecules to

dissociate completely into nuclei and electrons, and the kinetic energy
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of their thermal motien will be 1arge compared with their coulomb

- interaction, Therefare the substance, whatever it may be, will behave
‘@8 an ideal monatomic gas (more accurately, as a mixture of such
gases — namely, the gas of nuclei and the electron gag). For any
monatomic gas, we have the relation

. E-gpv, | (23)

which remains valid even when the gas is partly or wholly’degenerate.
Therefore if p2 denotes some very high pressure and Eg and E2 are the
energies corresponding to p2 according to the equation of state and
the shock equation, respectlvely, we have

E; = 'g' piz' V2 s \‘A . ) ' (233)
N' -‘
2 =& (7, - V). : (23b)

Therefore

) " 1 : 1. 3

Ep>E; if V2>-E v,

and ‘ f (24)
E'<E'  srv<ly T -
25 o 2° T ]

Since E) < E [Eq. (22a)], we find that for V >]IV there must be at
least one 1ntersect10n of the curves representing the equatlon of state
and the shock equation, If there is more than one intersection, the

number of intersections must be odds Therefore for any specific vol-

ume greater than one-quarter of the original volume, there must be at

least one solution, and always an odd number of solutions, of the shock

equations,

For any small value of the specific voiume, V. <:KV1, there need

not be any solution or, if there are solutions, their number must be

evens We are now going to show that for all real substances there will

be at least two salutions for volumes V2 between EV and a ceriain,

e A T N T -

smaller value V. . . The simnloct cwamemd o e oo s o2 o
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not monatomic. If we use the -abbreviation

e e /Ba"l;'v' ,- (25)

it is shown in the ordinary theory of shock waves in ideal gases that

the gas may be compressed down to a specific volume

v

1 . L .
Yy min "EFFT ¢ (252)

-

The constant 4 has, at low temperatures, the Value:2.5 for "dia-’
tomic gases and higher values for polyatomic gases., Inserting the
value 2,5 into Eq. (25a) we find the well-knownresult that diatomic
gases may be compréssed in shock waveé to oﬁe sixth of their original
volume, | ) , ,‘ o L ..

However, much greater compre531ons are - found tQ be possible when
the vibratioen of the.molequle and, especially,. its dissociation.and
ionization are considered. When these processes take place the energy "
content increases tremendously, and‘@.méy"easily«reach-values of 6 or - -

2/ JAccording to Eq..(25a)_the.déhsity of the gas behind the shock
wave mayvthus be as much as 15 times the original density. Even
higher values may be expected for polyatomic gasess If the temperature
behind the shock wave is very much higher than that in front, it can
easily be shown that, for a given g, V2 has very nearly the value of
Eq. (25a). . ' 5 : -

The temperature region in Whlch B has high values is likely to. be’
quite extensive because when the dissociation is completed, - ionization
will follow and will affect.first the outer, then sugcessively the
inpner electron shells, . However ~at still hlgher temperatures, when
1on1zatlon is almost. complete, B must decrease again and must finally
reach the value 1.5 for monatomic gases, because then the nuclei and

electr@ns may be considered as free particles with small interaction.

Hsee a paper by He A, Bethe and E, Teller, published by the
Ballistic Laboratory at the Aberdeen Proving Ground in 1940, which
gives the energy content of air up to 5000°, and new calculations by
He A, Bethe zand J. F, Whitnev in which the temmerature ranre is eXe
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We thus find that any gas will h’:‘?‘.’?;.% certain maximum g which. . =«
will be reached at some temperature ih’iﬁ; dissociation or ionization
region, probably when both processes are already well along, that is,
at temperatures of about 10,000°, Correspondingly, for a given ini-

tial state, V2 will have a minimum,

v

Vy o % m————— (25b)
2 min zﬂmax + 1

which is certainly less than EV1 3 thus there w111 be at least two solu-
tions jttor every value of V2 between V2 min and -E 7.

Our considerations are not restricted to di- and poly-atomic gases.
Monatomic gases will also be subgect to ionization, and are only dis-
tlngulshed by havmg the same value of £ at low and at very high tem-
peratures. Furthcr, 1f we start from a condensed system the compres-
sion w:Lll no’c become very. large SO long as the system. .lS =% true fluid

or SOlld.‘ But as the temperature behlnd the shock, wave .increases, -the .. -

subst;z;nce will bccome qu°81—gascous (the transformatlen takes place . i .. :

above the critical den51ty and therefore does qot. Jead to a real, .£as;).

and the trans:.tlon to thls state wil,l, glve rise to phenomena similar, -

to d:.ssocmtlon and 1onlzatlon. ‘ The latter processas. themselves: will

.-Jl...- .

It can, of course, not. be predlcted in general whet.her ornot,.

there w111 be onlv two splutlons for 2 glven V,. It.may happen,that .-. .

. -2
B 2s a function of temperature, has several maxima, This will ogcur,

for example if two d15$001at10n or 1on1zat;.on processes.o¢cur at widely

“also occur, at hlgher temperatures. O e e T A S e

dlfferent temperatures. Ordlnary air is. an example of . this ‘!;ehav:Loz‘, Lt

hav:mg one maxmum due tor dissoc:Lat:Lon near. 8000 , .and anether, due to .

1onlzatlon, near 20 000°, Then V2 will have two. (or eyen more) .mipima,

and one (or more) max:una in between. .In general the .maxima of V2 will .-

be smaller than HV , because 8 must be -at least 1,5 at any temperature,, ..

and V2 is close to the value of Eq. (25a) Therefore there.is, in

general, only one solution for every V, between &VT and V1. In Fig, 2....

2
we shall give some examples of possible shock cupves (see Sece 8)e

solution for V > I: 17 and 2t 1cast two between HV and some smaller
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value, V2 min® A0 general, the minimum of Vé occurs at very high

temperature, - - -

6. The shock curve .

It 1s convenient ta consider 21l the solutions of the shock equa-
tlon, Eq. (8), for = given "initial" state V E1, including both those
with Vé'< V, and V, >V, The former group (compressed states) will
occur behind shock waves propagating 1nto a mediym which is in state: 1
the latter group (expanded states, Vé > V ) will occur ‘in front of shock
waves behind which the state of the- medlum is given by V 1.

We are going to. show now that all the solutions of the shock equa- -
‘tion must lie on a contlnuous curve in the V E-dlagram which we shall ‘
denote as the "shock curvel, .. For .this.purpose we consifer two solutions
of the shock equation whose specific volume differs by the small
amountdVs Then we have, by differentiation of Eq. (8) with respect
to the quan?ities.defining state 2, .

Now the equatlon of state gives the pressure as a4, unlque function of
V and E- therefore we may write

dp = (g%)VdE + (%g)Edv, | (27)

where the derivatives are again unique functions of V and E, deter-
mined by the equation of state of the substance. Inserting into Eq. (26),
we get

2

— - - e \
av 7T (T, - . )(ap/aE) = £(Vp,E,)3. (28)

The derivatives op/eE and dp/oV are to be taken at V'2,E2
Equation (28] is a first-order differential equation for the

shock curve. If the equation of state is known, the entire shock curve
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" and it w1ll be' shown that the shock curve goes to infinite energy E

- 18-, “-m™®mp

o em e .

can be obtained by 1ntegrat1ng Eq. (28) using any standard method, _

The 1ntegrat10n can be started at the polnt V1,E’; at this polnt ,
Eq. (28) becomes

T av TPy L (26)

a relation already given in Eq.:(9). Since Eq. (28) is a‘ first-order
differential equation, the shock-curve cannot end or start anywhere
in"thé V,E-plane, It mist therefore either go to infinity or leave
the region of -definition of the eqﬁétioﬁ of state or be closed. The
last alternative will be proved to be impossible in the next section,
-
at V HV’ (see Sec. 5), whereas on the 51de'V2 > V it goes either
to zero temperature or to a phase boundary. ' '

If the numerator or the denominator of Eq. (28) becomes zére
separately, no difficulty arises. A s#multarieous vanishing of both
numerator and denominator would glVe a singular p01nt but it will
be shown in Sec. 7 thdt -th& shock curve dannot $tart or end in sin=-
gulag points,

Fbr~many~purposes.it is more convenient to use the entropy rather
than the energy as an independent variable. -According to Sec. L, we
have S2 > 8, for the compressed states (V <V ), and 82 < S, for the
expanded states (V > V )e Theréfore, in'a v S-dlagram with V1,S1 as.
the origin, the part of the shock curve containing the compressed
states_yill,lig‘in.the-second quadrant, that containing .the:‘expanded
states .in the fburth'.clué.dx;aqt. -.The shock curve in the V,5-diagram
will be tangent to the Efaxis near the origin, according to Eq. (13).

The entropy can be introduced by .means of the thermodynamic re-

;o "

lation (applied to state 2) fn-;ff~;“-“

T,dS = dE + p,av , (29)
Inserting this into Eq, (26) gives

2T,dS = ApdV - aVdp , (30)



-
.

- 19 -

a most convenient relation. ExpreSSing‘E_ab a fﬁncticn of Wand'S, -

we may wrlte . RE”
3B\ v afoDy ik
dp = av +- das - | (30a)
s ee@s
and obtain
) 45 fp - AV(ap/aV)s .
av = T ¥ N(ep/ad). " (31)
4, plS)y *

The denomlnator of Eq. (31) is the same as that of Eq, (28), ex-
cept for the factor T2, because

“ (QEpPS), =T , » (31a)

-

For ‘positive AV (expanded states), the denominator can never become
zero if-condition II is fulfilled by the equation of state. Therefore,

on the side of expanded states, the shock. curve must -go monotonicall

to greater specific volumes..-For compressed states-{AV. < 0}, the de= -

nominator may easily become zero this corresponds to a minirmum (or~
maximum) of the specific volumej ' We have shéwn ‘st the end of the last
section that for all real substances there’ ex1sts at least one minimum
of V2 for a given V1 and that this minimum oecurs at rather«hlgh tem—
perature s(about 10,000°), '

The humerator of Eq. (31) may be written

“[H-@) i

Thereforc, if AS/dV were zero anywhere on the shock curve (which, as

we are going to show in the next sectidn, does not occur exce pt for

AV = 0), we should have Ap/aV = (ap/av)s. Physically, this would mean
[See Eq. (6)] that the shock-wave velocity relative to the medium bee

hind the shock wave,

w, = v, J-52 - (31c)
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becomes equal to the sound velocity in that mediim,

ay = V, -(%{-’,)S § (31d)
. ‘ Pl Vi fx"_"”' CERS

It should be remarked that while dS/dV is well defined by Eq. (31)
for any values of V and S, it need not be continuous. For a mixture
of two phases, (ap/aV)S will haveia different (greater) value than for
the puré phases (Sec. 13)-'héhéé“§é7avmﬁiii"1n éeﬂéral have a dis-
contlnuity, and S(V) a kink where phase tran51t10ns begin or are com—
pleted, However, as was p01nted out repeatedly, ‘most phase changes
must be excluded from our theory because condition’ (1) 'is violated,

Te Proof of the monotonic behavior of  the entropy

In this section we shall prove the central theorem of the theory,
namely: If the state in front of the shock wave (V S ) 1s g en,'

there is one and onlv one solution of the shock equatlons for any

1ven vatue -of - the- errtropv, 5= 'beh:md the shcck wave (.: g S <oo).

2.
TIf the State behind the shock wave is given: (V S. ) and If“phase

changes are excluded, there is ‘one and only one solutlon of the shock

equations for any given value of the entropy 82 in front of the wave, ’

82 belng larger than a certain SB where the state SB lles on ‘a phase

boundary and Sg is a function of Vy,57. o
The main problem is to show that there is 2§£X one solutlon, then
from the considerations of bec. 6 it can be proved easily that there
is actually one, To prove the main statement we shall show that the
assuﬁption of two solutions with the same“eﬁﬁropy leads to a contra-
diction, .

Suppose we have two solutions, denoted by subscripts‘g and '3,

which have the same entropy,

S. =5 (32)

Without loss of generality, we can assume that

V3 >, . (32a)



-p L mre -

EE 3

Since both soluttons fulfill the shock equation,
sBame initial state VT,p.1,,E1. we have

Eq. (8), for the
R T LA S
,2(33._ E1) 2 (p3-+ p1)(V5 - VS),’ 2. :MT:(BZC)
Therefore |
2(E,~ E3) = (p, - P3)(V; = V) 4 (py *+ ) (V3 - V) . (33)

Since 32 = S3, Fe have in analogy to Eq. (18a)

v _
3 .
2(E2 - E3) a 2ﬁ pdV < (p2 + p3)(V3 - V2) . (33a)

Subtracting Eq. (33) from Eq, (33a), we obtain

Since V3 > V2, we may divide this inequality by V3 - V2 and obtain
Py - L '
~ - 2 3

which holds irrespective of the si

gn of py = Pye Adding Py = p3 to
both sides,

we obtair_l the corresponding equation

P2 - p3 N )
P17 P <y (- 7). (3Lb)
We can now deduce inequa],iﬁies’ for the energy by inserting rela—
tions (3La,b) into Egs. (32b,c). To ‘obtain results independent of the
sign of v, - V2 or V, - 3+ We divide Eqs. (32b,c) by these quantities
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and get
E, - E ' P, =P
52 £ "
.E:B-E1. | P, = P3
2 , — V3 - p1_+ p3 < 2p3 -+ VB—T-VE (V3 - V1) ) (353)

From these inequalities we shall deduce an inequality for the
entropy of state 1. We have proved in Sec, h that

It
(9]

Sp>8, =85 if Y, <V, (<Vy), (36)

s, <82 S, A V5V, (51, . (36a)

Now 1et us con81der the state p1,E1 whlch has the volume V but the

entropy S, = 53 The adiabatic whlch goes through the three states

Vé,pz, 3,p3, and Vj,p1 is convex in the V,p-diagram accordlng to condl- -
2

tion (I) = (o

from Vé to V3 the adlabatlc will lie above the straight line joining

the points V'2,p2 and V 3+ P3 (Fige 1), Expressed in formulas,

p/BV ) >.0s Therefore, everywhere outside the range

P2~ P3 P2~ P3 :
p(V,S ) > p, +VSTT’Z (V2 -V) = P +v3___‘7£ (VB - V) if V <, or v>v3.(37

Now it is clear that V1 must lie outside tﬁe range from Vé to Vj
because the states 2 and 3 must either both be compressed states or
both be expanded states [See Egs. (36, (36a)]l. 1If Vy <V,, we have,

2
using Egs. (17) and (37),

1]

A Vo o o L
- |
2(E] - E,) 2/pdV> 2/ {pz»fvg———vi(v - V)i av
- 2 |

V1 V1 3 2 s

(38)

= 2 ?———pZ-pB(V—V)
P Ty v Yo T Yy
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Adiabatic through
— . states 2, 3, and 1!

Pressure p

Straight line joining
T T T T states 2 and 3

Vyapy

Specific volume V

Fig. 1. Specific’ volL.me—precsure diagram used in the proof of the
central theorem. The adiabatic lies below the straight line between

states 2 and 3 (Sec. 4), above it everyv-nere el.,e (Sec. 7)

Since V2 - V‘l‘ is.positive, it follows by comparison with Eq. (35) that

E1' >E1 . : S (39)

or, since Ej and E, are states of the same specific volume and since

the entropy.of state E; is 52,

5, >8,, (LO)
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Similarly, if V, > V3, we calculate the energy E' by integration
over the part of the adiabatic between V3 and V1, rather than Vé and V1

We have then, from Eq. (37),
v Y

1 / 1 P = Py 1=
2(E; - By) =2 pdV >2 | %BW-—_—-—-(V )J av |
v Jv 32 l
3 3 |
&(383)
- |
r p2 3 ! '

Since now V1 - V3 is positive, if follows by comparison with Eqe. (352)

that
(39a)

and therefore

S, <8, Y (L0a)

in contradiction to Eq. (36a), which is applicable to our case,

We have thus obtained = ; contradlctlon both for V1 < V2 and for

V1 > VB' Therefore our original assumptlon must be false and we flnd'

For a given initial state V1,S1 there are never two solu- -

tions of the shock eguation belonging to the same "final®

entropy 82.

The shock curve (Sec, 6) will therefore 20 monotonically from low

S to high 5. It cannot have any maximum or minimum because this would

imply that the same value of § is taken on at least twice, once on each

side of the maximum or minimum, This means also that there cannot be

any closed shock curve becnuse such a curve would necess arily have a

maximum and 2 minimun, -

Likewise, there cannot be any singularity on the shock curve Wthh
is approached in a spiral, If there is any singularlty at all, it can’
at most cause 2 kink or a cusp in the shock curve, without interrupting

the monotonic incrensec of the entropy.
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We have shown in Sec. 6 that the shock curve cannot end anywhere
in the V,S-plane but must either be olosed or leave the region of
definition of V and S, or go io infinity, We have just proved that
the curve cannot be closed, The region of definition would extend

from O to o for both V and S if we considered all phases of the sub-

- stance, Actually, we have agreed in Sec., 1 to exclude phaée changes,

firstly since they probably do not occur because of ‘their long re=
laxation time, and secondly in order to insure the validity of con-
dition:(I)s If we consider only one phase, for example, the liquid,
certain large.values of the volume and certain small values of the
entropy camnnot.be reached; we have, therefore, a definite boundary of
the phaSe toward large V and small.S, .On‘the other hand, states of
high entropy can always be reached without phase change, both from ‘

the liquid and from the gas, because high entropy corresponds to,
temperatures above the eritical onee From the solid, states of arbi-
trarily high 8 can also be reached by raising the temperature with-
out phase change, it being questionable only whether they are iden-
tical with the states obtained by heating the liquid or gas; but
metastable phases have explicifiy been pefmitted in our éonsideration,é/
for the same volumes ma& be réached by a:liqﬁid, and also‘by a gas g
above the critical temperature, Summarfigng, we find'ﬂhat Ffor cdﬁ-l
pressed states V is limited only by zero and S by infinity, whereas
for expanded statgs the lihifs are usually given by @hase Boﬁhdaries.

We shall now examine the behavior of the shock curve in the
various quadrants. On the side of small v, [<V1], we know that the
entropy is high, 82 > 81. We know further that t?ere are states of
very high energy and entropy, and Qf‘volumg V2 = EV&, which satisfy
the shock equations, Egs. (23a,b). It follows that on the high~density

!ﬂ/irhe high temperature-high density state of a solid may consist
of an ordered arrangement of the nuclei, with the electrons moving
practically freely. Under equilibrium conditions the "lattice of nu-
clei"will melt at a certain high temperature. In view of the high
temperature, this phase change will probably occur rather rapidly.
However, as will be shown in Sec. 1L, such a phase transition at very
high temperature will almost certainly leavé our general theory valid.
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side the shock curve goes to 52 =2 o rather than to Vé a Q,

That the cprve does not go to Vé = 0 can be demonstratecd in various
ways, of which the following may be the simplest. At very small specife
ic volume, the atoms of the substance will be crushed by pressurc ioni-
zation even at low temperatures since the mean distance between nuclei
can be made smaller than the radius of the K-shell, Then the electrons
and nuclei form again a perfect though highly degenerate gas. The
coulomb energy becomes negligible 'in the limit of very small specific

~-1/3

volume being proportional to V~ s while the kinetic energy of the
degenerate electrons is preport10na1 to V° ~2 3. As has been mentioned

in Sec. 5, the relation

A1 W)

E =2 pv , (23)

is valid for a degenerate gas Just as_for a nondegenerate one, pro—

" vided .only the interactions are negligible. But if Eq. (23) is valld

then there cannot be any solutlons of the shock equatlon for v, <<EV' |

[see Egs. (23a, b)] Therefore, there is certalnly no solutlon for very =

small V,. T |
On the side of expanded stztes V2 > V1, the entropy 52 is less:

than S Now it can easily be seen that there is no solutlon for

very 1 arge V,, for it follows from the fund°mental equatlon Eq. (8)

that for Vé >I>V1

_ - " 1 . ) i
By =By == “(p1 )V <= §p1V2 ’ (L1)

which goes to - as Vé increases. Since there is a lower bound to
the energy, no solutions ex1st for Vé very large, Therefore the shock
curve must leave the range of definition either at 82 =0 or at a
phase boundary. In the 1atter,case,~werdeﬁete*by’SB'the value of’S2
reached at the phase boundary, ‘

Thus we have proved'

The shock curve is 2 continuous curve —— beginning 33 52 =0

(absolute zero temperature) or at a phase boundary and at”

finite V' > V and going to 3. = @ zod V. = ldf- s SV
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.entropy has no maxima and minama, Every solutionlggjthe
shock equation (for the given phase) lies on this shock

curve, , )
These statements cortain the theorem enounced at the beglnnlng of this
section —-— namely, that there is ope and only one solution for any
value of 82 greater than S,. It is possible to arrange all solutions

for gi%en V1,S1 in a single séquence according to the value of 82.

-

8. Behavior of.volume, energy, and pressure on the shock curve

The specific volume V does not show such monotonic behavior as
the entropy S. Only for expanded states (V’ >V, ) which are of rela-
tlvely little interest, can we show that there is at most one solutlon
for any given V,. This has been done in Sec, 6, by means of- Eq (31a)
[see the remarks after Eq. (314)].

Thus, .on the side of expanded states, the volume 1ncreases monoton-
ically with decreasing entropy. As we have shown in Sec. 7 the shock
curve ends in general on a phase boundary.,, or possibly on the line

82 = 0, but in any case with a finite volume V2 which we may denote by

VB. In other words, the poseible states in front of a shock wave, be-

hind which the material is in state V1,S1, can be ordered in a single

sequence of monotonically increasing volume, ranging from V1 to VB'
For compressed states (V2 <CV1), there is no restriction on the

rlumber of solutions for a given V In fact, we have shown in Secs 5

2.
that for any real substance there will be at least two solutions for

any V2 between V2 min and E 4o Typical shock curves in the V,S5-dia-
gram are shown in Fig. 2. The (first) minimum of V2 will ordinarily

occur at a rather high temperature at which dissociation of the mole-
cules (or -ionization) is father far advanced for air, It lies at
bout 8000°, and has a value of about ﬁ%ﬂf. For higher temperature
T2 (or entropy 82), V1 will increase again., For some substances,

V, will have further maxima and minima [Fig. 2(b)], while for others
it may increase monotonically from V2 min’to the asymptotic value

H [Fig. 2(a)l.

Tl mars af +he chacl ctrve hetween V and V.2 is ordinarily
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F:Lg. 2. Examples of shock curves in a specific volume-entropy' dia.gram. Both ourves approach

(a) Only one minimum for V. Curve ends for 1arge ¥ oi1 a phasge, boundary.
(2) Three minima of V. Curve goes to 8 = 0.
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the "main aection. . .
We shall‘nOW'conaider the energy E E. We have the thermodyDBMic .t
‘relation ' o

\

dE = T,dS - p,dv, . (29)

2

where, as usual, dE, d$, dV denote small changes of. E,, 5,, Vé; with
E ,81, V1 kept constant. Over the "main section" of the shock curve
(see preceding Paragraph) av is negative for positive dS, Therefore'
dE is p031tive, that is, the energy 1ncreases with inecreasing 82.

‘When: Vé has passed its minimum-and o2 increases further, the sec~
ond term on the right~hand side of Eq, (29) becomes rroatlve, but,
dlrectly'behlnd the mlnimum of V2, dv will be small and hence the ‘ener-
gy will still 1ncrease with S The same will agaln be true at extreme-
1y hlgh entropy where (oec. 5) the volume remalns almost constant
V E 1.- However, in between there may, in princ1ple, be a max1mum “_
of B, (followed by a minlmnm at a Blgher "alueofKSQ) In order to de-

rive the condltlon for such a maxlmum, -We. use the fundamental equatlon

-~ oo o - e © e e . e

e 2(B,E) s (pyt p1>(v SV) L (8)

-

“and’c consider p2 as a functlon of “2 ‘and* Ve Diffefentiating, we ob~' |
ta...n « o : . L S :

- .

2 dE = (ap/aE) (v -V, )dE + (v -V )(.ap/av)E dv - (p1+ p,)dvV . | (L2)

- ., - -

Therefore, 1f db/dV is to be zero, we myust have

Py + P,

/QP -
O/ A Y

(L3)

" The right—hand side is positive for ‘compressed states., Therefore a
necessary, though by no means sufficient, condition for the occurrence

of a maximum of E2'is

-

9
5

S

>0.. (L)

T



Therefore ue can exclwde tho occurence of any energy max‘mum on the

: shock omeif e, require PR SR

L™ 4

o R (%5)<? o (1I1)

- Condition (III) can eaaily be' -shomn to be satisfied for ideal gases’

and for dissociating gaseS. we have ‘not found any excestion to it for
any . one-phase.system (Dec. 16) « In_fact condltion (IINis even ful-

| £41Ted ‘Tor most phase transitions for which conditior (I) is violated.

We belisve there‘fore that condition’ (III) is ‘generally valid when
oondit:.on (I) is valid; that is, when our entire theory is justified.
“If Gondition (III) is sat:.sﬁed, the energy ‘of "compressed states"
increases monotonically with the entropy, from E1 to w. For “ "ejc_- '
panded states“ e have s‘hown in the beginn;mg of this section that the ,
volume:* V2 :’mcreases monotonically With’ decreasing SZ' 'Therefore both )
terms in- Eq. (29) ate negatlve, that is, the energy décreases mono- s
tonlcally w1th decreaslng entropy. Therefore we “Find: ) |
I condition (III) 15 fulfllled the energy E2 increases |
monotonically w:Lth the entropy, along the entire shock

‘ curve.
[For ‘the monotonic increase of S, condition (IIT) ‘need nol be fulfilled.]
In Sec. 17 we shall discuss what happens if, for some substance con-

-dition (III) should be violated while conditions (I) and (II) are satis-

fied,: R I P S R I o
For the pressm'e, we shall prove first that Ap o p1 cannot
be zero anywhere, except at the’ "or:.gln " V2 2 V 52 51. “For com—

pressed states, V2 < V1, this follows most, eas:Lly from a relation proved
2 o T

in-the next section, Eq, (SOL ‘which states that 3 3 >aj] if V, < VT'
. Us:Lng thls result we flndfrom Eq. (6)
' 2
..- E .- . K - N . 1 . . . . s
1.

Since the shock equations are symmetrical in states ) and 2, it follows



from Eq. (L5) that also

p, <P, if ¥, >V, . (L5a)

Summarizing, we have proved that the material behind a shock wave must

have greater'density, entropy, energy, and pressure Eggg‘the material

iﬂ front 9£ the wave,

Next, we can show that Py increases monotonically as the entropy
ingreaSes from S1 ﬁo © provided.the energy alsd‘incroases monotonically,
that is, provided condition (III) is fulfilled. It can be seen im-
mediately that P, certainly.increqées with Sé as angTaé v, decreases.
This follows from Eq. (30), which gives, for negative aV,

| avV| dp - 2T2

dS -~ apdV. (L6)

Since Ap is positive (see previous paragraph), it follows that dp must
be positive if dS is positive and dV negative. On the other hand, if
the volume increases with increasing entropy, we may use.Eq. (8),
namely, .
# 2(E, - E,) ,

P, ¥ py = fV?—:-v;—— . - (hz)‘
Then, as long as E2 increases with the entropy, the numérator will in-
crease, the denominator decrease; therefore Py will still increase with
increasing 52.

For expanded states very little can be said about P beyond the
statement P, < Py [Eq. (45a)]. Equation (30) gives, for positive AV and

negative AOp,

AVdp = - 2T,dS - |ap| dv . (L8)

2

The fiféfrtéfﬁmié'§5§itive for decreasing entropy, the second negative,
and we do not have much information about their relative magnitude.

Therefore p, may easily have maxima and minima, for p, < D, e
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Thus we find that energy and entropy mcrease monotoniaally to- o)
gether, being greater than E1,S for compressed states and smaller
than E1,S for expanded: statés. The pressure increases monotonlcally
with the entropy for compressed states; for expanded states it need
nohmbehavq.mqngpgpzcgliy“but will always remain below Pye The' volume
increases .monotonically with degreaging entropy for-expanded states; . ..
. for compressed -states it will in general not decreage mronotonically -
but will:- always refain smaller than’ V

LRI
z

‘9; Relatlon between velocitv and entropv . o

In Eq. (30) we. have shown that )

. "

R 2Td$ ApdV AVdp T (B0)

if SE,Vé,pz and 52 + dS;‘#ZY* dV;iPéL+”dp‘are both solutions of the
shock equation for the same initial stateS,, V;» B These twoneighboring
solutions will correspond tb;different.velocities;-u1.and'ui + dul,

of the.shock wave relative: to. medium 1, . Differéntiating Eq. (6)
iogarithmicaily, we get oLnoa. oLl et L

£ _dp_av |
L W T TA: » (L9)

Comparing this with Eq. (30), we find immediately ‘

2

x , o ' . ‘ "‘;-‘! . : :d ;T f . .;':s ._:.‘

Tf = ApAV s, . (La)
and, multlplylng again by Eq. (6)
i "0y
u.du, = T.dS 0
Y ~ e

By Eg. (50), the velocity change du, is uniquely related to dS,

the coefficient being #ositive definite. Therefore, since the entropy

increases monotonlcally on the shock curve from S to infinity, the

vclocity u, must also increase monotonically. Moreover. there can be-
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only one solution of the shock equations for any given value of u

1)
but we have not yet shown whether or not a solution will exist for a

given L .
For Sé = Sj, we have shown already in Sec., 3, Eq. (10), that u,
is the sound velocity, aj. For 5,> 3, (compression waves), Eq, (50)
1o Bs S increases, V2 approaches
the value-HV' [see Eq. (23)] while p, can increase indefinitely; there-

shows that u1 must be greater than a

fore, accordlng to Eq. (6), u, w111 also increase indefinitcly. The
same conclu51on can also be deduced from Eq. (50). Tuurefore_

For, any initial state of the materlal V S there exists

one and only one solutlon of the shock *guatlonb for any

shock-wave velocity, u Ugs greater than the velocity of

sound ig the material, a4

For all these solutions, the specific volume V2 behind fhe shéck wévé
will be less than that in- front, Vi, while pressure, entropy, and
energy are higher behind the wave than in front of it. If-conditions
(I), (II), and (III) are satisfied, pressure, energy, ar” entropy -
behind -the shock wave are monotonically increasing functlons of the

shock=wave veloc1ty-u1. In the case of the entropy S,, this state—~

s
ment is valid even if condition (II1) should be'violaied
For 52 < b1 (expanded states; for their phy51cal meanlng, see
beglnnlng of Sec. 6), u, must be smaller than the velocity of sound,
2,0 “As 82 decréases; uy “will also decrease, Howeve?, when S, be-

2

comes: equal to §B (phase boundary) or even equal to zero, uy will

certainly not vanish -~ because V2 is finite, as shown in Sec. 8,

and P, must be smaller than P, [see Eq. hS(a)] Therefore Eq. (6)

gives - .
u2 Py =D
1 1 2
-V—z-av;-:-—v—‘l- >0 f0r52=5B. (51)
1

let us denote the va 1ue of u, for o = S .(or 0), by u;ge

Then we find: For given V1,o1 tﬁere is one and only one solu-

tion for every u, between u,g and a,. These solutions correspona
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to V2‘>rV1, P, <:p1,.32;<;E1,;and,S .<551,,and represen. those states

which may exist in front of a shockzwave_when the material behind the
vave is in state V1,S1 For u, < u1B,'there is no solution of the
shock equationss

. The result which w111 be .most, 1mportant for the stabllity con=-

sideratlons (Secs, 10, 11) is thissz

- The velocity of a shock wave with respect to the material

in front of it (less-dense material) is always greater than

the sound velocity.ih that material;. the velocity relative

to the materlal behind the wave (denser materlal, 1s alwavs

lass than the correspondlng sound velocxtv.

10, Stability of .shock wavés. against spllttxng into.waves movlng in
the same direction

Consider a-Shock'wevevwhich is preceded or followed by 1nf1n1~
tesimal, waves elther compre531on or rarefactlon Waves. Dlnce 1nf1n1v
teszmalvmvesmove with the ve1001ty of sound of the medium, the shock
wave will, accordlng to the last theorem of Sec. 9, move faster than
the 1nf1n1te51mal waves 1n front of it and more slowly than those bc-
hind 1t. Therefore the shock wave will catch up w1th the sound waves
precedlng it and will be overtqken by the sound waves fo¢¢cN1ng 1t.

Now consider two shock anes moving in the same dlrectlon. Wlth
respect to the material between the two waves, the "front" shock wave
#111 move more le'ly than sound the “reer" shock wave faster “than "
sound, Therefore the rear shock wave w1ll overtake the front shock

WIAVE o

The same will be true for any arrangement of waves moving in the
same direction, however many. shock waves and infinitesimal waves it
may contain. Each shock wave in the system will move faster than the

wave preceding it and more siowl&"fﬁgﬁ'ﬁhéfWave following it, and there

Ais therefore always a tendency toward combination of waves. We shazll

now prove the stability of a single shock wave against splitting into
several waves moving in the same directipn. Let the shock wave be at

> 3 C a2t time t = 0., If the wave splits at this instant =211 the
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partial waves must start from the same point, x = O. But- according
to our dlscussion, tha “preceding" waves move more slowly than those

“follow1ng" them, which is obviously impossible if they all start from
the same point,

No shock wave can split into “partial" waves traveling'ig

"the same direction, whether these partial waves ég shock

Waves or infinitesimal ones.

Qulte generally; it is imp0551ble that a shock wave and any other
wave start from the same point at the same time in the same dlrectlon.
- There can only be either a shock wave or a train of infinitesimal rare-

faction waves.

11. Stability aééinst any splitting

The result of Sec. 10 still ieaveo the possibilit& open that a
shock wave may split ‘spontaneously into two shock waves ﬁoving“in op=-
posite directions (instead of the shock wave moving opposite to the’
direction of the original shock wave, we may substitute d train of"
infinitesimal rarefaction waves). In addition to the two shock waves,
as von Neumann has poinited out, there will in general exist a dis-
continuity of thé density (and entropy) which is stationary with re-
spect to the material and remains at the mateg%g}_point where the split-
ting of the original shock.wavozhas occufred. The pressure is con-
tinuous at this point,

let O be the original shock wave, A that shock wave which after
the split moves in the same direction as Q (which we call "to the right"),
C ‘the wave which moves "to the left," and B the stationary discontinuity
of density. Further, let 1 be the material to the right of wave Q or
A which is as yet unaffected by the shock waves; 2 the naterial be~
tween A and By 3 that between B and C; and 4 that behind 2 or, origin-
21ly, behind O.

Then materials g and l_musﬁ be connected by the shock equations

since they are originally separated by shock wave Q, Thus
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where Uyq and uOh denote the velocity of the shock wave 0 relative to
the media 1 and L, respectively. Medium L, then, moves to the right

relative to medium 1 with the velocity

vEugy —ug e (su>

This velocity must, of course, remain unchanged afﬁéiufhe Spllt of the

..

shock wave,

o LY

~Materials 2 and - 1 must also be conhected by the shock equatlons

because wave A must‘obviously be a shock wave rather than a rarefactlon

wave., Consequently,:

v
LI

2(E, = By) = (p, + py) (7, - L, G
—s— = = y o o - (55a) -
-V? AN A A a

2 I

and the velocity of 2 with Tespect %o 1 will be”

-, *

iy = - L)
toward the-rzght. cb ,
- Materials 3. and 2 have the same @ressare'and—veloéity;
P3 =P, , ,}
. ! (55¢)
_V3 = V2 s J
while the ve 5@ v e dS 49 e e




be a shock wave or a rarefaction wave. We shall not use the detailed

theory of that wave but ohly the following simple consideration.

If

sy and Ug), are the velocities 6f wave C.-relative to the media 3 and
L, then, since wave C moves to the’ left relative to the materlal the
velocity to the rlght of medium h relative to 3 will be

Vh—'v =uch-uc3.

(56)

Using Eqs. (55b,¢), we get for the velocity to the right of medium L

relative to medium 1

.vh=uA_-u uch

3

ok B

(562)

This quantity must be equal to the velacity v given by Eq. (5L), that

is,

© o Bo1 T Uy Uy m Yy,

+"v‘c;h' g3 ¢

This w1ll be' the fundamental equation of the theory.

Now we hsve from Eq. (3)

o
o3

\ﬁl;:-
.

Therefore

(2). If wave C is a compression wave,.

Pp *P32>p -

Therefore, according to Sec. 8,~

and, according to Eq. (58),
U cl > u c3 .
Insertlng this into Eq. (57) gives

uo1 oL > u,

1T Yo,

(57)

(58)

(59)

(592a)




’ : . .:f".zi,«"' Py IR P2'<ph , Lo EE (60)-

, < w obtgih’ by —a'-Sihila:ffiééEséqihg - -

uo1- uou <'gA1 - Uy, . (60a)

Equatlons (59a) and (60a) are in a convenient form since they re-
qulre the comparison of two solutions of the shock equatlon belonging
to the same initial state, 1. From Eq, (53) we find .

1

g e e (- B, - ) (61)
and sixpilgply ' |

J‘ . (ul_“ - Az) "' (pz - pj)(v -V ) . (613-)
Obv1ously, Eqs. (59) to’ (61) are completely symmetrical with respect
to states 2 and l; therefore we can assume without loss of generality
that Py, > Pps that is, Eq. (60). Then Eq, (60a)- must hold, and thcre—
for? we find from Egs, (61) and (61a) the condition for solit:

-
’

(ph p1)(V = V) <(py =)V, - V,) . (62)
Since P), > Py Bq. (62) is‘gbviougly impqssible,if;

(62a)

However Eq. (62a) follows automatically, from P, > P, as long as both
states, 2 and L, lie on a part of the shock curve on which the volume
decreases with increasing entropy, : for example, on the "main section"
(Sec. 8). For most substances, this main sectiomn probably covers 211
temperatures up to about 10,000° (Sec. 8)4* =~ - - - v
However, at very high temperatures, which may still be experi-
mentally accessible, V2 increases with increasing entropy (3ec. 8) whilc

p, continues to increase. Then Eq. (62a) does not hold but is reversed,
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that is, Yh > V2. In this caéé,'we'have certainly

20,(V, = V) <2p, (¥, = V) . (620)

Adding this inequality to Eq. (62) and using the fundamental shock
equations (52) and (55), we get the condition

E, <E,, (63)

which is necessary but not sufficient for.the split of the -original
shock wave, (It is almost sufficient since p; <?:p2 beyond the mini-
mum of the volume.) Now, as we have shown in Sec. 8, the energy will
increase monotonically with the pressure if the material fulfills
condition (III). Then Eq. (63) can certainly not be fulfilled for
P), > Pye Thus we find: ‘ ’ B a

é shock wave can never split in a material whose equation

of state fulfills the threc conditions (I), (II), (III).

As these conditions appear to be valid for practically all méterials;;’

as long as there are no phase transitions, we have proved‘the com-

plete stability of one-dimensional shock waves in all ordinary mate-
rials. : - ' o«

>
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