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111. INVESTIGATIONOF T~ 5XREE CONDITIONS---..

In this part of the paper we shall investigate the validity of

OIW three postulates

(a2p/dlf)~>0, (I)

,

V(dp/dE)v >- 2 , “(11)

(i%moE <0, (III)

which we have used throughout in our theory of shock l’~aves(part II)*

Of theseconditions only the,first two are needed in the general

I proof.(up to Sec. 10); the last one is required only to rove the
I ,,,,,,, ,,,

stability-of shockwaves against any kind,of splitting (Sec. 11)0

Analysis shows that none of the three conditions is required by

1
any general.thermodynamicor statistical ar~ent because it can be

- -.. .
shown that for each one of the three conditions jjhereexi5t,some sub-

..,’ .-
.. .. .... ‘,..:.. .jstances for which the.conditionis v;iolateqat.ce@ain ,te,mperqt~es ““

c

...-..-----.-........ ...-e.-e,, -----..,”-..... .... . . . .>. ..
)

..
and den~i~~2j:,:TPere,fo~:.-wecan only:asc5”~j~”~-n~”i~~’~a~g-~-~“~~~-~i-dity,:! ..-.. ........... .:.....4.,“------.......-------...-. ,.,of,the conditZors-:&investigating .asuffic~e@ number of,different ,

.,..physical statesi For all single-phasesystems whit-h.we,have~iny@,i-....- ............... .,,....... ,....” .. ,..gated,all-three conditions have bpen found,v&l.id,by.awide margin...........-_-~, .,, .... .
Therefore wc believe that they are valid for”’’allsingle-phase systems........... . . ,.

.----.. .of any practical importance.

The cases in which one or more of the conditions are violated all

refer to phase transitions. Therefore we had to exclude phase trans-
itions in Part II of this paper. In Sees. 14 and 17’we shall discuss
briefly some of the phenomena which might occur if phase transitions

could take place in shock waves. -x

12. The condition (d2p/~V2)S >0 for single-phase systems

.
The simplest equation of state is th~t of a perfect gas with con-

stant specific heat. Then the adiabatic are given by

P
-r

= constmt=V , (6b)

W_- .... ,,,”,,,. ....””.””,,,,,,,,”,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,!!!!!,, !!!! ,, !, ,,, ,!,,, .! ~, ,,,, ., ,,”,!,!,
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,
where ~ is the ratio of the specific heats, c /c

p v’ and’the constant
depends only on the entro~. .

Therefore

.

w
. (6ba)

which is certainly positive.

For most other cases it is convenient to express the adiabatic

‘derivativein terms of isothermal derivatives. For any function f(V,T)

we have ●

Here we may use the thermod~Wc relations
, .

4 ..’

.

.

h
i

. . . . .
*

AS< c~ ““ ‘ “q.,”‘()JTv =..~,
.. ’,, .. .. .

(66a)

where Cv . .
is the specific heat at constant volume, a positive definite

quantitye ~pplying Eq. (65) to f.= p? we find .

. -

“(WS a (*)* -: @?)* : ““. ‘-“ ‘ (~,)
. v ,:●:”<.

...’.-”’ .
Since (ap/~V)T is negativp, we find that the adiab+,t~cmodtius of com-

pression, I . . ....-(dp/JV)~,is always greater than the isothermal
. .

differentiation gives -
..”, ‘.

,

[

-$3. %%.’:$(S?.r‘3
Cv

On the right=bnd side, ~ and Cv
are Consi

one. Another

.
- 1

I
~(67a)

dered as functions of ~ amd
,,,“,,,.,1,,,,1,rl,~,,. ..,,0~1 “1,, ,1,,/,;,,,,l,,!!,,,,,,,,!,l ,,,,, ,,,,,, ,,,,;,,,,,;;,,,,, ,,,,,,,,,,,,,,,,,,,,,: ,,,,,,,” ‘,1 ,: ,, - r .— .,
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~; hence ~/~T implies that

tion (67a)-may be slightly

relation

. ...

1 i?..keptconstmt,.
simplified,by means

4

and vice versa. Equa-

of the thermodynamic

2 ~cv, .,”
T-==—.

i3T2 ‘v “
(67%)

Then Eq. (67a) becomes
. .

F!romEq. (68) we can easily get an idea,abou~-theterms wmchmigh;
.. ,.

theoretically cause (32p/~#)~ to be negative. -Beginning”tiththe last

term of Eq. (68), we have the follo.tingpossibilities

,(a). The specific heat may increase rapidly with the temperate.

Then, ifdp/dT >0, which is the.normal behavior, the last term of Eq.
.. . ,.-.

(68) is negative. It will b: large in absolute value if, simultaneous-

ly with a large~cV/~T, we have a ~mall specific heat Cv.

8.

This points
:: to low temperatmes as the place’where (S2p/dV2)~might be most likely

to become negative. The following cases of rapidly increasing specific

heat will,be di$cussedbqlow: ., . , .- :, . . .. ,

(i) Ideal gases with internaldegre& of I?reedoti, .

such as vibration or electronic excitation.

. (ii) Dissociating,but otherwise-Meal,
z“ationis a special case of”dissociation).

, (iii) solids.~t~:yerylow temper~tue. .,,:

In “eakeS (+)and’(ii);-ttief&t”’terrn ‘inEq~ (68)

&ses (ioni-

. ~ ..:4 . .
..:,.

, . ,. .,...- ,..

-.——-
h~erically larger than the last one, because CV ..,, ,.. ‘.

is never very s’~11 “
.(atleast+ .f.r.IQOna$OmiC$+ fmtiiatotic gases, and so forth) In ‘

“, :-. ●..... .. ----case (iii), the term”;.-tith&V@V”&-po~it”ive and numerically greater

than the last term.

(Q). The specific heat may decrease with inc~e.~sin~volume,
,: that

is, ~cV/~~ <,O~”,””~hik’C&is’tieallz~dfor ~n~ber-of liquids. i.-.— . -
1ow-

evcr, from the empirical data it can easily be shown that the third

m– __ ------ “,.,,,,”.,,d,.”,, ,,,.~,,,,,,”,,,.’. .- .. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. “,,,,!!!!
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term in 4. (68) is usually less than one

(~). “Thepresstie may decrease @th

while the modulus of compressions-3p/jV;
n

percent of ‘thefirst.

the temperat~e (?p/qT’< 0),

increases with ~ (t-kt-is,

fpmwr < o). Then the second term in Eq. (68) is negative. ~ater

below 4° is an examples but the second term is again less than one

percent of the first. ● .

(Q). The derivative at constant temperature, ? ‘ ‘c.p/all?,may be .

negative.” This happens at and near the critical temperature for vol-

umes ‘greaterthan the”c’riticalvolume. In this case, the .(positive)

second term of Eq. (68.).mofe than outweighs the first. . .

“2’”’Ih”all cases rnentionedt.the-resultingvalue,of (~#d#)S is”posi-

tive. ‘.Yeshall now’d’iscussthe ‘vari~uscas.es,$n prder,

(~).Specific‘heat~increasing ~apidly with.temperature. —— (i),Ideal
.

gas with vtiiable specific heat~
1 .. ..-,:..

. ,,“, ,.,. -pv. ,
.,, ,...

-. ,,,.,,. ...... .. -+.......... :;. .
..... ,,,

,,, 3CV

.

For an ideal.gasj we~we . ,,

.,,,). ,..~e
=.,,RT,

...,”
(69) ;. . ., .,,,

.,,

R .’.”.- .. . .
=->(),
v .~ ~69a) ~....,........ .,..,.- 1. ,’; .:. ............—...._ ----—.., 4
.,,., ...

n ; .

%.. “L

.

(69b)
.. .
-.’. .

*

The critical

its value we

. . .,. . .
,“. . .

[ ‘)(
,’.

G .\ ‘1 E 2+ E1+ R’,( 1li2T “v ‘“ “ ‘ “(70)’
p-~~~ “, ,’X&c V2 Cv , v/ Cv v

L# J
. .

term is obviously the last one. To get an estimate of

consider a vibration of the molecules of frequency V= kQ/h.

Then the specific heat is

(702)

where ~R is the specific h~;~twithout th~ vibration (~ = 2.5 for
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linear, /S= 3 for nonlihear molecules), T* “high&t PalUs”OF tk last
.

term in Kq. (’70)is abta’ked’-fo$~T’?~,,Q;at this temperaturettiecon-
. ,.

tribution of the oscillation’.to’cu is’’about 0.3R#while’tk derivatives:

Tdc#dT, is.-aboutO.651L The& if’~”= 2.~s the last term h EqC (n) -

becomes -00030, as”against 3.2 fo; the first term. .The-negative term

is thus only about one @ercent of the positive oneo.

It tight’be expected that the negative term in Eq. (TO) ti”l~be-
...

come greater if the molecule has several modes of vibration; b~cause
. .

each mode wi~l cent’ri+buteto Td~/dTo Ho&verO thi..~f~ect-”~fi.~e‘:“’:-s ..,. . .. . .,,,, ..

k%~elyoff~t::bj’ tm!,ticrease of C.Vitselfe’ ‘FO~”e~Plei”for”a “: ““““:: .. ,,, . . .:...,..
d

.,.. Ii. :..:.
molecule &ving ~s~:~~nyas 100 different’’rnoes of”~~brationsall of

,.. .,,. , ,c-
-the.s~g frequency and.havingF = 3,;the”m~tiu.of’~th~”’ie~iti~ t&m’”

,
.!.,.. .-, ,, \t .: ,. ..,.,/,,

‘~&-&~”-at T N ‘OOl~Q”-&~~”:&.S:”ava~~~ of ~bo~t’‘Oo.lT8’”’’a”~’’-~~a’~s~L20~’~for
.-, ,,, :

the positive term. 6nly for a rnolecule’withrnore-t&K -jff~(-ij-.vi-a-. .

tionalmodes all of the same fr~qu~ndy,would the derivative (~2p/~#)S

become negative at certain (low) temperatures. From this we see

t~ts while it is in principle poss.ible.”thatpostulate (~) is vio-—— —.
lated, this will never occur as the result of the excitation of vibra-

tions for any real gas. It can easily be seen that the same holds

for the excitation of the high@--elec&bnic states.

(ii) Dissociation of molecules. In this case, the exact cal- ‘

culation would become exceedingly complicated, ,~ie.can~~bv~eve~,.,get; ,
,. .

a rather good approximation by remembering that the significantterm

in Eq. (68) is the last”cme and that this term is greatest when the.........,”.-.. .-. .--. ..-.- ....- .—..,
specific heat rise’ssteeply bu~ is not:yet itself very.large. This

will occur when the degree of dissociation ~s is still very low; in

fact, from our calculation We:shall find tna.ta value of u less than
-.’ .,.. ...

. I-percent.:.ismost favor~ble.bThenlye can neglect ~compared@Lt~ 1,

but we must, of course, not neglect T da/dTe

When a molecule dissociates into n+ 1 atoms, the degree of dis-

sociation is given by .

.. ..

~-

●

n+ 1
W

s = K(T) = An#~T , (71)
(1 - @Jvn
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}“’ where ~ is the dissociation conetauts Q the +ssoo+tion energy per

WMU$’ ~ the gas.COnS~ P@ &qA:f.j&. JI@PC~ .,qs,and An is’the..’#
- prior> probab~~tSdsllof’di&&at;d~ and mol~cular

..
ratio of the 1ta,.

states and depsnds only slightly on temperate ● The numerical value
.,.

A“8’ ~~
of AV is of the..order,of 10 -td 10- for ardi@ry demJities and tem-. - -..:._... ,...
peratures.-
\.

With our assumptions OL<<lc,“wehave

with

Q

1. ‘. “ ‘-l ,
.-

(71a)

(71b)

We #@l need the derivatives -,,,
. .

~a’ a
.. 3V”*V.. .

. ...

, ..-. Cla=
‘bT. “q&. ~.

(72)

(72a).,

-. ,..

Becau&e of the large yalue of~t~e~~ >r~ori probabilityltAVS ;e get
s

. . .., . .
appreciable dissociation already for quite “’largevalues of ~. If we

require (n+ 1)M ~ 40.001 to O.O1 (see below) and have AV = 10 to 108,

then,, ..
, .,

.... .
; = 10 to 30: (72b)

The presstie is‘~~venby “ ~

P~~(l+n4 . (73)

The derivatives required in ?iq.(68) are, neglecting nw but keeping
.

qn~

—.

b ,,,,.,, ,,,,,,,.,,,,,,,,, ,, ,,,,,,,,,,,,,,,,,, 1
-,
.,

...-.., !,,! ,, ,,,,,,,,,,,1,, -!,,,,,,, ,,,,.,,,,,,,,, ,!,,,,,!.,m,b! ,,,, ..’1!” II‘!’’!1’’!!’“’”l “ ‘1’’’’’’’’’’’” ,“’,’,’,’”’’’’’”, ,,, ,, ,,,,,,,,, ., ,,, . ,.
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I
pi

+

Il”+nq(x)(l+* q(k) 2
,+3 nq2w(1+ nq~)

,fi+ (n+ l)q2a “ [p + (~+ l)q?x]z

(l+nqtip (l+nqW)3
[F 14 + (n+ l)q2(q

[P + (n+ l)q2~J2 - [~ + (n+ l)q2&]3 ‘T IJ
- 2)CX ● (76)

.

Only the lastterm i$ negative, as expectedQ ‘Leknow already “thatthe

term Td~/dT is harmless [see case (i)]. The other negative term”is”

largest”for Mrgg ~ and relatively small ~., It can easily Be:&ho&

that’the ~m&imum”of this”term, for fixed q [>> 1] and tar$able ~is ‘

obtained for ..-. ,,

.. / ..’-

(76a)

Then nq~<fl/2q,

.

and ,thelast termof Eq, (76) becomes,approximately

The highest value which ~ can take’.”[seeEqc,””(72b)]is about 30, and

this can occur only for large ~, in which case @ is at least 3, and

in most.cases very much higher. .Fo’rq “’30,”@=_3, we obtain-f& the

last term of Eqc (76), ~ “ . .; . . .. ..:.’
.. . ... . . .. . ..

.“ . 4 32..5 ‘Last “term’s— — =oe54, :“ :
(7&cj F..

27.9. . *-;+ ,.-.

. Whih? the.ptitive ._t”er~~.b&~~m4e.7~_ol,
.. :

~m~+m .T.heneSat&e tirfiis %& &ss

than”one fifth of the positi,le ones, although we have made condi~ioti”—— —. _
most favorable for a large negative term. The value of In+ I)w- be-

cgmes, with our assumptions,about 0.0017, justifying the neglections

madu (n&<< 1) and also the value of ~ used in computing Eq. (72b).

..-.
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The case of the ionization of monatomic gases may seem of interest

beca~~e for these~ is-.only1.5? How&&$’at the same time the ~
.. . . .

-weight & is reduced bepse of thesmaU rniis-ofthe electron.
Values of AV between 1 and 10 are usual, which, with (n+ I)w = 0-01,

gives ~between S and 14. In the most favorable case this gives

aboutI;for’the negative”termin Eq*.(.76)agai,nst,,about~ for the posit-

ive terms.
-“..

.
*

As in the case of an ideal gas with variable & there exists

the possibility of negative (d2p/~#)S, but only for extreme dilution
.

of the gas.
.

If’we consider the toriizationof a mmatomic gas,.which

4
.“

is most favorable for”negativ6-’-(~2dV?)~;~;and if AV = 1(3.for:l atm ,,,

pressure; we expect AV =
~h ..

‘10b8for a pressure of 10 atmospheres (J)c ,
-4.For this value ofAV, and for (n+l)w = 10 , we get q

= 120, which ..
woud make the negative term in Eq: (76) just greater than the posi-

. . ....
tive ones. Thus we see again \hat;(d2p/d#)S > 0 is not required on

statistical grounds but,is.very well fulfilled for all experimentally
● ,..:

obtainable pressures. ....-.’,.,.-.

(iii) Solids at vqry low temperatures. The specific heat is given
_.. _t

in’good approximationby---E&yeJsrdation–_.

,. ,

where Q is the

rapid increase

make cv itself

cases where c
v

and rotation.

can be made as

.,cv= a(T/8)3
-,.. .

.,-
Deb’ye’t~mperatmeand a

ofc-
V ‘withternpe-rattie,

as small as we like, in

_—-.,. - ..= -. -_. .-.

7

9 (77)
.

-“- . ,-

a~con$tante We have thus a

and at the same time.we.can

contrast to the .tm prevj.ous,

was at least equal to.the specific heat of translation

It s~erns’ther~~tire-ttitthe negative term with2c17/&T,

large as wc like compared wit[lthe first term in ~q. (68).,...-. - ..
Ho~”ver, as we-shall see~~.$he”terrntith Jc17/&V”saves the inequality

w.,..: ..(J:PMS ,>,0.., ~-.,::“ “,.’. .:.,, .... .
‘(77) - -

..’ :..
We have from Eq.

......--------, ----,-
.

. . . . ,.
.. .

. -

T
:acv

——=3 ; (77a)
Cv aT
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hence the three last teru in %Q (68) become

T a 2 ~acv
(+ (

is
zzd, )

—-23,
av

‘v

(??b)

..
.

wher,ewe have..usedthe thermod~mic ‘relation,@. (66). At zero ”tem- .
..

,.
perature$ the.e~tropy is.zero for any ~; further, we have”;fr~m

4 .:
foragiven ~;. .:, ; - :, . ,,, ,

t“,

[

T

s.
Cv “ . “ ,;. ‘..
~dT=~cv.

I
Inserting into Eq. (7Tb), the term in parentheses becomes , .

1

Eq. (77)

. .

( 77C’)

(B)

. . . . .

which is certainly positive, because the Debye temperature depends on

the strength of the elastic forces and therefore iricreasesupon com-

!

,) pression. .....
,

. .
/ (Q) Specific heat decreas& with increasing‘“vol&e,liquids

and solids at ordinary temperature.-- Here we may use the Tait equa-

tion of state “
-.

l-(v-

P = B(T) ~e’

.,.
,’ .,.

where & is a certain constant of

about one-tenth of<the volume of
4...

temperature ~ and”zero”pressures

volume (constant). The function

o

the

the

and

, -

v) /t{ (Vo ‘v#q
-e J, (79)

. . ., .....z

~fiension of a volume, usually

substance$ VT is the volume at

Vb’i Suitably.chosenstandard

~ is a function of temperature;

all cases the author is aware of> it increases with !P;for water

has a value of about 3000 bars (1 bar-x 1 kg/em2 % 1 atm).

We have then
.

in

it

(V. - v)/K25-B
c--v2”7e >0 ,

.

(?ga)

●

-. .
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. .

1 -)
.,,. .: ... . . . i ,...:

(79b)

is posi-

lJsually

%* (68)

is

For all substances

tive,thereforethe

with positive expansion coefficient 5p/dT

I

I

1

first two terms in Eq. (68) are positive.

last term in parentheses-inACV/dT is very small so that the

is also positive. There remains

,,5/‘generallyassumed to be Zero -

5/tives as for- ~clh an&/ ~ ~
6 6“

the

but

For

..

term with dCv/..ve This

may actually be slightly nega-

at &j°C and 1 atm pressuresccl
4

.
dcv/cN

,,.

... .

bw/deg,
. .- . ’-......, :’-

,,,

= 740 bars,

.. .. .

B

,..
dB/dT~=’2~2 b~~deg, “... . ,.,-’ ,;,,.,. . .......,

R = 0.0600 cm3/gm,

.-

... ,

‘.’

. . ..,“: .:,. . .
. .. . . . . . ----- ,“. : :,

. . . . . . . . ‘. . . . . .. . . . . ,.,

cv’~o~*’. . .

Therefore

bar=cm3/gmdeg.
..

... ,.- .. r,, ,
,,. ..,. T .,, --- . . .. . .

:: X:’.’:,:,: ..::, .,.>. . ,:’ : :. -“ . ~ ,..

Q+,?4Q6,cj.:.,’”‘..”. ;.. - .“i~ 00: I?ar,(gp/om3J2,: .,
‘.C)v,,,,,.......,.. .. ......,“-””.,:,.:.:y,- .

.!. . -

.. . “~’ ..’.
-.

... .
.. !*,.,

.. ‘m+ &’: 40,,&o’ ‘.:=.:-”’,..” -

.:

3T (ap}
2&v-

T (a~,l~ = ‘12,000 bar
‘v .-

. .

(ti/cm3j2,,.”
,.

(gm/cm3)2,

~’ R. E. Gibson and D. H. heffler, Journ, Am. Chem. SOC. Q, 898,
19~1.

b
~/ R. E. Gibson and D. H. I.oefflcr$JoUrn, Am. Chem. So.. Q.,9390..._-., . . 2515,

. ,,,.,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,“,,h,,-,,,,,,,,,,,,“,mm,r,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,m,,,“,,,,,,,,,,,,,,,,,,,,,,~,,,,,,,1,,,,,,.,111,11,11111111,111,II “1 ,,, II ,J,,! ,’, !,,,JJ “’!’. ,’,:” ,,
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The ne~ativ~ term~is thus.seen to be only about one-seventeenthof the

leading (first] te~m. It iS,als~’clear $rom the ~t”we of th~,qy~tity

~cV/~V that ”it’c&no~ be,very large because othemi’s~ ~vwo~d reach
! “,.

exceedingly high V+lWS. .fo-rhigh corn~essi’on~ s ~~ . ~~ ., .

(~) Pressure decreasin~”with temperature, water below ~“~~ ~= Be-.. .
low b°C, water has,a,negativedp/~. The expansion coefficient at,-

O“c, W
,,.

.’ .-. ,“ ............~-l.“,....-.
.,..

‘~ ~m3/&deg*(dV/dT)p = - 3.1 x 10
1 -.-

.,-. %

T~e.<ch~acteristicpressure ~, e~rapolated from &f. ~, is about

2750 bars, whil; K= 0.137 cf113/gm.Therefore
. . .

, ..# . ...

= -OQ62 bar/dege@@v = jg) (79d)
P.’

Further, dB/dT N 10 bar/deg (likewiseextrapolated), so that [see

Eq. @3b)]

,.
~2p/dTdV’=- 70 bar=gm/cm3-deg..-.

The second term in Eq. (68) becomes then, with Cv = 42 bar-cm3/gm-deg$

-?%$%5
,.

= - 850 bar (gm/cm3)2,
. . V’ ..;... .:

.

while the first term

(Q) Derivative at constant temperature, J2p/aV2,negative;

5’ On the critical isotherm weneighborhood of the critical point-.

have (~p/c)V)~ = O at the critical volume and (dp/dV)T.<0 for larger

~ ‘ Dorsey, Properties of ordinary water substance (Reinhold, 19LO),
p- 231e

8/
#

- I am indebted to Dr. G. Placzek for the calculationsreported
in this section.

. . .. ““..”-” ~.,,,,,,,,,,,,,,,,,,,,,..,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,o,,,m,,,,,,,.,,,ml,,,,i,.,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,—-”
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volumes,so that (d2p/dF )T is negative at volumes somewhat above the

critical one. This contribution may be compensated by the second

term of Eq. -(68):.(~p/~T)V is posit~ve:f& a gas$ and ~2p@VdT is

negative, that is, the modulus of compressions- ~P/~VS increases .

with”~c “ ‘..- “..JJ :,..+-.. .,.,. .

The calculation-issimple~ti’if-we’’usereduced .tmperat.~egi::...~ .

volumes$.and press~es, name~ys . ....’.,;.....,. ~,...,
. ..,, ,, .’.:.>.. . :,;:.. ,...... .

.. .. .., ..-................. V= f,. ‘T,.;=,#:,.+ .:.:.,ti*4

,;:(;.;....

. .-. —+c’--”-’”’’::::::’.=: ‘::’ .“::: c .....*..!.*.;., ::,.- ... . ,i t.... t. . . . . . .’ ,,, .; .:,.

~p Tc,and pc
.,-.

where V are the critical volumes temperatures and pre~,~ure9’”,

Accor~+pg to Van der J’aals?equation,,, .“-.” l“. ,,,

,pcvc = 3
,~RTc ‘.

.....
. ,

and the equation itself has the form’ = ‘
.

, ,T,=”&.T :,-Q., .,.
3 ~-~. .V2” . :;<;

3’

The derivatives are ‘.’”: ““ .“”’ ‘- : . .,-’:

“a:n.”’-:.=:~, .;

( )

y . .18
‘~ “3

\
v - $)3

~..,,,:

t’~’.. ,.. ,,,. .. .

...
( )

,:,a’n-# 8 1 . --- -- . a .-~—.., ..>----. ~
,,V7v 3 v-+’ ...

(80a)

(80b)

. . . ..-. ::, .,.

..
,:, .-

(80c)

:.. .
,..

(80d)

,..,, .... . ,-.
,:

‘~2n

( )’

ac

~~ “
“=0,; therefore [seeEq, -(6i’b)]& = O , (80e).,...

v

(80f)
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;
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k
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.-. . .,-.

.;:-.~,-.~; “:.’.

-,...+... <.,-... : . -
,:,’.>.,, ~,, .

,,,.....~-.,. ..: ”’../. . . . . . /

=s- f , ., .. .. ],.
:>;:: .; , . . .,. ...,, ,.
“t-c; ..-. . . ,-.
;,%..:, :

“*--
..”,’,,.,

. . .$ .. . ...-...7 ,. ...’. . .’. ..
., . .

.,
., ..:, ”-+... .’ .’, .. ”’.

. . “&airig “$6 i&(68):‘“;“Xii&&&&sw~tiat+o~,,,. ‘ ‘-,,... z’ ., ... .
- .,.,..,,, :: ., ::, ,’ ~;,r,..,.,4‘. , :’,, :. .’.- ,,: ..- ... ,, ,,,

.,. .
,. + ~ .:; ..,1-.. “ “! . ,... . . . . ,.. . +“’::,. ,., .&<”r.::.,:.:;.,.-Y<” “’.;:::;’-:; “.;,,..”“7’: ‘“-

,, -.’.” - ,. ,, . ,.<” :,
,,, . . ., *,’ ‘ .”.”., .,

“:{~:(~::;.;-.;:;:;;~3[-;F-:f+’$:ijo:“““’’”:a..-‘‘ :;“:’;6~c’;“’*“f”;“; ::; J_-...
~-.~, “’ “,,,.,q y:- k - ‘v,..,,.,..;;.. ... 2?2 “,

.’ .!:”.:. ? “;;3 ,, - “ . ...,. ,. ...... ..,,, . ,:”,..- “. ....”.,., - ,. ..-’ . . . .. ..’. .s .”,

I
.

. . . “ . . . . ,. ....):, -,:.::,:. ,.-: . . . . -., .’-.].;. .,

,,. .-...- .. ?
‘“’-.2 . ‘ .’;The ‘Ytisttwo terms In the “sq~e &a@cet~ise from (i)p/~T?)T; the

~~;~e~. ~ Eqo ,(8?~ie~ese~~s, tk. second “termin Eq. (68), and

the I.&t onq”,dome&Yr&th6“-io@tti term & ~- (68). The third
,.ten k .EQ,:(68)”_i,s’zero. ~ecq~.e .of ~he speci+ fo~.; of ~t~ Van der .;-

...
Wa& ~ e~ation [see ‘Ilq.[80e)]; the last term in Eq. (6.5)& been

,...
,..assumed to be zeros that i~,’~!c~& ass-d to ‘beindependent of te~

pera&r& j..and to .be give~{~.’-. “ . ~..,-:.-%.:..,...’
,,,“..“, ,.-. ~~ &-,.. ,..+,.,.,: ..’

,..,.”.. --- .,. &~R;:c ‘.,..., ,. (81a)
.,

!&s isothe~ derivatives-.{d2p/&)T,.,tkt is, the first two ‘
---- :

terms ‘b ~. (81)$ is negativq .’M
1

. ... <
-., ,.. “.. --’-” .,.

)
7 3.. ‘:, . : .. . . -

27-’’~?T.T ‘._ . . . & .-*? ,. . ...-.. .
,. =%”r~”’. . . f.. : -, ‘. . ‘,:.. . -. ..: !!?$..-. ... .

,.’ -.

,. . .

The ma41UtiofT ”.”””” : “. “. ., .,
,g ls obtained for”v u ~/~ arid.&5 the value ~-..

% max

=.2187 ‘,.’,.. ~ . .. .
. . .“-.. “~ =.;l.wtl “-“..,*..... .(81@ ... . ...

.-l?or.a ,&iveh& the-subst~ce is ~ gas o~y” if ~ is @&ater; tti a

cei-ta.in7g5,while-for lower temperate we ‘io~d obtain an .&tabl&

state;% M the V% ‘derWaals~ equation is used,‘the miktiti‘te’mP&a-”.:

“turFSf@u. M ‘W “ .. ..“..“

;*. - zg(4/3 ) ‘= o*9838 . (81d)

For-actual gases, Tg is even higher than the value given by Van der

~/ From Kuenen, Zustandsgleichmg, .190’7,p. 94 (accordingto a
table calctiated by J. P. Dalton).

..
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of a phase transition.

. ....-.

Of course (JLp/dV2)Swill also have discontinuitiesat the two

boundaries, and we wish

In the pure phase ~,we

In the two-phase

of v. Therefore

region,

to find out the sign of these discontintities.

havefrom Eq. (67’)
.

= ( )~“-T
(
agj2

1 T,1 ‘v,1 ‘T;v,l ●

(82)

~ is a function of ~ only and is independent

(82a)



I

I
I

k“ where the

and total

Clapeyron

-.-. ..-— .,, . ,.

-.-+-..
‘-l----- . .. . . . . . . . . .

-.

subscript M refers to the mixture of the two phasefi,

deriv~tives, like dp/dT, refer to the phase boundary+ The

equation gives

d+ As ‘2 - ‘1
‘n.- v’-v ;

2 1
(82b)

where AS and LV are the differences of entropy and vol~ii~ between the

twO phases at the temperat~e -T@ ““

The quantity most difficult to calculate is Cw. If the volu.mecf

therii.ztureis to “bekept constant while the temperatua changes, the

concentration of the two phases must change. If x is the concentration

of phase ~, the volume of the mixture is

~
v= XV* +, (1 - X)vl # ,(83)

where V and VI are the volumes of the pure phases.
2 Therefore, if

the volume is to remain constant +&th ch~~ge--~ftemperat”ure,”wehave - -

dij
+xdAV+dx

m ~ . ~’AV ‘O . . (834

Since we want to consider a state near the phase bo~dary, x is neg-L.. . ..T ,. ......ligible. Then the specific heat”of “them~xtu.reb“ecomes,.
..’ . .,,.,,,..;, ...-.. . .,., ,. ..-,...-,.

(
dE1UE) +. d-x

.. d~l

Cw{i= Z.?’v= ~ ~AE=—
dT

...,. ,. .-..
(84)

Using the thermodynamicrelations

1..!.

=xpres~gd as
...

foi~ows:
.

. . ..).

“..,.

(~), =T&)v-P ~

B ....-.—..-=, .......- ~“..““““”..““..“-”.”,.. .,-.4,,,,”,,,,,,,..”.,,,,, ,,,,,,”

(84b)



.

and

TAS=AE+ @V,

and remembering Eq. (82b),Eq, (84) becomes
.“. .

Cvh’l“v,l ‘T qiav,l-%]●.,
Now, in,analogy to Eq. (8La), we have

therefore “Eqc (84d) reduces to

CVM ‘T[*)T,g)’•“v,l -
s

,:

.

(84c)

.

(84d)

- (8he)

Since (C3p/dV)Tis always negative, Eq. (85) shows that the specific
heat of the mtit~e,”ne~ the.bo~d~ry, is~~ffays-greaterthan that

of the adjacent pure phase. . . . . ..

Now let us calculate the difference between‘-tfiev~lues of (~p/~V)S

for pure phase and mixture, or rather thisdifference ‘multipliedby

cv-J&

.

,

i$?T,,1(
(isa)

. .
The quantity in th& square bracket can be transform~d, using Eq* (8Le):

. .. . . .

—
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I
I

. . . .... —..-.,..- .—a, .—

,., -
.’, . .:. : -..58;-..

. . ... . .. ..— .. .— ------ . -+_

* The second term in Eq. (85b) cancels the next to

Eq. (85a).’ The remaining terms in Eqso (8~a)and

sq&res and we obtaj.n . ..:: ‘,..: ...

the last term in

(85b) give a full

,..
,., .;.

. -. “,. . . . . . .,

.,..

,.”
~ince (dp/dV) is always negative$ “ ..

T ‘d Cv,l and ~m a~’N~ys pos~tive#
the right-hand side of Kq. (86) is ,alwa~spds$t}vq~,

therefore ,

. .’@)~M>:&)5 ,,,, ..-.:..... . 9’,..
(86a)

We have derived the result [Eq. (86a)]@thout, any asq~ptiun re-

garding the relative magnitudes of VI and V2,
or S and a

1 2“ The re-
&t will therefore b: val,id..for both bou.nd~ies of:the two-phase

regions *.

‘i’ie find therefore:
. . . ... ... .. . .. .

&.& bo~da.r~,between~ tw&pha&e re&ion (in”the p,v- ~ .
—— . .,,.’ ,.’.:, .dia~am) and a single-phaseregion t=abatic ~- ,,,..

pression modulus, -
— (~P/~V)S,@n, ~~~~te~,. -

“’ for the single Phase than for-the”m’~t~e of ~he’two
.— — .—

MO L “ ‘ ‘ ‘‘:’”:‘:”. “
We are interested in the sign of the second derivations (a2p/d#) ‘

CJ,,< or-~more correctlys-i~;thesign of the disc-on$inuity.of (~p/clV)Swhen... -.. -.,..
“~fO~”@:th=~~,iaba~iC in th~”:ctirectjonoT,:~&asing ,v’c&&&V. “~~his‘“

.. : . .. sign’%11 depend on the dire&~ion in which the adiabatic crosses the,,..

..~o~d~ between the t~p~ase Snd one-phase regions:. If adiabatic

● efi~as-i6-~i@ll~.~~ad,~Q.the~~pks&”~~.~sition,Ythen ‘(~p/~,V~Swill h- ..~
,.~.. . ,., ..7.. - ,creasedisc’ontinuo’uslyas the adiabatic enters the two-phase regiono

Then (>2p/3&)S is positive (infinite)at the boundary, and postu-

late (I)*remai& true.” ‘If,~owever~’ ‘“”adiabatic cornpressio~lleads fron
— —

the pure phase.tothe mixture of two phases, (dp/dV)~ will decrease

&.scont,inuou?ly~-atthe’b~md.~ if.:we:pr~ed in the dir~ction of in-
. . . .,.. , .-

kk. .-:“...”. ~
,, . . . . . ,“.--,“,,,,,,.,”,”,,,”.,,,,,.”.,,,,,—,+., ..,,,,.,,,,,,-,,,,,,,,,,..,,,,,,,,,,,,,,!,,,!,,,,,,,!!!,, ,,,,.,,,,,,,,,,,, ,,,,,, . ,,, ,, ,,,,,,,,,,,, r ,,!, ,,, ,,, ,,. ,,, . .
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.’.t”-~

.- .
. .

creasing volume. Then (~2p/~@)S is”negatitieat the,bounda&, and

condition (~) is violated. . , . 4 .. ‘
—— ..

The transitionbetwen a condensedphase and th~ va~r has gen- .

erally the property that adiabatic expansion leads to t~ phase tr~

ition, both if we start from the condensed phase and if we’@art from

the vapore ,The former is rather obvious since adiabati~ expansion of

a liquid or solid at low pressure is almost identical with isothermal

expansiofi,and will therefore ultimately lead to evaporation TIE .

other,part of the statement is a well-knom experimental fact:
adia-

batic expansion of nearly saturated vapor leads to condensation (prin-

ciple of cloud chamber)? Therefore4 condition (I) & generally,satis-
~ -

fied for evaporation and condensation,— — — ~
On the other hand, for transitions between two condensed phases —

liquid and solid, br two-solid modifications-- the adiabatic usually

run similar to the isothermal; that is> proceeding in the direction

of increasing volume, the adiabatic start in the denser phase,
then

‘passinto the two-phase region, and finally into the less dense phase.
At the boundary of the less-dense phas~, (i)p/dV)Swill therefore de-— — — — -— .,,
crease disconttiuouslyand condition (I) will be violated.

— - ———
Generallyt the direction of tfle”crossingof the boundary can be

deduced from thermod~amic quantities. I@t us consider the boundary

of ‘thephase of smaller density. Under which conditions is postulate
(I) still satisf~this boundary; that is, when do the adiabatic

go with increasing volume from the dilute’phaseinto the two-phase

region? ~The condition for this is (see Fig. 4)

‘Av()
dV1

z~l’~’
s

(87)

the total derivative referring, as usual, to the equation of the phase
boundary. “k have

(g),, =(g’\, +($) (g).,,
,,’

$’ s p,l “,

.
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,,
.
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.,,., ,. .

+ “(%)T,+($P;;$!*:..,.,. .,.
.,.

8“ ., .. e.
., ... ; ...-) .

is posi-the @xpSnsion,coe”f$icientof the.dilute p~;sei,.,... ..
tive--’ and #l’& not know any exception

If (~V/’T)p,,

from this -- Fqe (87) iS
equivalent to” “

:4..’. .. .:.. . . ... . .
.:-. .. . ,-:.t.,. . . . ● ✎✎

●✌

✼
(88)

..... .. . .
‘ .’.””*,.:,.

fc& adiabatic compres-

1-”. . ,.
. .

. ..-,,;
.!

that is;’the”“tetiperatkemust rise more ‘rkp,i&y”

sion than for compression along the ~Mse

the C1.apeyronequation (82b)~ whereas
m.mdary. @r:dT/dp W5

. ...... . ...... -.
.. . .

()C)IJ

air 9

, “p#.1 , ... ..,, ,.-

(88a)

......-

becomesusin~ a well-known thermodynamic relation. Then Eq. (88)

,

.c 43V “

p,l’-~s”
. .. .

1 ( )T.# ..>
. p,1

which is the desired condition.

If phase ~ obeys the ideal gas

( )

..,” :
‘. %

p,1

- (89) .,

..

equation,

.,”:. . .

have

.=7T%”AV . .
(89a)

. , .,.
●

1

●

Eq. (89) reduces toso that

,

AS>C
p,l ‘ (89b)

is ordinarily fulfilled with a wide mm-gin;
for example,

At ~OOOC, AS 7/= 6.05 joule/gm-deg (Dorsey,- p. 616), while c
“/

;)joule/gm-deg (Dorssy:.y’p. 10i). For solids mc! liauids,
on th...other
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hand, I@/IT)p ia

not be fulfilled.

usualw quite miall and.~ ,“(89) will, in general,

For ex~le,, for the tkan8ition from water
,..

to ice
Y30°C (data from”Dorsey )

,.
v~wehave at

= 10“9250 atm,

.

P [Dorsey, p..46’71

.

3’1O-& cm /q-degO= 3*3 x
●

[brsey, p. 21~]
.

/..’!. 1

,,. ., -... :
,,..,,+

- 4.072(1 - oO21O) = 3022 j~~ejgm-deg
at 40° and IOJ250 atms [Dorsey, p.,261]

.“ ,,,.’;.,,’!‘., ,,.,. ‘..,., ., ... , ,t’;,: .,:.,’.
‘:0” “

..’., t
:..~~l&le/g&deg & 30 ~. ‘.*,. .,.,1.’.,.,’

Cv

,,. , ..
.“ .:, .“$. ,

,, .,
..

Cv

Q
dv

‘v

CP

As

.,.
:’ . . .

CP -

Therefore

.’ .: ‘, ,’, .,: .*’. ..●.(%),(%)2s

,,.,... .... . . :

,.
. .:

.. .. .

[ Emey,

$..

4-”, :..’ .,’: . .:.

.. ,”;,. .,,

‘5 ‘ 3“””””
X’ J O bar-gin/cm.:,.

,. .. -:..-

216:

<
*
[’

p.

.

bar-cm3/~deg
,.

. . . .. .. . . . ..
.

- 3.3 =.,0.3~ j@le/gm-deg,..
. .:
‘ 1’.

*:
●;. - !

r,, :

joule/gm-deg,3.4 .
:-;1 .:; ;: f:. -...:

,., -, . :,. !... . -.. .

(“, “# ..)

.-. ,

p. 617]

p- 613]

1.09 joule/~-deg,

“3”0.0663 cm /gin.

...

[Dorsey,
a

L)v [Dorsey,

,.,.. . ..,,. .
values into Eq. (89)-we get

8-...:,. . . .
0,100 cm2/gm, :-

>o~ XOoO&$3 3
?.05: = 0.21 Cx /gn.

.

.. . . .

—
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Condition(I) is thereforenot .fu.lfilledat the
.

and water + ice VI.

On the boundary

r ity of condition (I)

instead of Eq. (89)

..

boundary betiieenwater
.

of the ,denserphase, the condition for the valid-

is reversed, as can easily be seen. We have then

...

T (+ ) A~ ;

p,dense‘“cp,dense= “’. “’ (90)

.,.
For evaporation, this is practically always ~tilfi~led,because AV is

... .
almost equal to the volume of the vapor and therefo.-e/cry large com-

pared with the volume of the liquid or solid, which in twn is large
.. .

I

compared with
i

densed phases

happens to be

is fulfilled,

TW/~T .

liq.(90)

small or

Eq. (90)

*“ case, for example, for

@
AV/A~ is negative: then condition (I) breaks,down at the boundary of,r~ .

On the other h&d, for transitions betweeq con-

is not always valid; in particulars if AV/&S

negative for a transformation,so that Eq. (89)

will in general not.befulfi,l:~ed.This is the

the transition from ice I to water ~j which
.

#

the denser phase, that is, of the water..
. ..

With possibly a few exceptions,we can therefore state:

Condition (I) will break down for transitions between two- — .— _ _. — —
condensed Phases at one of the two-boundariesbetween pure.—— —— — —

- S@ m~ture~ Condition (J) will remain valid for. — — —
evaporation and condensation. 7;,’; , ,.*..

14. Consequences of the breakdown of condition (I) at phase bomdaries
,,,

“If we compress a liquid adiabatically,we finally come to the

phase boundary with the+solid. As we have shown-in the last section,

the derivative (J2p/dV2)Swill in general be negative.(.infinib).d
:

one of the boundaries between pure phase and phase mixture, For,.
inter, this o,ccursat”the boundary between liquid water and the mix-”

ture of wztcr and ice VI. Theref..re,if the phase transition is not. $ .
forbidden by its long relaxation time, all proofs given in Part 11

‘:;i.11br~zk +own.

,,..

B...-.~- –,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,-,!,,, !,,,,,, ,,, ,, ,,,,,,,,,,,,,,,,,,, ,, 1!1 111!111111111Ill’ II II ,’ ‘~ —
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It is”easy to show that the negative discontinuityof (~p/eV)S

will actually have serious consequences for the tneory of shock waves.

Consider ~n initi~l .st~tcV1,S1 close to the phase boundary,
but still

on the side of liquid water. Then we may neglect the change of (Ap/~V)S
●

from VIJS1 to the phase boundary; ‘moreover, the shock curve will cross
the phase boundary at an entropy SC very olose to S

1’ and at a cer-
tain volume VC < VI. For the state V S

c’ c’ we have very nearly

A~ ‘C-pl -
Av ( )‘Tc”,- v, ‘,,av .> (90,

SL’3” “ ‘“:“ : c’
..,,. . . . ,, ..:.,, .1: ., :.. . , ,.,:, .-’

where the subscript ~ tefe~s to’the liquid. If we -t&n goa.small ~~~~

distance into the t~,vo-phasere.gian,we have from Eq,,.(,Jl), ,

, , .,,!., ‘,.,.. .,,,.:. .,...,

! 1
where the index M refers to the mixture. “.I’Neglecting

AV in.the de= ,.
nominator and inserting Eq. (9L), we find ,

..
.. . ... . . . . ,.,

‘d3 ‘(?Y/’W.)sM:\., .,:.‘ : ‘ .’., :.
“()~.,=”$ ’1’”
..... “k - * ( --/’:,. ....’..... .......- ,(92)

.-. . ‘ . .. . . . ..
. . . . .,. . . . . .. . . ,, -.. . . . . . ... . . .. . . . . . .... ,,

~jO-WWe know from Eqa (86,1)that - .,’ .,4. ~.
........”..------------.,..--’,,._--,..,.-..,,4

,.,..-........ “ ..... .. ‘ (Jp/av)sM : “.”-- .._.:..:,.:..-.--:’_..-● ;
,,. - -<l ,. :,.,:, .(92a)

. .,
..’:

since (Jpi’JV)~.isne”gative. ThereforeEqk(~2) ispositive; tnat is,

the eritrop-y ;will.decreasc~with further:compression,
— — in contrast tm

our theorems in 6ecs. 3, 4, and 7. Since we have assumed that SCis
very close to 3~, the entropy vnll.soon fall bdow Se.. Therefore the

cc~~ressionr~lshcck m.ves will become ur-stable.o
— — .—

-.’’’’’’’’~’’’’’—’’mlm~!l’nlmllm~!l’nlmll’ lil''~''''''''''''lulm'u''''''~''~''''''''~~''''''''''''''''''~'“’”“’’”“’’’’’’’’’’’m”““’’l~!l’””“’”!’ ‘! “’’”w ‘1’’’’’’”‘““ ‘““’’” ‘“‘“ “’’’”=1’” “’”~!l!’ ‘“ ~’I “ ‘““ :,J,, ,, ,: 1
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The solution of.this difficulty seem to be that there will be

two shock waves proceeding in the same direction. Ih the space be-— —.— .——
tween the two shock waves the state of the material is given by VC,SC;

.
that is, the state lies just on the phase boundary. Behind the sec-

ond shock wave the material is a mixture of liquid and solid. (There

may, of courseg‘be some question whether such a mixture can occur be-

hind a shock Wave,) ‘The second shockwave moves approximatelywith

the velocity of Soundc@acteristic of the mixture and will there-

fore remain behind the first wave which moves nearly with the veloc-

ity of sound of the pure liquid. This result isin striking contrast

to that fQund in Sec. 10 for a material obeying con@%i& (Z): we

proveWtMt for such a’titerial there can always be:only tme shock

wave starting from a~~iveh point in a given direction.

As the difference between the specific volumes in front of the

first wave (Vl) and behind the second one (V2) increases, the velocity
10/u~ of the second wave will increase, following..theordinary laws—

developed in Part II, with the state VC,SC playing the role of ‘lini-

tial state.l* The velocity u of the first shock wave remains constant.

Ultimately, u! will become equal to ~. Suppose this happens’for

‘2 = ‘D’ ‘2 = ‘D; ‘hen ‘D’PD are ~iven by

~u,2 ‘D-PC ‘C-pl=V2u2
c

=—a — (93)
‘C-VD ‘l-VC c

(Ut and ~ are velocities relative to the material bet~en the shock

waves)? ~ the.vQlume V2 ~ decreased below VD, we shall again @..— —
one shock wavet,~th state ~ in front of and state 2 behind the shock— —.— .-
front.:,Th~,,state.,pD,VDsatisfyingEq. (93) may occur either in the

two-p@s.e..~egionor.:rnaylie.a~ready,,i,nthe pure dense p~se (in our,.. . .
case, ice VI). ,, .. .!.. .. .. -.. . s ....* ●

For the two separate shock waves,.,thestability considerations
. of Part II will all be valid, because in the liquid and:in’the mix.

,’.,.\.. ●:.-\ -...,...’,.: :’”,,.. --~-. .-- .-—...,. .

~’ We have not proved that condition (I) is fulfilled~ the
.

two-phase regio.qs,...~utwe believe this to be true.

& ,.. -....
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ture separately condition (I) is fulfilled. fikewise, the proofs of

stability will hold for the single wave occurring at pressures greater

than pD;
.

in this case, the theorems may be proved by starting from

state ~ and continuing along the shockeumre to higher pressures and
:...

entropies
\

Thus far we have considered an initial state VI,SI

the phase boundary. On the other hand, the shock curve
b

phase boundary at a density and entropy far above those

state. Then it may easily happen that the single shock

very close ‘to

may cross a

of the initial

wave will re.

main stable even if the state behind the shock wave lies beyond the

phase boundary-
lf ‘C2

is the shock-wave velocity at-the point ~ at

which the shock curve belonging to state ~crosses the phase boundary,

then the condition for the single shock wave to remain stable is that

UC2 be smaller than the sound velocity in the phase mixture; that is,

. ‘::-- ”+%)~Ml‘ :!..:. ,, (?4) -J,
,

,.

. . . .
. . .. . “!.

[see also‘Eqs. (31c) and (31d)]. Equation,(9~) maybe fulfilled for

large ‘shockwaves becmse their velocity, with.,res~ct to the medium

C behind the wave, is known to be considerably smaller (Sec.“~)than

the sound velocity in that medium; that is [see.$qs. (6) and (10)],.

Whether or not Eq.(9&) is true for a given initial state and a ,
.“,

given phase boundary must be investigated in each particular case; If “
. .

the initialstate is water at 1 atm and the phase boundary to ice”VI
,’,

7/is crossed at 30°C, we have (see p. 62) p = 109250; further (Dorsey,-

P6 467) vC s 0.8055, VI ~ 1.00, pl =-O; therefore

Pc - P,
*.

3= S2,6C0 atm-cm /gm = 53,1Jo0bar-cm3/gm. (9kb)
‘1 - ‘c

&----J_. “ -. ,,,,,,,,,,,,,,,,”,,,, ,,,,,,,,,,, ”,,,,,,,,,. ,,,,.,,,,,,,,,,,,, ,!!!!! ! !!!!!!!!!!!!!,,, !.!!!!! !, !.,. ., !!.’” ‘!. I 1’I ‘L ‘!.1,’ J! 1’1’II,,,’ ,,,
,,,,,”,, .
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0
The data for the calculation of (~p/dV)W are mostly given on p~e 62

1
of this report; we have [See Eqs. (82a)# (82b), (8&e,)$and •(85~*~.

.. . . .. .

... . .

dV1 “ ‘
.

T“
1.2 X..IC)-3cm3/gm.deg#

:.. .

3cv 1 = 31 bar-cm /gm-degO [This report~’~~62]s

. .

cm =,31 -3 2 ;“+303 x(1.2 xIO )X10 ,

3= ?5 bar-cm /gm-deg~ [This report, pp.~~ 62
.

.

1“

-($),M“ * x ,161&2
3= 108,ooo bar-cm /gm~ [Thisreport, Eq. (82:)] (94c)

e
This is greater than Eq. (9~b) so that Eq. (9~) is fulfilled There-

@
fore3 even if the transformation of water to ice VI coul.citake place‘1,1
in shock waves, the theorems of Part 11 would remain vzlid~ (This holds
if the initial state

pressure, let us say

described above.)

we thus get the,

lies fairly close to

“finaltlpressures p
2

is at 1 atxnpressure; if we started from a high

8,OOO atm, we should obtain two shock waves as

following picture. If the initial state Vl,pl

a phase boundary, there will be a region of

between pC and pD [see Eq. (93)]s for which two
shock waves’exist behind one another. In this whole region, the
velocity of the first wave remains constant,,equalto that for p2 =

Pc ●

For greater final pressure (p2 : pD) there will be a single shock hve

whose velocity incre~ses with increasing p .
2 If we now move the.ini-

tial state farther away from the_phase bo~dary= the_~@o~_f~om_n
‘cto pD will become smaller and will finally disappear.

This result may be applicable to extremely large shock waves in

solids- h/As we have pointed out,- a solid under compression and ex-

.
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tremely high temperaturemay not’go over smoothly into the quasi-gas-

eous state; in other words, there may be no critical point for a solid.

However, the phase transition, if any, will occur at such a high pres-

sure that the single shock wave will almost certainly r$main stable. .

The double shock wave will “neveroccur for gases> for we have.
shown in Sec. 13 that a vapor just on the verge of condensation will

be removed from the phase boundary by adiabatic compression. There-

fore a gas under any amount of adiabatic compression will always re-

main a gwss and this will be a fortiori true under shock com~essions. —

which leads to an even higher temperature. Therefore, for gases,

whether ideal or not, the results of Part II are valid.

We shall now turn to rarefaction waves. Consider as initial ‘

state V1,S1,a state on the high-density side of p phase boundary at

which condition (1) breaks down, so that adiabatic expansion leads.,.
from V1,S1 across the bounda~. ‘(This can occur only when the initial

state is a mixture of two condensed phases.) If we follow the shock

curve to larger volumes, we can see from an argument exactly similar

to Eqs. (91) to (92a), that the entropy will first decrease to the

phase boundary and then increase. We thus obtain the possibility of

stable rarefaction vnves of finite amplitude. In fact, if we tried— —
to work with infinitesimalrarefaction waves, those corresponding to

the change from the initi~l state to the phase boundary would travel

with the sound velocity of the mixture, while those corresponding to

the further expansion of the pure phase would travel with the greater

sound velocity of the pure phase, which leads to a contradiction.

Thus wc not only can but actually must have a rarefaction shock wave.

With increasing expansion, we shall come to a point Vm,~ at

which the velocity of sound in the pure phase h~s

equal to th~t o~’the rm-efaction shock wave. For

yond this point, wc sh~ll get Q rarcfaction shock

substance expmds to the volume V~, followed by a

t.esixnalwavesof further rcmef~ction.

u
dropped ~o a value

any expansion be-

-wavein which the

train of infini-

As the initisl state Vl,pl is removed from the phase boundary,

the point VE,~ will move 21s0; -wehave not invcstigzted in which

direction. If the initial state is in the pure dense phase, there

. -
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must still be a rargi%ctlon shook wave sinoethe rarefaction stiU
●

cannot be acco~pl.ishedby infmtesimal waves, because the sound veloo-. .
ity in the pure dilute phase is greater.than in the phase mixture.

It does not seem ~btious whtih p&.t.of the rarefaction is accomplished

by a shock wave “md which part by ‘MU.nitesima?.waves- It seems

reasonably certain that there will be infinitesimalwaves in which the

material is expanded down to the boundary of the dense phase; then

possibly a shock wave will follow,which carries the material over the

mixed region and into the dilute phase, and this may be followed by

another train of infinitesimalwaves. tit it may also be that the . ~

shock wave ‘tstarts’twith a.state in the region of mixed phases. In

any czse,,these:rarefaction shock waves cm. startonly from initial,.

statesof %ety high pressure and can occut at all’only it the phase ,

transformation is rapid enoughto take place’inthe ‘Shock~ve.

,.The-strange phenomenon of rarbfactio’fiShock”waves till not.occur

for gases, nor for liquids or solids initially.at..atmo5.phericor other

low pressures. By adiabatic expansion-ye obtain in each case a mix-

ture of gas and condewed phase’;-~ndwe-have”shew in Sec. 13 thzt..
condition (I) is valid for the transition into” this mixed phase, both

from

Is.

the condensed.’~ndfrom the g~seous state.
\“. 1 y

Condition (II): v(ap/@v >-2 .,. .,
----- .

Condition (11) is automatically fulfilled for all substances with
..” ..

a Positive expansion coefficient;”these include gases as well as prac-

tically all liquids and solids. ‘Yeneed only investigate the case of

negative expansion coefficient,
.

of which water is the most notable ex-

ample.
.

(~) Liquid water. ——
...*

The greatest negative expans~on coefficient-. .-.....

is reached for O°C and 1 atm pressure. (At lower temperatures water

is stable only under higher pressures, for which the expansion coef-

ficient becomes positive.) The value of ~p/dT for O°C was given in

Eq. (79d) and is -0.62 bar/deg. Y~ithcv z 42 bar-cm3/gm-deg, and
v .= 31 --cm -~,--wc get ‘

‘(.%)V=- ~#-=-0.0,5,
.

(95)

. .-,——,4-, ,,,,,..,,,,,,- ,mw. ,1,,,,,., a,.,,,,,,,,,,, ,,,,, ., ,“,,, ,,,,,,,,A,,,l,l, , ,,,, ,,,, .,,,,,,,,,,,,,,,,,”, ,,,,,,,,,,,,,, ,,,,,,,, ,, ,,, ,,,, ,,,
,,
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as compared with thq limit !of-2 set by uondition-.(~)X. . -::r” : ~

(Q) Ice at exti~~ly” iOw tern@rat~ese - A,qela}ively large ‘.

‘negativeexpansion’coefficient was found by Jakob and EEk for..ice at ...)

extremely low temperat~es (~rseY~J’
-6

expansion coefficient is -601 X 10 .

sion coefficient to be three times as.

PP’473). At -250QG, the linear. ,

If we assume the cubic.“expan-

large, we have ..

U -6
F“t ~p=-J803XIO , (9%)

where VO [=.1.09] is the specific volume at O°C. The compressibility

has not been measured at these low temperatures. Near the melting
7/

points the,experimental res~ts differ widely (Dorsey,- p..471)...
-6

Bridgman finds. 7.[=-:{fifio)(JU/~p)T].to decrease from 33 x 10 at
-6O“c to 19 ‘ 10

-6
.-at+10°-:and.18x:1O .atr15°, while Richards arid

-6
Speyers find Zas. lowas;72 X“1O at:-7°+: If we askuhe the lhsti~meh~

tioned figure for -2500C, we.get ~~.:. , .. .. .:

d
~ “.,.

-?

= -18.3x10.
,, .,. ..

d
= -1.5 bar/deg. (9%) *

Iz.,x.lo+.. . ,, ,, , :..;.;... ...,,. .... .,...

‘7/-.’479),:s” , ,‘..-,, :~.:

The ;Pecific heats.accord~ng.’~oPollitzer (see ~orseyz- p..
‘3”1.28 bar-cm /gm-d~g;‘khereiore - ‘

,.. : .;.

.. . . . .. ., :\ .. .
.. ,. ...’..“:., . ,.. ,

= -1.07 ●
1.5 ~ -1.25 (95cJ -@ ‘HE . . ..’ .- ;:.- ‘,.- ;’

.: . . .
which is ‘ofthe same order of magnitudes but smaller in absolute value,

than tfievalue permitted by”condition (II).

(~),Melting ice. .:-- The largest contraction &th increasing energy

is found for melting ice I. llYomthe Clapetion eqc~ti~n we have

where ~ is the melting

from ice I to water is

pressure at temperature T. The entropy change

(Dorsey,~/p-617) - ~
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A 3S = 12.2 bar-cm /gm-deg at O°C$

.

= 9.% bar-cm3/gm-degat -20°c.

. .
The change of volume is

3 .“. , .. .
AV = -0.0900 cm /gm at O°C,

. . . . .-. . = +*1313 cm3/gm at -20°c.. -

Accordingly, 9

7
‘$ = ~1”~6 bar/deg a~ &C, ‘ “

“) (96a)

= -73 bar/deg at V20°C0
J

These v-I.luesare very much gre,ate-r,than’@.p@T.forwti~r.at O°C.,which

we found to be -0.62 bar/deg [Eq. (84d)], k f~~t, if the specific

henbt~V of the mixture of water and ice were between the specific heats

of water (42 b.ar-cm3/deg)and of ice (20 bar-cm3/d~g), condition-’(II)
..

● . .would be violated by a large-amount..

.Actually, we know from Eq. (85) that CV for the mixt~e iS ;arger

,thm for the pure phases. It can easily be shown th~t ;W is srn~ll;st

when the mixture contains mostly ice; first, because the CV of pure

ice is smaller than that of pure water and, second, because the volume-
change dV1/dTs is also sm.allcr. Viehave

CV ice = 21.15 bar-cm3/degat O°C,

dV1/dT e 3.5 x 10-3 cm3/gm-deg at

‘3 cm3/gm-deg at~o.8 X’lo

O“c,

-20°c;

- —
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., ...,

-- Jp/~V * ~ x 104 bar-gm/cm3 catO*C,

4S$10. ~ x 10 bar-gm/cm3 at -Zo”c.
,

Therefore frurnEq. (85),

cr. =21.1~+273.x~ X104X (3e5 X 10-3)2 = 156bar-om3/degat 0°C3(96b) ~
b ..

= 19.59 + 253 x lo.~ x 10L x (0.8 x 10-3.)2=36.~bar-cm3/degat-200C.(96c)

Therefore

v C@lV(*;)V=~ ( 1.09x 136
dT,/v‘- 156. = -0.9.5at O°Cj

w

and

v (~)v = - -U&# = -2.12 at -2(3*C.

The Last-ment+oncdvalue is just slightly below
..,.

(%d)

(%e)
. > . . .

the limit set by con-

dition (II), the difference being within the probable err-orof measure-

ment:of dV1/dTQ It seems therefore tiat melting ice forms an exception”

to condition ,(11),but that this condition-is fulfilled for ’pure”water
-.

!.
as well 3s for pure”icej and probably for most other substances. “

.

16.
f.

Condition (lII): .(Jp/2V)E<O
, :

— ~ i

Condition (111) is obviously fulfilled for ideal gases-be~ause for

these gases const.mt energy is equivalent to. constant temperature,
v .. b

and the isotherm~l value of ~p/dV must.always be negat~veo

The condition is fulfi.~leda fo~~aiorifor practically all sub

stances for which the internal energy increase: with isothermal ex-

pansion. We have . I . ...-

(97)
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-.73’-- -9
.. .......-“ —

If (dp/~T)~”> ‘~-.~~ichis ~true..~~.abo~t.all:,shstan~s .~cept water

below 4°C), tiielast:‘termis negatiVe for positi%e’(JE/dT]T. There-

fore ‘ ~ ““ .... .. I... . ,

,. ● ✎ ✌✎✎ ✛✌✌ ✎
✎✎ ✎✌ ✎

✎ ✎✎✎ ✎ ✌ ✎✎

. .

. . ,., , ‘(sf)E=+yT:’3“’ “-” :(yat;., , ., ’,. ,,
*; . . . . . .. .

if * ‘$ 4 ‘ ‘;’. ‘. ““ . .:...tl... ,..,,’.:..”...”:...
<., ’.., ,., .:. . . . . . . ,,

. . . .:, +, ‘.,. . . . .

(
.,,

~)T>o... ,0’: , . ::(~ii>. ...8...,.. .- .,:.-,. ... ..... .... . ....
A great marqisubstances fulfill the condition (~E/dV)T> 0. ~

Some of the moi~‘tipOitarif‘aiethe folloting~- -. .-, ~ ‘,“.,.- ‘~
,,

(~) Dissociat&g g ‘ases:---‘~~ Clj.sgociation’increases with the
.,,

volunieat constaritternp&lture* and the dissociation.increasesthe

internal energy: ThiA’’caseis the”most important of’all because corl-

dition (III) is’’re@~ed(Sec@ 8) to prove that the ener~ has no

e~rernum ih:th~;part”of’tke shock curve beyond the”*~nimum-ofthe

‘O1me’ ‘2’
that!~ss”at~ve~ high temperaturesat which dissociation

progresses rapidly. ,

(~) Any fairly d~ltit&~imperf65t”.gas...--.Theattracforce sorces

(Van der Waals1 forctis:)must be takefi”into account while the repulsive

forcas are unimportant. Since the attractive forces-decreas~ with ‘

increasing volume, the energy must increase with V. An example is;’

Provided by a gas obeying Van der ‘Naalslequation, namely ‘:: = ~ ~ ~

( 3)“p*a (V- b)=RT.
,,

mom the thermodynamic relation
.

we find

(98)

[98aj

(98b)
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(~) Most solids and liquids at ordinary temperat~es. — From

measurements such as those of Gibson.and Loeffler,~’ dE/dV turns

out to be positive for practically all liquids at ordinary temperatures~

The only notable exception is water below4°C [see Sec. 16(c)]. Tb

argument given in the literature for the ‘tnormalltbehavior is the same

as that given in Sec. 16(b) for gases, namely that the most important

volume-dependentcontributionto ~ arises from attractive forces,

which give a positive dE/~VQ This argument may be expected to hold
-.

for:’sblidsas well as for liquids. .“~,

Other substances still fulfill condition (111) although (~E/dV)T

is nega~ive.. ExampleS follows , :;,’j~..:’”: :.:. , , .. ., .... ,

(d) water below b°C. ~,,The (Jp/d,T),Vat ~~yp,:pyess~e.isnegati~e,

so that Eq..(98a).~~lds a negative (dE/dV)T,..:;,Hqwe,Ve.rZ,s@Ceat the
-.-.--.—---.......-.....+ .

same time dp/d~.:~S~egZitiVej ,thelast te~m,~f h~.:(97.),ren.ai~s~ne~,9-.

tive.: It is trp~.thatthere is a region of prepsur,e~fprtwinch,~E@V :

is still negative:while~p/~T isal.ready posi~ive.~,[~,ecauspof.~he,,

term ~:,in:~:,;:[~8a)],H.bu$,i~this region the,la~t t~rm ~,~~ (~7).is

entfiely,n.egligib,le:.comparedwith the firs,t,.namely ~bout .I:p?r~ in.

10,000. . . .,.,

(~) Solidsjat:hw,.temperature~-- -The:l~st,term:in Eq. (97) ~may. -------.“-.....-....
be:expected to belarge and positive--- thatzs, unfavorable.for ~.q,-

lation:(111) -- if cv.is:smalls~~p/~Tpositive~ Fnd E large [see Eq.. :

(98a)]. All these cgnd.iti.onsare fulfilled.for solids at.low..tsm-,~,,.~

perature.’ The value of Cv is given by Eq. (77),namely. ,: :..,:;~,.

Cv = a(T/e)3, .!... (77).. . ....
, “

and goes to zero for zero temperature- Fortunately,dp/~T also goes...

‘0 ‘erO; we have from ~S@ (77C) and (77) : ‘ ‘ .::i ...

!“ ... ,

Cv

the

,...,:
alc$~:e

aV “ (99)

. .
Debye temperature decreases

proportional to the frequency of

This expression is positive because

tith increasing volume. Since ~ is

the vibrations of the crystal lattice, therefore approximately
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, ,

—*
. ... :.4, ,.

. . .

s ...

4-. ... ,.+. ,,,’” ‘“. - .,+,
. ..’.

. (99a)
.9 -b~~i~a ~, “.”” ,. a,,.......... . . ... ..

., i. . ..... . . . . . . . . .. ’:,’,, ‘.

where p is a constant depending on the cry@al s.truct~e but.nQ$..O,P~ ~
. ..,,while a is the.velocj.ty’of soun,dtnamely

az = -v2(ap/dv)T .. .

Therefore
\

i)lo’” ()’
---+- “&+“‘::$;:,

Inserting Eqs. (99), (98a)$ and (99c) into

T(~P/~T) against ~ we obtain “

,.. . . . $.

..

●

✎ ✎✎ ✎ ✌✌

●

.,,

(99b)

... ..: . ,,

(99C)

J%* (97) and neglecting

.. ,.,..

2
$

i
9 “

(.!00)

.. . .
The last term is certaitiy negative (and srnall)o In order that con-

. . ..
dition (111) be fulfilled, it is therefore sufficient.t,hatthe braok-

et be positive; This is almost certainly the,case because,solids

very nearly obey the Tait equation. Choosing VO ~ VT,”EqC”(’79)be-

comes .
.,

[ 1
(vo-.v)]/< “. !“ p=Be -1’” (100a)A’

-.

()d~ ‘“ “ (v _ TJ)/~ ...

~-’(El/l<)e0ilv
T

)

.

()a+ 2 (Vo- ‘)/K. = (B/K )e
~~

T

,. .,,,.*.-. . .

(100b)

(700C)

Therefore

2 “. 2

()
~u<y
,,$$$,J$

(100d)
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. .

and the expression in the squ~e bracket h Eq. (100) is positives

(~). Phase transitionsi — T~s is”the only case for which we have

found condition (III)not always satisfied. In the t-phase region$

~“depends on ~ only, that is, (i)p/dV)T= 00 The specific heat, 0V4

is always positive. Therefore condition (III), Eqi (97), reduce~ to

.

@if)v(q> o●
(101)

Using ~. (98a)3 the Clapeyronequation (82b), and (8!~c)tthis gives
...:,,,, -, 4 ., ....-,.-..........,....!. ., .,“ .“.

~(T$p)=fi@-z
...Av2:?o‘

(lOla).<?, ,,# ,,: .,* ,’,.,
t. i.:..’).’;> ““’-;.:’:.:;:,

.’:, . . . ,,

or simply ,. ,. ., ,1;.:;.,, ;.’:..,-.:.-.

M4S”> o “.’‘ , “: (102).::., .4!.. ,:... .... - !;.7. -... . ,..,. #

The condition’is therefore that the energy ’andthe entrcpy should

change in the same direction. This is,fulfill~d,fo: practically a~l. ,
. . . ..L. ,’- ,

phase transition~, but,there a~e.a few exceptions,,.sp@as the trans-
. .. .. ..

7] ““ -formations ice I.to ice,11’ o~lice.l~l to ice Vj(Dor.sey,-p, 6?7).* ,
, . .,. .

..Summ3riz;ng,
. .

we find that condition (1,11)slike,the q~.h~rtwo -
.,’ 4,.s. .. ..

conditions,
.. .f‘s-

eems to be satisfied for practically all homogeneous..
(one-phase)systems but to br~ak.do~ for a few phase transformationsi

The condition seems to be mor~ gcncr~lly-fulfilled than condition (I).

17. Discussion of a hypothetical case: A material which satisfies

~~conditions (I) and (II) but n~t.(~ll)- , “~

We have shown in Sec. 16 that prabably all materials satisfying

condition (I) will also satisfy ’(111). However,.since no general proof

could be given,
.,.,’

it ma~ still be wor’thw’kileto discuss the consequences

of a violation of condition (111) in a material which satisfies (I) and

(II).

Condition (111) .WX used in.Sec. 8 to show that the energy in-

creases monotonically ‘riththe entropy.,Condition (111) is only a
.

,,,,,,,,,,- ,,,,,!,,,,!!,,,,!,,,!!,,,,,,!!!,,,,,,,,,,,,!!,,!,,,,&u,,,,!!, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,
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-’M- -... . . .4“: ., . .

.;:” ;.~.: , . .

,s~f~ien~s’‘-nota ‘nece~~, “60’~~t~Onfor t~s; in order that the
.. ..

e~,r~ lXe a ‘maximum ‘:”(ap/i)V)E‘-t ‘riOt“Onlybe positive but also ~
..... . ,,!’

must ‘sat+* 4. (43): -If EQ. “~~j) “’iii f~llied for somd poj.nt~~.:L.~
. ..

the ‘shocL”J”C~ve,,the ‘energyAt kave”a ma-~ at thi~ pofit, ‘muSt ~.. J.
then”decrease, ‘~ye a ----- “ti~‘fi~lly “inereas”eagain with ~ at’

,, .-
Of co~se, E may”have several macima”~etiremely“’high ~emperat~es Y . ... -

.,
and,xiinima● , .,.

‘ AS ~ have’shown’~ co~ection tit~ Eqo (47); ~~ Pfies~~e Will
,’

.,. . .! ., .

increase with tkk entropy at

if E2 decreases sufficiently
-!.

creasing V2$ will “

. . .. ..

ibt as i&g as the ener@-’does. Only

r~pid~y with increasfig~“,mtro~ a“na...~-

2(En -El)
P2 = -PI + -~ “-..v ‘

1’ 2,.

“..
reach a maximum and then decrease. To find’

~

< .’’.”’’”.-

(47)

we proceed in a manner skilar to”that used in Eqe (b2)Smum ‘f P2DA

only considering ~ and V as independent variables. Then we have

.

~$~~p+~)dv ”-+(P2+P1)d@V1-V2)dp. ~ (lOj)
P’-

.:.: ,.

In order “thatdp/dV = O, we must have
w

, ,:

.
,

. .

JE = 1
()X7. - ~ (P2 +Pl) ●

P“ .

,

,(103a)

The left-hand side can be transformed, using the thermodynamicrela-

tions given by Eqs.(11) and (12)?

so that condition (103a) reduces to

(103b)

(104)
,,,



There is no genedal thermodynam.icalor staklSttcal’Teason~Eq. (~Ob)..
should”notibe fulfilled for some’substanoe~ If it is fulfilled, P2 “

till have a X&imumO If thib is”the case, the extrema~f the various

variables of state must follow each other, in the order of inoreasihg

entro~s, like this: f~s~,a xn~um of idievolume, then a maximum of.

the energy,,then a “m@iunl of the pressure$ followed by a mi.nimfiof

the press~e, a minimum of the.energy$ ad finally n MX~~ o~ the

volume* .. ...... ..,.,- .
We shall now investigate ~he consequences of the tib”and minima

of energy and pressqre for the s,tabili,ty”ofshock waves. We have shown:.,,,. , .

in’Sec. 11 that a~skoc,kwave cannot”split into’~twovravesgoirigin,.. ,!.. . ,,.”
opposite direction90t}f#,.-~orall v~ue~ ?2 $ pv..we have

Jf ,.,..$:”....:’;,!,:. .....;.,. ,.● :...

(PL- P,)(v, - V4) > (P2- PJ (V1- q~” ..... “J.!%’].“;
i“ ..,.. ...!--..””

[r~~ers.eof Eq. (62)]. we showed -h.5ec-~.j1..that condition (10$) is.i ,..’-‘.
certainly fulfilled if the energy increases monotonicallywith increas-

ing pressureand:qntro~o We showed further that a maximum of the,. ..,.
energy on the shopk-curve,i~a necessary but’’nota“:suf~iti~etitucandia.. . ,: ...;,. . -,.,.,..
tion”for a.spl~tti~g,of..$~~pkwaves? : ,, . ~ ‘,...

However, it can easily be seen that a m&x~rnium-o~:ihe”piessm~. on

‘~htishock ckve @ ~ ,suff~cient(not necessary) condition for insta-.... . .

bility of shock waves: If a shock-~ve+k~h’ i~i;iti~lt~statk~-and’”.

l~final”state 4 is to split, Eq. (57) must be fulfilled. To show that

this is possible, we compare the efi”ressions ‘ “.1..,,. ,:.: .:-

. 5 = !lI,l.$ - ‘?,3 (106)

-and. L..: ... ,.,

D=(uO1
- UO,4

) - (UA , - “uA,*) ● “’- - (1-o(ja)
t #

... .
..._ -....- ...

The first of these is very emy to calculate if-the pressures p~ and

,,,,, ,,,
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P~ = p2 differ.cmlyslightly, for then wave ~ is a small ~hock wave

and can be treated as almost adiabatic (see Sec. 3); liehave”~see

Zqs ● (58), (10)] ,,.

On the other hand$ we have from Eqs.

.

D .

If”condition (10S) is

. .

On the other hand, if

P4 - P, ~“F2 ‘p,, SO

J(P4 - PI)(Vl - ~4)

(61), (61aj: :

“.
.
- J P*‘“- P-i~(U1- V2). (108)

fulfilled D will be positive and therefore

,
D>So, (108a)

P4 and p2 are n~~ the maximum of pi we have

that . ‘

D s!

- II?4 -,PI.
‘~(v4-v2~ ~l-v _ “

4
(108b)

This is negative (because, just before the maximum of ~j ~.increases
,

with increasing~) and ID] can be made as large.as ~{ewish’in com-
...

parison with [$! [Eq. (107~]. Therefore, near the ,pr~ssuremaximum>.
we have

<

.

D<$o ,. ‘ “(I08C)

,’.’

Thcrefcre ther~ must be a certain intermediate value of ph (between

the energ-fmaximum and the pressure maximum) for which D = s, so

that Eq~ (57) is fulfilled. Shock waves in which the pressure be-

hind the wave lies within a certain range, close to~ the press”hre

maximum, can split into two waves going in opposite directions, as

described in the beginning of Sec. 11.

,,,
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Let us investigate the way in which the split occurs, as a func-

tion of p s
4

We shall assume that the pressure does not vary much over

the regicn in which a split may occur. Then Zq. (107) for 6 will be

sufficiently accurate, while ~ can be obtained by expanding Eq. (108):

(V2- V4)(P4- P,) - (P2- PJ (v,- V4)
D.

2(U0 , . {“io9)
$ - ‘o,4)

. .

Condition (57) requires 5 = D; that is,
,.. ... . ,_..

P~
-p, ,“’ . : ,..,,

- (V2- V,I+),=c(V2- V,l),(~09a)
‘2 -’P4 ‘“v

,1 - ‘4, + ..~v49b, 1 ; Uqpq -.. . .<’.- , .’i :i , . :.’:,,>?’... ;, ,, .,,. ,’.,.’ :....:., !,~::., ,.:

where c ‘is a constant, depending very slightly on the state 4. Graph-
ically, we can interpretEq. (109a) as follows (see Fig. ~). On the

one hand; we draw the shock curve wh~ch gives.p2,as’a (complicated).

function of V2. On the other hand, we considei the:stTaight.ltie,,Eq- ;

(109a) whose slope, g, can be calculated from known quantities~ The.
intersections of the two curyes:will give th~pessible solutions p2,

.
V2 for given PL,V4 (see Fig. 5). If ~ has a maximum and a minim’~jls

then for states p near these extr~~, there ~~ be thee intersec-
4 .

tions.of the straight line with the p(V) curve; including the inter=’
..,’ . ...

section of p~,VL; for values of p
.

, h far from-the extre~~ there till

be only Gne intersection. In the latter ca’se,
~, ●; .. “.’ ,.
shock waves corres-

ponding to p4,V4 cannot split.

It is easy to see that thre’eintersectionsmay occur without~

having a maximum and minimum if onljj at some point of the shock

curve .
< .. .

dp/dV < C , ‘ : flo9b)

,.”..

where dp~dv is taken along the shock cwvS~ and c is the qmntity-~..-”” ..

defined in Eq. (109a). * <

If there arc three intersections,a split is possible as far as

th~ kinematics of the shock waves is concerned. Now, for thcrmo-
...
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dynamic rcasam, the split will occur in such a way that the entropy

at the instant immediately after the split is as large as possible-

Thisrequiresobviously the selection of the highest of the three inter-

sections: for then the entropy of state 2 is greater than for either

of the other two intersections, and, moreover, state 2 propagates
most rapidly into medium 1 (see Sec. 9). In addition: state ~, hav-......,:
ihg:~the’highest pressure compatible with the kinematic conditions,

vtillalso have a higher entropy than ~, and will spread into 4*.
There-

~f~r~, if there should be a shock wave correspondingto one of the
.’.

,Jlokr intersections (~ and ~) in ,Fig,S,,it would split into one shock
.“.,.
;wavecorresponding to the highest:intersection (~) and another small

,.
shock wave’going in the opposite directions

The shock wave would thus
.“’.
;x~crease h amplitude rather than decrease by its ‘Isplitelr

The newly
established shock wave of higher entropy change and velocity would

.thenbe stable.

t
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Iv. CONCLUSION

‘,,,!

18. Relation to the theory of Duhem

The theory of shock waves in a medium with a general equation of,

11’ The principal differ-state has been discussed previously by Du.hem.—

ence between his treatment and the present one is that he did not make

any assumptions about the equation of state, while we have made sev-

eral -- namely, the conditions (1)s (11)s (III), and the facts about

the equation of state at

fore not able to come to

Duhem did recognize

the main results of Seci

high temperatures (Sec. 5). Wemwas there- .

“such general conclusions as we did.

the importance of condition (1)0 He possessed

3 of this paper?.namel_that small but finite
n n

compressional waves correspond to an increase of entropy if $p/c3fi> 0,

while finite rarefaction jvaveswould b&’“stableif d2p/i)f < 0 (pp.

177-178 of his paper)- He ,alsofound that for d2p/d~ >0, the veloc-

“ityof small-”compression-waves,with respect to the.lCSS dense mater-

ial, is ~dater’than’the ~elocity of sound; while relative to the den-

ser mat~rialy the shhck wave mov~s more slowlyth~n sound [Eq. (Is)

of this””paper,’p.Z178’of Duhem’s paper]. However, he coyld claim the

validity of hi’sstatements only for a rather restricted range of den-
.

sities behind the shock wavey ‘~i.thoutbeing.able to state the condi-

tions of validity in physical”’terms.

Moreover, Duhem found already that the entropy change for small

shock waves is proportional to a higher power of the density change

than the first [his Eq. (19)],but he did not find the third-power lsw

[Eq. (13) of Our paper]c Generally speaking, ~1~ ,Papercontains ,Part

of””theresults of our Sect 3, but none of the later sections. In part-

iculars he did not discuss the stability problems.(secs.-10,and 11) and

he ccmld’not obtain the general results of %CS. .!t,7, and 9.
. ,.. . ----

11
-’P. Duhem, Zeits. f& Physik. Chemie 69, 169 (1909). I am

inde%ted td Pfo’fessorJ. Von Neumann for dran~g my,attention to this
paper.
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19* summary ..’’,,. ,’. ,

We have shown in this paper:

(1) General theorems can be deriu& abotit~shock wa%s. iR a&: ‘

substanc~‘whose‘equationo!jstad’ satisfiesthe three conditions: .

,. -.; ’..’ “: : :.!::” ;(~;.:’ . “ ,. . .. . . .,.- . ... ,, ; 1-.. : . .. . . .*. .’. ., ~

.. . .. .-. .,..,... !.””” -(i; . ... v (*).?,,., ,...:.,$ - >-2 ; :.~.: J : ..’ ~ .. ,(11)
~ ‘ .. ;;::::’ ;,’.l. .—:,,.,. ?,:: “..:,.$.,; “ , .-. .,,.. .. . .. . .. :~..

. .:. :,...:...,--- ,, ..... . ::,.,%. .,. . . .; ,’.
● ...”! ., :’. :7 ... t,:;- ,1. :.

. . . . . . ..” ,”,

,...- ;.. . . . . ,,. ,,,. ‘. . ..-. ,,.,.. P)?)V; <0.:” “ : .:~ ‘ ,.”” (111)
,,,, ,.-, .

? ,;... . .,, 1... “i; ;..,.,’”:. .........,.,.... . . -,...
. . ..l

. . . . . . .

‘(2) The thre~,”co~ditionsare satisfid for‘all”single-phase.. ..::~.,--:,.,. , , ...,
systems whichtwe have investigabd (S’ecs.12, ~s, 76), namely,’.ideal.. . .... .:. . ,,. .
gases with constan~,or”variable s~cif ic heat, gases’obey~figVan der.. ,,;.$,.. . ....-’ .. . . . . .... .. ~. .
Waals1 pquation$ dissociating”gases,liquids”andsoIidS’atnormal .-., -,.,,. .’.
tempe&atur&. ” . “ ~.“and sollds’at extremely low tern~ra~-~es. Condition(I)

.,. i-” ....
is violated for most’~pks”echanges (See●‘13);.”Phase cHan@s ‘&an,how-”

... .,. ,., .... . .. .. . ... . ....;.,
ever,,be’excluded from:‘consi-derationbeca&& they requi’retoo long a.4 ..;. . .. ,~.
time--toocc& in shock ~ves (Sec. 1). ‘ ‘~ . ~ : ‘ “ ‘“.’“’

. (3) .If condition (1) is satisfied for a“‘su~st~c~, “thenall com-. ...
pressive’waves of small b’ut”finite ~plitude drti”connectcd~th”an

-- . . . .
increase of entropy (Sec. 3).

..”- ,$.,:-..... .,
.,.....:, . . -...’

,..(.4).The,increase of entropy for smali “voluniectiange‘
. .

A~ is pro-
,,-

portional “to”’‘>~ [Eq. (1,3)]’.: ~~ ● ~ ~~ .. ●

..-.. . ... . .
.(~) ~f8’”in““additionto condition (I),:”also “conditi’o~(XI) is.. .. .. ..

fulfilled”-- tkt:>s, V (~p/~’E)v’’>’-2eve~her~ ’”-=-thenill com@res-
. . .,. ..,

sive waves-of whatevdr”&nplitUde are connec”ttidwith ~“ increase of

,
‘,

entrapy-.and ar~,therefore.therxqodynaT~icallystabl~-(,~ec.~)~- .~~e-. ...... . -------,-..
factioriWaves of finite.amplit’udea.r.s-.unsta~le.and dissolve titd:---

. . .
trains of infinitesimal waves.

.,- , ... .,
● . ,.. .“..

.:

‘.-,’- .

. .
,,,
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,.. . . . . .

,,,,, (6) If condition (I) is ~ ,satisfied,as at the bo~dary of ,

phases, rarefactionwaves of finite amplitude,may be stable (Sec. 14).

providedthe phase transition can,occur, and compression waves may,
,!!!! .. ..

under certain circumstances,consist of two shock ,maveso.fdifferent.
velocities, one traveling behind the other. ..‘

. (7) If conditions (1) and (II) are ,satisfied,and if the state

of the material in front of the shock wave is given (VIPS,)* there is”

one and onlyone soluti~n for any value of the entropy S2 behind the

shook Wave$ between S1 and,infinity (Sec. 7),. If the state.of the ,
*

material.behindthe.shock wave is given (V2,S2’),.there is one ~d ,
.. .

only,one.solution for any value of the entropy,S1 in front of the

shock wave, from SB to S, .*WhereSB
...

is either zero or corresponds to

a phasebo@ary (Seca 7)s”

.(8) With increasing entropy of the rpaterialbehind the shock

wave tb specific volume V~ decreases to a minimum,,V2 ~Binswhich is-.
ordinarily reached a~ temperatures of the order of 10,OOOO. Fo~,..
still higher temperatures, V2 increases again to ~ v, (Sec~.,5,8).
For some substances V2 mayhave several minima:and maxima, possibly

inc-ludingsome at lower temper.atuyes. . . . -
If the state behind the shock wave is gi~en .(V2,S2),then the

specific volum~ V ,of.t,@material in front of the wa,veincreases., ... -. 1
monotonically”ti$hclecr~asingentropy SI (Sec.,8).

...-,,-
(9) Ifcondition (III) as well as cond~~~ons (I) a~~ (11) ‘is“

satisfieuj the specific energy E2 and the pressure p2 of the material

behind the shock wave increase monotonicalfiywith the entropy S2 for

given VISSIO If the state behind the shock wav~, V2,S2, is given,

the specific ener~ in front, El, decreases monotonicallywith S1

even if condition (111) is not fulfilled- NO similar theorem holds

for the pressure p, in front. In any case, the energy and pressure

behind a shock wave are higher than the same quantities in front of

the wave (Sec. 8).

( 10) If conditions (1) and (11) are ful.filled, the velocity of

any shock wave vtithrespect to the material in front of it is always

greater than the velocity of sound in that material. For a given
,, ,, “
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state in frofitof the sh~ck,wavej VI,S1,,,t.h~rpis one.,andonly one
.

possible shock wave fo; every shock-wave ve+oc.it.~-ul~“eate~’t~ri the

velocity of sound# al’~::..Increasatigshock-~v~i y~loqit~- ,Ul, corresponds......b >.-- ,’ ,:
,,:$2 (s-eC’s9)* ,,.,,.-,to increasing entropy behind.&h& shock,wave

(11) The velocity ~ Qg the shock wav~ ~e~at$ve~~to,,the-~mate;i~l,,, :.,.
behind it is alfiays’.lesitilhantfi~sound ~@l:cit~,a2 i~that.’~terial..

If the state.behind.:th~.waveis given, therer.isone aqd.only,one’

possibleshock wiwe~for every velocity u2:betwpenf~2~’and’”acerta~...
mini.immvelocity u2B.““~If4the.velocityis,u2Bz:the ,stat~~qf.the w~~

rial M front”of’”thefiw~~eeithe~.lies on a p~,e.boundary o; *S zero
..

.... .. .
absolute t&mper’atur.e..”:Decreasingvelocity u

--..’.....-’.-..
~.c:?r~:spondsto,decreas’-.; ,-..

ing entro~’ ifi:’-frdht.of.theshock wave, S1 (Sec..9).. ,

(12) In a material satisfying conditiqn’s.(I).~d .,(11);a shock
. ...

wave will overtake any!wawss of infinitesimal qr finite.amplitudes

which precede it, and will be overtaken ~“ any wave following it.

(13) -If conditions (I) and (II) =Q .,satisfied,“no shock wave
.

can.start.frarnth~ @me point at the same,ttie.and.in the same direc-. ..., .’.
tion as any.other wave, whether of infinitesimalor of finite ampli-

tude (Sec. 10). No shock wave c~P split into any nmber o,fwaves go-
.. .

ing in the’same direction. ,.,
(14) fi a material fulfilling also condition (III), no one-dimen-:! . . .

sional shock wave can split,,in ~.way whatsoever (Sec. 11).— — — — -
: . . ..’ -;... . . “,. . . . .

..

.,.
-, ,... . , - ?.,

. . . . . .
.:”., ‘, . .. . .
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