~III. INVESTIGATION OF THE -THREE CONDITIONS

In this part of the paper we shall investigate the valldlty of
our three postulates

_(Ozp/cwz.)s >0, , (1)
V(p/E), >~ 2, - (II)
(ep/oV), <0, (111)

which we have used throughout in our theory of shock vaves (Part II).
Of these conditions only the' first two are needed in the general
proof. (up to Sec, 10) the last one is requlred only to _rove the
stability of shock Waves agalnst any klnd of splitting (Sec. 11),
Analysis shows that none of the three conditions is required by
any general thermodynamic or statistical argument because it can be
‘shown that for each one of the three conditions there exist. some sub-_f
stances for. which ths condltlon 1s v1olated at certaln temperatures

and densities.. ,Tperefore we can only ascertaln the range of valldlty
of. the conditiors- by 1nvest1gat1ng é~suffl;1ent nﬁmbéf of dlfferent
physical states. gbr all single-phase systems whlch we have 1nvest1—.
gated, all ‘three cqndltlons have been found valld by a wide margln.

Therefore we believe that they are valid for all 51nglc—phase systems
of any practical importance. R
The cases in which one" or more of the conditions are violated all
refer to phase transitions. Therefore we had to exclude phase trans-
itions in Part II of this paper. -n Secs., 1L and 17 we shall discuss
briefly some of the phenomena which might occur if phase transitions

could take place in shock waves., ~

12, The condition (azp/avz)s >0 for single-phase systems

The simplest equation of state is that of a perfect gas with con-

stant spec1f1c heat. Then the adiabatics are given by

p = constant-V"> , (6L)
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‘where 7 is the ratio of the specific heats, ¢ /bv, and the constant
depends only on the entropy. Therefore
/52 '
. —-E> = (7 + 1)-2-, (6La)
N 5 v

which is certainly positive,
For most other cases it is convenient to express the adiabatic

‘derivative in terms of isothermal derivatives, For any functlon £(v,1),
we have

(25/0V)
£ T
(59, - (&), - ~ S, 6F), - 65)
Here we may use the thermoaynamic rélations | .
98 ~. | ; :- .
kﬂ ) (éf V ' ' (66)
' 25Y Sy Co T
(sf) T (66a)

where Cy is the specific heat at constant volume, a p051t1ve deflnlte
quantity, Applying Eq, (65) to f = p, we find

" 2 . - DO
—B>s ) (g%)T ) S_V (‘%%)x’i S ©n

Since (ap/aV) is negative, we find that the adiabatic modulus of come

presslon, —Gﬂp/DV)S, is always greater than the 1sothermal one..Another
dlfferentiatlon glves ‘ o

. 2 2, Q
A 2T T. z ) -
j} ”*P' 5% 'ava)T Y (a ) ‘a?v"
s "Gy 5 (67a)
T ap [ Bp 1 (Y, T o\ 2y arap 2 .
°a;%§[—-%§vo --;(s%) *g(s% E“"&"'ﬁ%;‘gw

On the right—hand side. D and r  9re ~memees a1
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T; hence abe 1mplles that V is kept constnat, and vice versa. Equa-
tion (673) may be sllghtly 81mp11f1ed by means of the thermodynamic

relation
’ 2 oc :
.""T"aEa V.." (67o)

Then Eq. (67a) becomes

- 2 o3 .
J = 2Pp_3T9 2p 3T T />
(’V'B' "”vf c. 5¥OV<)T+ 2( \ W*"z‘("%) Q"F‘E‘T“) - (68)
Vg 0 v cy cy v o

N\

From Eq. (68) we can easily get an idea about_the terms which mlght
theoretlcally cause (2 p/avz) to be negatlve. Beglnnlng w1th the last
term of Eq. (68), we have the follow1ng possibilities:

(a). The specific heat may increase rapidly with the temperature,
Then, if 9p/dT > 0, which is the- ‘normal behavior, the last term of Eq.
(68) is negative. It will be large in absolute value if, simultaneous—
ly with a large dc /BT we have a small spe01f1c heat Cye This points
to low temperatures as the place where (a p/av ) might be most likely
to become negative. The following cases of rapldly increasing specific
heat will be discussed below: D '

(1) Ideal gases with internal degrses of freedon,
such as vibration or electronic excitation.

(i1) Dissociating, but otherwase -ideal, gases (ioni-
zatlon is a special case: of ‘dissociation),

o (dii) Solids-atgvery low temperature, .

In cases (i) -and*¢ii), the Pirst term in Eq'.(68) can be shown to be '

_ numerlcally larger than the last one, because Cy is never very small
,(ateleastezk for monatomlc, g fOF‘ﬁIatomlc gases, 3nd so forth). In

.....

case (iii), the term" w1th'bc /BV is positive and numerlcally greater
than the last term,

(Q). The spe01flc heat may decrease with 1ncre351ng volume, that

is, dec /éV <ZO ThlS case is reallzed for a number of llqulds. dow=

ever, from the emplrlcal data it can easilv he chamm +had b 4 ic. o
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term in Eq. (68) is usually less than one percent of the first.

(c)e ~'The pressure may decrease with the témperature (ap/BT.<:0);
Whlle the modulus of compression, -3p/dV; increases with 7 (that is,

d pﬁbVJT < 0)e Then the second term in Eq. (68) is negative, Water
below 4° is an example, but the second term is again less than one
percent of the first, | X ) )

(d)« The derivative at constant temperature, z?pﬁavz, may be
negativé.. This Imppens at and near the critical temperature for vol-
umes greater than the critical volume. In this case, the:(positive)
second term of Eq. (68) more than qutwelighs the first. :

In all cases mentioned, .the resultlng value of (O p/r)Ve)S is p051-
tive. e shall now dlscuss the various cases in prder, )

(g) Specific heat’ 1ncreasing rapidly with temperature, — (i)JEQEEl

gas with variable specific heat, For an ideal gas, we- have

4
-

VSR, T T Tee)
- L R' Lot I
- . . 3 = v >0 MR “oo. . . : (693)
~ de 2 R
Voo 9% - . C
aT&Bag ,~7 1 oo (69b)
. -a—v'-’\ c)T?‘ - o -
[sece Fa. (67, ..,Equationxéa') béac'n_iéé"“i“f' s
T 2 o odeg ]
la Ry R v
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The critical term is obviously the last one. To get an estimate of
its value we consider a vibration of the molecules of frequency V= k&/h.

Then the specific heat is

cV Y- 8/T

T - A1) ST (702)

where £R is the specific heat without the vibration (/3 = 2,5 for
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llnear,‘p = 3 for nonlinear molecules)., The blghest value of'the last -
tern in Eq. (70) is obtained for' TﬂH @; at this temperature the con-
tribution of the oscillation. to cV is about 0.3R, while the derivative,
Tde,/dT, is -about 0,65R, Then, if /s = 2.5, the last term in Eq. (70)
becomes -0,030, as against 3.2 for the first term, . The-negative term
is thus only about one percent of the positive one. '

It mnght be expected that the negative term in Eq. (70) will: be- ’
come greater if the molecule has several modes of vibration, because ';

each mode will contribute to Tdcv/d'l‘. However, this effect will be -

largely . offset by the increase of Cy 1tse1f. For example, for a f
molecule hav1ng as many as 100 dlfferent mo&es of vibration, all of

‘the, _Same frequency~ and having‘p a 3, the maximum of the negative term

- v

occurs at T % 0.129 and has ‘a value of about 0.11, as“against 2. 7 for
the positive term. Only for a molecule w1th moré"t'haﬁ'TD6 (2) vibra—‘"
tional modes all of the same frequency, -would the derivative (o p/&VZ)S
become negative at certain (low) temperatures. From this we see

that, while it is in principle possible.that postulate (I) is vio-

lated, this will never occur as the result of the excitation of vibra-
tions for any real gas. It can easily be seen that the same holds
for the excitation of the highé?"elebtfdnic states,

(ii) Dissociation of molecules. In this case, the exact cal-

culation would becomre exceedingly complicated.;uwe_qan,fhoweve;,zggt ;
a rather good approximation by remembering that the significant term
in Eq. (68) 1s the last ane and that this term is greatest when the
spec1flc heat rises steeply but is not yet 1tself vef;niarge. This
will occur when the degree of dissociation, «, is still very low; in
fact, from our calculation we:shall find that a value of « less than
1-percent.:is most favorables -Then we can neglect o compared with 1,
but we must, of course, not neglect T 3a/dT, ‘
When a molecule dissociates into n+ 1 atoms, the degree of dis-

sociation is given by

x - K(T) = A~ /RT (71)
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where K is the diesociation constaut, Q the ‘dissociation energy per
g-am, 'R the gas.constant per gram of the molecular gas, and A” is the
ratio of the "a priori probabilities“ of dissociated and molecular
statee and depends only elightly on temperature. The numerical value

of AV is of the ‘order af 10h 6 108 for ordinary deneities and tem-

. .—u...
. §
kS B v.

peratures. -
' | With our assumption, ®<<1, we have

n

o« = AN e, (71a)
with
n Q =~
LT (T1b)
We shall ;ieed the der~iv'ativee
Do’ n .
ST (72)
J
: -5% =.q %_.,- (72a)

Because of the large v&lue of the "a Erlori probability" AV, we get

appreciable dissociation already for qulte large values of ge If we

require (n+ 1) # 0,001 to 0,01 (see below) and have AV = 1OLl to 108,
thep_' '

& =10 t0 303 (72b)
The pressure is given by

p = 3,—T (1:*'no/.) . (73)

The derivatives required in Eq. (68) are, neglecting ne but keeping

ane,
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The specific heat may be written

ol
°y " Sy,0.* 2 5%

where cV,O

PIERTIN A

(1e)

(L)

is the value of the specific heat if the degree of disso-

ciation does not change, that is, essentially the Cy of the molecule,

Putting .

- marke e o T -

LT

°v,0 = PR

(Tha)

wher'e [_?.is a slowly changing functibn 6f “the temperature, and using

Eq. (71b), we find

Therefore
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=R I_g-r/f' ¢+ (n+ )2 ¢®(q- 2)J

1)

(752)

(75b)

Insertlng the results of the previous paragraph into Eq, (68),

we obtain, term by term,
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Ve /. . v L £+ (n+ 1)qm [[, + (n+ 1)q 04]

(1+nqu)3 - (1# ngu) Td.../.3 + ( +1) 2( - 2)0{.]. (76)
’ [p + (n+ ‘l)qzc;_]2 [s+ (n+ 1)q2&.]3[ T " 1 ]j

Only the last term is negaﬁiVe, as expected, We know already‘fhat the
term TdfB /dT is harmless [see case (i)). The other negative term is
largest for large g and relatively small . It can easily Be shown

that the ‘maximum of thls term, for fixed a [>> 1] and varlable & is 1

obtained for

Then nqa-<‘ﬂ/2q,‘and,the last term ‘of Eq. (76) becomes. approximately

- T ()
= ,32 |

The highest value which g can take [see Eq. (72b)] is about 30, and
this can occur only for large 1, in which case g is at least 3, and
in most. cases very much higher. .For q =30, # = 3, we obtain for the
last term of Eq. (76), S I
'Lést'termﬁﬁg% é%fi =0s5L, 7 (76e) "

- . »

while the positive terms become 2.9, ‘The negative térm is thus less

than one fifth of the positive ones, although we have made conditions

most favorable for a large negative term. The value of (n+ 1)o be-
comes, with our assumptions, about 0.0017, Jjustifying the neglections

made (nw <«1) and also the value of e used in computing Eq. (72b).
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The case of the ionizationiof monatomic gases may seem of interest
because for these 3 is _only 1.5, However, at the same time the a
priori weight A is reduced because of the - .small mass of the electron.
Values of AV between 1 and TOh are usual, which, with (n+ 1)x = 0.01,
gives g between 5 and 14, In the most favorable case this gives
about 1.for’ the negative term in Eq.-(76) against about U for the posi-
tive terms, ; .

As in the case of an ideal gas with variable A, there exists
the p0351b111ty of negative (& p/sz)S, but- only for ‘extreme dilution .
of the gas. If we con51der the forization of a monatomic gas-which |
is most favorable for negatlvé (a p/éVz)S, and if ﬁx a 10h for .1 atm

pressure, we expect AV = 10™ for a pressure of 10 atmospheres (! )

. For this value of AV, and for (n+ 1)e = 10 h, we get q = 120, which-

would make the negative term 1n Eq. (76) Just greater than the posi-
tive ones., Thus we see again that (o pﬁﬂVz)s > 0 is not required on
statistical grounds but is very well fulfllled for all experimentally
obtainable pressures, ¢

(iii) Solids at very low temperatures. ‘The speciflc heat is given

S

in good approximatien by- Debyels relatlon

ey = a(1/e)’ (77)
where 9 is the Debyettémperature and a a.constant, We have thus a
rapid increase of eV7With téﬁpeiatufe, and at the same time we.can
make Cy itself as small as we like, in contrast to the twp previous .
cases where Cy was at least equal to. the specific heat of translation
and rotation. It sdems "thercfore ‘that the negative term w1th.9cv/b
can be made as large as we like compared with the first term in Eq. (68).
HSweGer, as we'shall sec;- %he term with acv/ov saves the inequality
(d° p/r)V‘)~ >0, el : ’

We have from Eq. (77)

RN

<=

;ﬁz =3 ; . (77a)
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hence the three last terms in Eqe (68) become

2 0
'c% (2 <3; ;V -2 i%) (770)

where we have;used.the“thermodynémic.felation,Eq. (66)e At zero tem~ . .-
perature, the-entropy is.zero for any V; further, we have from Eq. (77)

for a given V, .. . ;‘ , L i *

t T R
. c - . S : : .
' 1 - T g
S = /; T dT = -3-CV o ‘ (770)

Inserting into Eq. (77b), the term in parentheses becomes

{3"’*?2"’7 vll—g{?é’ | (78)

which is certainly positive, because the Debye température depends on
the strength of the elastic forces and therefore ircreases upon come
pression. )

(b) Specific heat decrea81ng w1th 1ncrea51ng ‘volume, liquids

and solids at ordinary temperature. —- Here we may use the Tait equa-

tion of state

(V.- V)/K (Vv -V, )/K
p = B(T) | © -e ° T } , (79) .

» R .
. S

where K is a certain constant of the dimension of a volume, usually
about one~tenth of\the volume of the substance, VT is the volume at
temperature T and’ zero pressure, and Vv a suitably -chosen standard
volume (constant). The function B is a function of temperaturc, -in
all cases the author is aware of, it increases with T; for water it
has a value of about 3000 bars (1 bar = 1 kg/cm ¢ 1 atm).

We have then

22 (V.- v)/x .
—£ = % e >0 , (79a)
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2 (V.- V) /k
4o} 1 dB (o} .
VT "~ mre <0. (79b)

For all substances with positive expansion coefficient 3p/ST is posi-
tive, therefore thq“firsﬁ two terms in Eq. (68) are positive. Usually
6cv/bT is very small so that the last term in parentheses' in Eq, (68)
is also positive. There remains the term with ocy/OV. This is
"generally assumed to be zero"é/ but may actually be slightly nega-
tive, as forz/ CClb andé/ C6H6. For CCl)_1 at 45°C and 1 atm pressure,

we have

acv/av = 9.5 bar/deg,

B = 7h0.bars,
| dB/dT % 2.2 bar/deg,
K = 0,0600 cm3/gm,

B L VN ———

D + JE/AV 23250 bars, . ... i —

Cy= 0,21 cal/gm-deg = 8,9 bar;cmB/gm-deg.

Therefore
e R RIS N I R P
sr o SBie 206,000 . bar (gn/ond)?
, 2. .- L S
. 3T a a (. . . s . . 32 . .
~EREE oo e e,
' 23c, - '
3T /9p\ v 2
;2—-(%¥ﬁ 57 = -12,000 bar (gm/me) ,
v S

2/ R, ¥. Gibson and D, K. Loeffler, Journ. Am. Chem, Soc, 63, 898,

é'/ R.F. Gihenn arAd D T Teeeor. . v R o
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The negative term-is thus:séén to be only about one-seventeenth of the

leading (first) term. It is also clear from the hature of the. quantity
acv/BV thét'it’cénnot be .very large because otherwise Sy would reaéh '
exceedingly high values for hlgh compr3351on.

-

(c) Pressure decreasing with temperature, water belew h C, «Bef
Yow L° C, water has,a_negax;yehap/BT. The expansion coefficient at'_ |
OOC, isz/ T C Crrlil el ,?

(QU/T) = = 3.1 x 1075 cnd/gmedeg. | (79c)

3

1

The.characteristic pressure B, extrapolated from kef, 5, is about
2750 bars, while K= 0,137 ch /gm. Therefore

(‘%@)V ’,‘g(%}f)p = ~0,62 bar/deg. (794)

Further, dB/dT % 10 bar/deg (likewise extrapolated), so that [see
Eq. (79b)] ‘ S

azp/aTJV'E -~ T0 baregm/bm3-deg.

The second term in Eq. (68) becomes then, with cy = 42 bar~cm3/gm’deg,

2
T
- %. %%’é%%% = - 850 bar (gm/bm3)2,

while the first term

__22 = =5 = 1L5000 bar (gm/cm’)”.
P

VE L RS e

(Q._) Derivative at constant temperature, azp/avg, negative;

8/

neighbqrhood of the critical point=. On the critical isotherm we

have (<)p/()V)T = 0 at the critical volume and (Op/bva.< 0 for larger

Z/*Dorsc-:»y, Properties of ordinary water substance (Reinhold, 19LO),
pe 231,

§/ I am indebted to Dr, G, Placzek for the calculations reported
in this section.
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volumes, so that (azp/BVZ)T is negative at volumes somewhat above the
critical one. This contribution may be compensated by the second
term of Eq. (68):. (c)p/c)T)V is positive for a gas, and O p/c)Vc)T is
negative, that is, the modulus of compression, - op/OV, increases .
with’ T. ' S L : oo .

The calculation is simplest’' if we use reduced temperatures,.: . -

volumes,;and pressures, namely, _ I
o ‘e . N V T Lo o
c_......'., e b o v a - . ! 2’ ) TY oy | - _E . 80
T T RAm g, < >

PO ) . R
LI SN F I R - e . P
> - A LA

where VE, Tc,and p, are the critical volume, temperature, and pre§§ure,‘

According to Van der Waals' equation,
p V. =3 RT | (80a)
Fe e ‘8 c? o '

and the equation itself has the form

< . ; :a',_s_."_T ..é_ T l
. V - =. VvV
3
The derivatives are »* ' & "% 2
L2\ T
fom\-.._16 T. .18 ?
i oV v kv - -3-/) v
a8 1 ..
e e o0
v V = '3- :

r 2 ) . dc
(2¥ﬁ>."= 0.5 thercfore [see Eq. {67b)] §5¥ =0, (B80e)

(8of)



; perature,. and to be given by P

- ture for w = ).‘;/3~’-i_352
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,The f::.rst two terms n the square bracketa.nse from (a p/<3V2)T 3 the

L
$

th;:rd .berm 1n Eq. (81) represents the second term in Eq. (68), and

: thé last one ¢omes from the fourth term in Eq. (68). The third

term :m Eq, (68) _is 'zero because of the special form;of the Van der T
Waa.ls‘ equa'blon [see Eq. (80e)] the last term in Eq, (é3) has been
assumed to be zero, that 1é "c is assumed ‘bo ‘be 1ndependent of tem~

) B e

) m»"':'»br :‘ ,‘.. c;:f'ﬂR v’ '. . ) .Sszi%“

. . L.l A Tt
g . . . . . e e s - . M L R
~

| The :z.sothermal der:.vatn.ve, {3 p/éV?')T, -that is, the first two
terms in Eq. (81), is negative .if ‘

. . R A f 3- . ; Lt
N L aia 27 ("" )" - 81
7 —T. ) ..-' ' . . p ? *‘r - . ( ?
The maxmum of 7, ? is obtalned .t‘or v = h/3 and has the value
| | _ 2187 _ |
y R ’l'e max —-Eg 1.0678 s (81(3) .

~For a given ¥, the substance is a gas only if 7 is greater than a

certain 'Z'g while for lower temperature we would obtain an-unstablé

states, If the Van der Waals! equation is used, ‘' the minimum ‘tempera-—

%, (1/3) = 0.9838 . (819

For- actual gases, ?g is even higher than the value given by Van der

2 From Kuenen, austandsgleichung, 1907, pe 9L (accordine +o =

FalhTAa AT T ol Y v
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Of course (Ozp/évz)s will also have discontinuities at the two
boundaries, and we wish to find out the sign of these dlscontlnultles.
In the pure phase 1, we have. from Eq. (67)

-~

(‘% | ‘(av)

2
E s
S, 51 V, 1

In the two-phase region, p is a function of T only and is independent
of Vo Therefore

(& . (d)" (822)
\¢r SM CVIVI \ ’

v
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where the subscript M refers to the mixture of the two phases,
and total derivatives, like dp/dT, refer to the phase boundary, The .

Clapeyron equation gives

gEaégasz_'s‘l :
dT AV V2 - V1 ’

(82b)

where AS and AV are the dlfferences of entropy and voluue between the
two phases at the temperature T

The quantity most difficult to calculate is S If the volume of
themixture is to be kept constant while the temperatu.a2 changes, the
concentration of the two phases must change. If X is the concentration

of phase 2, the volume of the mixture is
V=xv, + (1 =)V, , . (83)

where Vé and V1 are the volumes of the pure phases. Therefore, if

the volume is to remain constant with chahge of temperature, we have

av
1 dav 4 dx . -
= trg Tgreveo . : (83a)

Since we want to coq51der a state near the phase bound ry, X is neg-

ligible. Then the spe01flc heat of the mlxture becomes
dE . . dE,. w AV

v

= OE\ = 1 ’.‘dX‘ - - PaES DA 'AE,'.‘_ 1:_: LT .
v T <aT T T bk - iV ar ° (8L)

The derivative.d§1/df;cap4be expreséed asAfoilowsz

I dv
1 _ (9E oE 1
I = (;— +-(§rJT : 7;ﬁ:_-q; T Cmc (Bha)

$4

Using the thermodynamic relations

DE\ _ofopy _ 8l
Kav),r T(0T>V p (BLb)



and

TAS = AE + pa¥ | (8lc)

and remembering Eq. (82b), Eq. (BL) becomes

: vy s i
“w = °v,1 *T I [aT)V . dT] y - (8L
Now; in analogy to Eq. (Bha) we have
d > 1 . . ‘

therefore Eq. (84d) reduces to
- : ’ . +dv
_ 2 1 - |
| °w = %y,1 =T (5@1, ' ('d_T‘> . (85)

Since (6p/aV) is always negative, Eq. (85) shows that the spe01f1c
heat of the mlxture ‘near the. boundary, - is- always ‘Breater than that
of the adjacent pure phase.

Now let us caleculate the dlfference between the values of (ap/bV)
for pure phase and mixture, or rather this- dlfference multlnlled by

[(w) ( V/S ’] ~ (g%)z_ [(%“E’) T1-E%-1(%¥)\271j} B,r T(%%)Tq(%gzj
‘ " R (85a)
0

The quantity in the square bracket can be transformed, using Eq. (8le)s

2 ok -
&), , - (ss,m <P @) IR Nyes

v, 1
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The second term in Eq. (85b) cancels the next to the last term in
Eq. (85a2)." The remaining terms in Eqs. (85a) and (85b) give a full
square, and we obtaln . s

(2) (9_2) AN 1,.+-..?_-.f22)» , fZlJz S (86)
~ [
5,17 \Vpq oy [ oy 8Ty, W

Since Gap/BV) is always negatlve, and cv , and‘é{]M always positive,
the rlght-hand side of Eq. (86) is always positive; therefore

N/ T S

We have derived the result [Eq. (862a)] without any assumption re-
garding the relative magnitudes of V1 and V2, or S1 and o,¢ The re-
sult will therefore be valld for both boundarles of .the two-phase

region,

We find therefore:

At the boundarv between a two—phase reglon (1n the D, Jé

'dlagram) and a 51ng1e-phase reglon the adlabatlc COn=—
pression modulus, - @ap/BV)S, will alwavo be greater
for the 51ng1e anse thdn for the mlxture of the two

Ehases.
We are interested in the sign of the second derivation, (o p/sz)

- or, more correctly,.in; the 51gn of the dlscontlnulty of (ap/aV)S when
-we-fOIJQW'the'adlabatlc'in thé.directlon of .’ 1ncrea31ng v6Time V.  This =
- sign Will depend on the direttion in which the adiabatic crosses the
;boundary between the th-phase and one~phase reglons', If adiabatic
52 sron w1ll.lead tq. the phase tran31tlon then (ap/BV)s will, in-~..:
crease: dlscontlnuously as the’ aalabatlc enters the two-phase reglon°
Then (02 /sz)S is positive (infinite). at the boundary, and postu-

late (I)eremains true, " Ir, however, adiabatic compression leads from

the pure phase to the mlxture of two phases, ()p/&V) will decrease

dlscontlnuously"at the bpundary if-we proceed in the dlr ction of in-

.
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creasing volume, Then (a p/OVz)s is negative at the boundary, and
condition (I) is violated. C ) . |
The transition between a condensed phase and the vapor has gen-
erally the property that adlabatic expansion leads to the phase trans-
ition, both if we start from the condensed phase and if we'gtart from
‘the vapor, ,The former is rather obvious since adiabatic expansion of
a liquid or solid at low pressure is almost identical with isothermal
expansion, and will therefore ultimately lead to evaporatlon. The
iother .part of the statement is a well-known experlmental fact: adia-
batlc expan31on of nearly saturated vapor leads to cordensation (prin-
ciple of cloud chamber), Therefore, condition (I) is generally satis-

fied for evaporatlon and condensation,
On the other hand, for transitions between two condensed phases ~-
liquid and solid, br two -solid modlflcations —- the adiabatics usually

run similar to the isothermals; that is, proceedlng in the direction
of 1ncreasing volume, the adiabatics start in the denser phase, then
pass into the two-phase region, and finally into the less dense phase,
At the boundary of the less-dense phase, (Op/aV) will therefore de-~
crease discontinuously and condition (I) will be violated,

Generally, the direction of tue cr0531ng of the boundary can be
deduced from thermodynamic quantities. Let us consider the boundary
of the phese of smaller density, Under which conditions is postulate
(I) still satisfied at this boundary; that is, when do the adiabatics
go with 1ncrea51ng volume from the dilute phase into the two-phase

region? The condition for this is (see Fig, L)

.. av
oV 1

S e 8
(C)P>D 1 dp ’ (87

the total derivative referring, as usual, to the equation of the phase

boundary, Ve have

by N VY 7oT |
(55) . (ap\T o (??F)p,1 (35:)5’1 , (37a)
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The adiabatic goes with increaging volume from the mixture to the pure phas
turning the diagram-through 902 it can be seen that the slope -V/3p is gre
the adiabatic than ‘for the phase bouhdaries. -
The adiabatic goes with incréasing volume from the pure phase to the mixtur
slope -&V/op is smaller for the adiabatic than for the phase boundary.

_
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ooav, . . i S
If the | iexpansion coefficient of the dilute phase, (av/aT)p is posi-
t4ive — ‘and we,do not know any exception from this -—~ Eq. (87) is .
equivalent to '

~

T\ ° 4T C
(__ > S, (88)
9p/g,1 " P’ -

that is;‘thé'temperathre must rise mofe fapidiijfd¥ 3diaba£ic compres-
sion than for compre531on along the phase boundary. For -dT/dp ws have
the Clapeyron equation (82b), whereas

C e . - -

| 25/0p) S
aT> ( T,1 _ T av)
a L (88a)
(‘P 5,1 (‘33;5”;,,1 °p, 1 (?f.p,.1 ’

using a well-known thermodynamic relation. Then Eq. (88) becomes

oV v ;
@) e e
. » '
which is the desired condition, S S

If phase 1 obeys the ideal gas equation, we have

‘V - R e
T.(‘E‘T‘)p VR, (8%a)

so that Eq, (89) reduces to

AS > Cp,1 (89b)
This is ordinarily fulfilled w1th a wide margin; for example, for water
at 100° C, a5 =6.05 joule/gm~deg (Dorsey, Y Pe 616) vhile c = 2
joule/gm~deg (Dorsey.- ! p. 10i). For solids =nd liquids. on th, ath.r
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hand, (JV/ST)  is ususlly quite small and Eq. (89) will,

in general,

not be fulfilled, For example, for the transition from water to ice

VI-we have at 3(_)°C (d4ta i‘x-om:Dorsey-Z/ )

P = 104250 atm, bersey,
(%;j. = 3.3 x 107k cm3/gm-deg, [Dorsey,
/p R
Cy = LOT2(1 = 0,210) = 3,22 joule/gm-deg .
at 4O° and 10,250 atm, [Dorsey,
n 'a: ‘:‘ C. Lo s . K ‘ . -. ""..

.. %341 joule/gn-deg at 30% © .. . ..

. 2 o e,k
—c, m-T (2P aV) '
cp Sy T (JVTL)T" ’
- %% s 1,0 X'JOS bar-gm/cm3.,ﬂ [Dorsey,
Therefore 3 7'. T ‘ Lo
ey = Cy = 3.3 bar-cyé/gm-deg ?‘0.3%:g§g;e/gm—deg,
cp = 3.l joule/gm-deg, e e s e
A5 = 1,09 joule/gm-deg, . [Dorsey,
i .o ' "“ ‘
AV = 0.0663 cmB/gm. - [Dorsey,

AInseLtingftheseﬂvaluesrintorEqa'(89)~we'get

e~ -t
~

\ -
T %% = 0,100 sz/gm,

AV 3L x 0,0663

o T e = 0,21 cmB/gm.

c

po'h67]

p. 216]

pe 617]

jo 613]
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Condition (I) is therefore not .fulfilled at the boundary between water
and water + ice VI, - ' ‘ o o

On the boundary of the denser phase, the condition for the valid-
ity of condition (I) is reversed, as can easily be seen. We have then
instead of Eq. (89)

VY N ,
T (5T> <-¢ p,dense &5 ° e : (50)
" "p,dense

For evaporation, this is practically alwayS'fulfllled because AV is
almost equal to the volume of the vapor and therefore very large com-
pared with the volume of the liquid or solid, which in turn is large
compared with TaV/9T. On the other hend, for treﬁeitions between con-
densed phases Eq., (50) is not always valid; in particular, if AV/as
happens to be small or negative for a transformation, so that Eq. (89)
is fulfilled, Eq. (90) will in general not. be'fulfilied. This is the
case, for example, for the transition from ice I to water for which
aV/65 is negative: then condition (I) breaks.down at the boundarv of
the denser phase, that is, of the water,.

With possibly a few exceptions, we can therefore state'

Condition (E) will break down for transitions between two

condensed phases at one of the two -boundaries between pure

phase and mixture. Condition (I) will remain valid for

evaporation and condensation. v,

- .

1. Consequences of the breakdown of condition (I) at phase boradaries

If we compress a liquid adiabatically, we finally come to the
phase boundary with the*solld. As we have shown in the last section,
the derivative (a p/aV ) will in general be negatlve (infinite). at
one of the boundaries between pure phase and phase mixture, For
water, this occurs at ‘the boundary between liquid water and the mlx—.
ture of water and 1ce VI. Therefire, if the phase transition is not
forbidden by its long rulaxatlon time, all proofs given in Part II

will break down.
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It is eisy to show that the negative discontinuity of (ap/aV)
will actually have serious consequences for the theory of shock waves.
Consider an initial state V1,5 close to the phase boundary, but still
on the side of liquid water. Then we may neglect the change of Qﬂp/aV)
from V1,o1 to the phase boundary; moreover, the shock curve will cross

the phase boundary at an entropy DC very close to 91, and at a cer-

tain volume Vo < Vye For the state Ves Sps We have very nearly
A c™ P11
R e L ) )

c " SL°
. " Y R oy e L '-.. A

where the subscript L refers to the liquid. If we +then go a.small -

distance into the two-phase region, we have from Eq,..(31) . -

C S - Ap - Av(ap/av)SM b N
G e T e e L L (ona)

P

where the index M refers to the mixture. .Neglecting ' AV in the de- .
nominator and inserting Eq. (91), we find

‘dS _bp o
dv 2
,..;ﬁd, ) 7, \ T/, (2)
How we know from Eq. (863) that ‘m“:“n;;ll;_; o :
e e (dp/dV) L

Cp/avg, < - e f922)

since (épﬁDV)S.is negative. Therefore Eq, (92) is positive; tnat is,

the entropy will decrease with further;compressioh in contrast to

our theorems in Secs, 3, L, and 7, Since we have assumed that Sﬂ.ls
very close to 31, the entropy will. soon fall below 3... Therefore the

ccapressiontl shock waves will become unstable,

c*
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The solution of.this diffieculty seems to be that there will be

two shock waves proceeding in the same direction. In the space be-

tween the two shock waves the state of the material is given by VC’SC’
that is, the state lies just on the phase boundary. Behind the sec-
ond shock wave the material is a mixture of liquid and solid. (There
may, of course, :be some question whether such a mixture can occur be-
hind a shock wave.) ' The second shock ‘wave moves approximately with
the velocity of sound characteristic of the mixture and will there-
fore remain behind the first wave which moves nedrly with the veloc-
ity of sound of the pure liquide. This result is 'in striking contrast
to that found in Sec. 10 for a material obeying congditibn (I): we
proved~that for such a'material there can always be only one shock
wave starting from a'given point in a given direction.

As the difference between the specific volumes in front of the
first wave (V1) and behind the second one (Vz) %ncreases, the ve}g;ity
u' of the second wave will increase, following. the ordinary laws—
developed in Part II, with the state V SC playing the role of "ini-
tial state." The ve1001ty u of the flrst shock wave remains constant,
Ultimately, u! will become equal to u. Suppose this happens for '

V2 n VD’ P, = Pps then VD,pD are given by

P20 "P PB7P 2 o2 (93)
c Vo~V V.=V, C

(u' and u are velocities relative to the material between the shock

waves) o If the volume V2 is decreased below VD’ Ee'shall again get

one shock wave, with state 1 in front of and state 2 behind the shock

front.;;Tpe”spatewpD,VD Satisfying Eq. (93) may occur either in the
two-phase.xegion or.may lie already. in the pure dense phase (in our
case, ice VI), e e

¢« . T ®

For the two separate shock waves, the stability considerations

= - -y -

of Part II will all be valld because in the llquld and:in the mixe—

Tien P G

10/ .. .
10/ We have not proved that condition (I) is fulfilled in the

two-phase region, but, we believe this to be true.,
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ture séparately condition (I) is fulfilled. Likewise, the procfs of
stability will hold for the single wave occurring at pressures greater
than Pps in this case, the theorems may be proved by\starting from
state D and continuing alcng the shock curvwe to higher pressurces and
entropies., P - '

Thus far we have considered an initial state V1,81 very close 'to
the phase boundary. On the other hand, the shock curve may cross a
phase boundary at a density and entropy far above those of the initial
state. Then it may easily happen that the single shock wave will re-
main stable even if the state behind the shock wave lies beyond the
phase boundary., If ucé is the shock-wave velocity at the point C at
which the shock curve belonging to state 1 crosses the phase boundary,
then the condition for the single shock wave to remain stable is that

Uso be smaller than the sound velocity in the phase mixture; that is,

v <8, (2

[see also Egs. (31c) and (31d)}. Equation (94) may be fulfilled for

large 'shock waves because their velocity, with.respect to the medium

- € behind the ‘wave, is known to be comsiderably smaller (Sec.’'9) .than

the sound velocity in that medium; that is [see Eqs. (6) and (10)],

&,

Whether or not Eq.(94) is true for a given 1n1tlal state and a

pC b p1 -
—_——V1 — <‘< .4

(9La)

given phase boundary must be investigated in each partlcular case. If
the 1n1t1a1 state is water at 1 atm and the phase boundary to ice VI
is crossed at 30°C , We have (see p. 62) p = 10,250; further (Dorsey,l/
ps L67) Vy = 0.8055, U, = 1,00, p, = O; therefore

Pc =Py 3 3,
V1 = = 52,600 atm-cm”/gm = 53,400 bar-cm”/gm. (9Lb)

5
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The data for the calculation of (ap/r)V')su are mostly given on page 62
of this report; we have [See Eqs. (B2a), (82b), (8he), and (8% 1

d .
= 2 = 16} bar/deg,

R T

dV1 ' 3 3 ’ .o
3 = 12 %1077 cn’/gm-deg, {Dorsey, p. L67]
Cyq = 31 bar-cmB/gm-deg; ' [This reporé, p-621

oy = 31 + 303 x (1.2 x 10)2 x 10°

2 75 bar-cmB/gm-deg_. [This report, PP«57, 6.2 ]
—(%8) =-%%2 x:16h2 = 108,000 barqcmB/gm. {This report, Eq. (825)] (9ke)
sM | \

This is greater than Eq. (9Lb) so that Eq. (94) is fulfilled. There—
fore, even if the transformation of water to ice VI could take place
in shock waves, the theorems of Part II would remain valid, (This holds
if the iﬁitial state is at 1 atm pressure; if we started from a high
pressure, let us say 8,000 atm, we should obtain two shock waves as
described above,)

We thus get the following picture. If the initial state V1’p1
lies fairly close to a phase boundary, there will be a region of
"final" pressures P, between Pc and pDi[see Eq. (93)], for which two
shock waves exist behind one another. In this whole region, the
velocity of the first wave remains constant, equal to that for Py = Pge
For greater final pressure (p2 > pD) there will be a single shock wave
whose velocity increases with increasing Poe If we now move the- inje
tial state farther away from the phase boundary, the,region,fpom,pc
to Pp will become smaller and will finally disappear.

This result may be applicable to extremely large shock waves in

L/

solids, As we have pointed out,? a solid under compression and ex—

— &

-
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tremely high temperature may not go over smoothly into the quasi-gas=

eous state; in other words, there may be no critical point for a solid.

However, the phase transition, if any, will occur at such a high pres-
sure that the single shock wave will almost certainly rémain stable, -
The double shock wave will never occur for gases, for we have
shown in Sec. 13 that a vapor just on the verge of condensation will
be removed from the phase boundary by adiabatic compression. There-
fore a gas under any amount of adiabatic compression will always re-
main a gas, and this will be 2 fortiori true under shock compression,

which leads to an even highef temperature. Therefore, for gases,
whether ideal or not, the results of Part Il are valid,

We shall now turn to rarefaction waves. Consider as initial
state V1,S1,a state on the high-density side of a phase boundary at
which condition (I) breaks down, so that adiabatic expansion leads
from V1,S1 across the boundarye (This can occur only when the initial
state is a mixture of two condensed phases.) If we follow the shock
- curve to larger volumes, we can see from an argument exactly similar
to E&E. (91) to (92a), that the entropy will first decrease to the
phase boundary and then increase, We thus obtain the possibility of

stable rarefaction waves of finite amplitude. In fact, if we tried

to work with infinitesimal rarefaction waves, those corresponding to
the change from the initizl state to the phase boundary would travel
with the sound velocity of the mixture, while those corresponding to
the further expansion of the pure phase would travel with the greater
sound velocity of the pure phase which leads to a contradiction.
Thus we not only can but actually must have a rarefaction shock wave.

With increasing expansion, we shall come to a point V. PR at
which the velocity of sound in the pure phase has dropped to a value
equal to that of the rarefaction shock wave. For any expansion be-
yond this point, wc shill get 2 rarefaction shock wave in which the
substance expands to the volume VE’ followed by a train of infini-
tesimalwaves of further rarefaction.

As the initizl state VT’p1 is removed from the phase boundary,
the point VE’pE will move alsoj; we have not investigated in which

direction., If the initial state is in the pure dense phase, there

- - -

1
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must still be a rargfaction shock wave since the rarefaction still
cannot be accompliéhed by infinitesimal waves, because the sound veloc-
ity in the pure dilute phase is greater-than in the phase mixture.
It does not seem obvious which paﬁ;.of the rarefaction is accomplished
by a shock wave énd which part by inf;nitesima; waves, It seems
reasonably certain that there will be infinitesimal waves in which the
material is expanded down to the boundary of the dense phase; then
possibly a shock wave will follow, which carries the material over the
mixed region and into the dilute phase, and this may be followed by
another train of infinitesimal waves, But it may also be that the .
shock wave "starts" with a state in the region of mixed phases. In
any case,, these, rarefaction shock waves can. start only from initial
states-of'%ery high pressure and can occuwr at all ondy if the phase
transformation is rapid enough to take place'in>thé shock wave,

-The- strange phenomenon of raréfaction shock waves will not.occur

for gases, nor for liquids or solids initially at, atmospheric or other

Jow pressures. By adiabatic expansion we obtaln in each case a mix-

ture of gas and condenged phase,. ard we- have shewn—ln Sec, 13 thot

" condition (I) is valid for the transition into thls mixed phase, both

from the condensed _and from the gaseous state.

T

156 Condltlon (II) VQ}p/am)V > =2

Conditlon (I1) is automatlcally fulfllled for all substances with
a positive expansion coefflclent these 1nclude gases as well as prac-
tically all liquids and solids., ‘e need only investigate the case of N
negatlve expansion coefflclsnt of which water is the most notable ex—-.
ample. '

(i) Liquid water, — The greatest negative expansTon Coéfficient

is reached for 0°C and 1 atm pressure. (At lowér temperatures water
is stable only under higher pressures, for which the expansion coef-
ficient becomes positive.) The valuc of ap/BT for 0°C was given in
Eq. (79d) and is 0,62 bar/deg. With e, = L2 bdr-cmB/gm-deg, and

cm /gm, we get
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as compared with the limit 'of -2 set by condition-(EI);- S s
(b) Ice at extremelzﬁlow temperatures, — A _relatively large
.negatlve expansion coefficient was found by Jakob and Erk for.ice at
extremely low temperatures (Dorsey,?/ pe 473). At -250°G, the linear.
expansion coefficient is =6.1 x 10+ If we assume the cubic expan-

sion coefficient to be three times as large, we have

! (av -6 ’ (953)

R =7 ST) s =1843 x 10
. ° p

where v [a 1.,09] is the specific volume at 0°C. The compressibility
has not been measured at these low temperatures, Near the melting
point, the. experimental results differ widely (Dorsey,l/ pe L71)e-
Bridgman -finds 37[-~-7(1/Vb)(3V/ap)T]nto'decrease from 33 x 10‘6 at -
0°C to 19 x 10’§;at -309tand.18.x:1o’6;at r?SO, while Richards and
Speyers find 7 as low: as:;12 xfﬂo.é at:=7°, If we assume the last=mche -
tioned figure for =250°C, we. get - ‘ '

-6 e :
) 18,3 x 10 : .
_¥ = - ~ = 1,5 bar/deg. (95b)

" The spe01flc heat, accordlng o’ Pollltzer (see Dorsey, /p. h79) 1s‘
1428 bar-cmB/gm—deg, therefore

-

N

vgf = -1.07 » 1..5r = =125, : :<9505. B

which is of the same erder of magnitude, but smaller in absolute value;
than the value permltted by condition (II).

(c) Melting ice, == The largest contraction w1th 1ncre351ng energy

is found for melting ice I. From the Clzpeyron bQthlon we have

d AS
T -av e - (96)

where p is the melting pressure at temperature T. The entropy change

from ice I to water is (Dorsey,Z/ pe 617)
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12,2 bar-cma/gm—deg at 0°C,

>
Q)
']

= 9,55 bar~cm3/gmpdeg at -20°C,
The change of volume is
‘ | 3 o
~ oV = —-0,0900 cm”’/gm at 0°C,

el L = =0,1313 cm3/gm at ~ZOOC.,

Accordingly, '
.ap . o ' . ‘ . b » .Q 1
4 * =136 bar/deg at G°C, l
Y (96a)
= =73 bar/deg at -20°C. J

These vilues are very much greater than 9p/oT. for wutpr at O?Q, which
we found to be -0,62 bar/deg [Eq. (84d)]. In fact if the specific
heat Cy of the mixture of water and ice were betwcen the spe01f1c heats
of water (L2 bﬁr-cmB/deg) and of ice (20 bar-cm /deg) condltlon (II)
‘would be violated by a large amount, . ‘

. 4ctually, we know from Eq.‘(85) that Cy for the mixtufe ié f%rger
than for the pure phases, It can easily be shown that cVM is smallest
when the mixture contains mostly ice; first, because the cy of pure
ice is smaller than that of pure water and, second, beccause the volume-

change dV1/dT, is also smaller, lie have

3 o
Y jec 21415 bar-cm”/deg at 0°C,

]

,19%59,bar-cm3/deg~at4=2090;
-3 3 ‘ o)
dV1/dT ® 3.5 x 10 cm /gm-deg at O C‘

0.8 x 1073 cm3/gm-deg at -20°C;

44
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~4-Jp/OV % | x 10h bar--gm/cm3 at OOC,

® 10,5 x 10h bar-gm/cm3 at -20°C,
Therefore from Eq. (85),

Cyy ~21-15+273 x) x 108 (3.5 x 1073)2 = 156bar-cm3/aeg at 0°C, (96b)

.

= 19,59 + 253 x 10.5 x 10% x (0.8 x 1673)% = 36,5 bar—cn’ /deg at -2600.(960)
Therefore
R S R TN
and
v (g-g) - - %7—3- = =2.12 at -20°C. | (96e)
v . . .

The last-mcntloncd vqlue is just slightly below the limit set by con-
dition (II), the dlffercnce being within the probable error of measure—
ment. of dV /dT It scems therefore that meltlng ice forms an exception
to condltlon (II), but that this condltlon is fulfllled for® pure ‘water

as well as for pure ice, and probably for most other substances.

16. Condition (LII): (op/eV)g <O .

Condition (III) is obviously fulfilled for ideal gases-because for -
~these gases constant energy is equivalent to. constant tgmperature,
and the isothermal vilue of Op/oV must. always Be negafive;

The condition is fulfilled a fortiori for practically all sub-
stances for which the internal energy increase; with isothermal ex—

pansion, We have ‘ g . E

(aE/éV)T

kﬂ%, N \av (§¥>v P o (97)

v
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73 =

If (Op/aT)‘">'Or¥Wﬁich is true.for .almost. all. substances (gxcept water
below L° C), the last ‘term is negatlve for-p051t1ve (3E/3V)T. There-

fore

< <0 - (97a)
v E . .a‘v.).T " I R
if o -
. C)E\ . L e TN L, LY .

- -~

A great many substances fulfill the condition (aE/aV)T > O

Somé of the most important are the follow1ng. o DTl

(a) Dlssoclatlng gases..- The dissociation increases with the

volume at constant’ temperature, and the dissociation inereases the
internal energy. This case is the most 1mportant of all because con-
dition (III) is required (Secs 8) to prove that the energy has no
extremum ih' the’ part of the shock curve beyond the minimum-of the
volume Vé, that’ is, at’ very high temperatures at which dissociation
progresses rapidly. - '
(b) Any fairly diluté, imperfédt-gas..-- . The attractive forces

(Van der Waals' forces) must be tiker into account while thé repulsive
forcés are unimportant. Since the attractive forces decréase with:

- -y . . ~ ! .
increasing volume, the energy must increase with V. An example is--

provided by a gas obeying Van der Waals' equation, namely =% =
(:-T ( a (V b) - (98)
\p ¥ ;g) - = .

From the thermodynamic relation

38), -+ 63), oo
y T '
we find
OE a
== >0. (98b)
7, |



- 7 -

(c) Most solids and liquids at ordinary temperatures, —— From

measurements such as those of Gibson and Loeffler,éié?'aE/av turns
out to be positive for practically all liquids at ordinary temperatures,
The only notable exception is water below L4°C [see Sec. 16(c)). The
argument given in the literature for the "normal" behavior is the same
as that given in Sec. 16(b) for gases, namely.that the most important
volume~dependent contribution to E arises from attractive forces,
which give a positive aE/QV. This argument may be expected to hold
foé”é%lids as well as for liquids, .

Other substances still fulfill condition (III) although (aE/&V)T
is negative.. Examples followe - :y, i oo D e

(d) Water below L°C. =— The (e)p/a'l‘)V at zero.pressure is negatlve

so that Eq.- (98a) .yields a- negatlve (aE/av)T:;lgoﬂngg,_fiooe at the
same time Op/dT:is pegative, the last term of Eqe - (97) remains: nega—
tive.: It.is true that:there is a region of pregsures for, which JE/OV -
is still negative.while 2p/dT is already positiveq[pocausg of the -
term :Btianq\u(9Ba)],;but;in this region the last term in-Eq. (97)-15.
entirely. negligible:compared with the first, namely about 1:.part in
10,000, - .

(e) Solids:at:low.temperature. =~ The; last term in Eq, (97) may

- berexpected to be: large and: positive -- that,as, unfavorable,for, re—
lation: (III) -= if cvgis:small, Op/OT positive, and p large [see Eq..
(982)]. All these conditions are fulfilled for solids at low tem— ... :
peratures The value of ¢y is given by Eq. (77), namely -

r

oy =a(r/e), . M)

and goes to zero for zero temperature. Fortunately, ap/bT also goes

to zero; we have from Eqs. (77c) and (77)

“““ SEDEE-T o
a_as_1°v= 1 31588
FFoIW 3y v (99)

This expression is positive because the Debye temperature decreases‘
with increasing volume. OSince @ is proportional to the frequency of
the vibrations of the crystal lattice, therefore approximately



- 78 o

P = bV"’/.Ba. F L ) '. N S .(-?93.)

where b is a constant dependmg on the- crygtal structure but. not .on v,

while a is the velocity of sound namely

\B

a2”‘ = "Vz(f)p/r)V)_T - (99b)
Therefore s
) 105 0.2  @eA¥y o S
3 3V Zap75V$T

Inserting Eqs. (99), (98a), and (99c) into Eq. (97) and neglectlng
T(op/ST) against P we obtain i

r 2
| ; p(Fp/ave)y | 5
( ) “(ov) i""? porvalbl-£ XN g (*00)
The last term is certalnly negative (and small) In order that con-
dltlon (III) be fulfllled it is therefore sufflclent that the brack-

et be pOSlthG. This is almost certainly the case because sollds

very nearly obey the Tait equation. Choosing Vo =V T’ Eq. (79) be-

comes ' | | |
" V. - V)/K | - :
p =B [e( o _ 1] s , ' (100a)
R A S e
(58), = e , " (100b)
(4] T |
2N, (V=) /K
(“)—5 s (B © . (000)
oV T |
Therefore
%o jap\?
PR ™ (aV> (100d)
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and the expression iﬂ the squa#e_braéket in Eq. (100) is positive.
(£). Phase transitions. — This is the only case for which we have
found condition (III)Jnot always.satisfiéd. In the two-phase region,
p ‘depends on T only, that is, Gap/aV)T =0, The Specific heat, Oys
is always positive. Therefore condition (III), Eq. (97), reduces to

(%%)V (%—‘Ev)T> 0 . | (101)

Using Eq. (98a), the Clapeyron:equation (82b), and (8ic), this gives

AS AS AEAS ‘
N (T, AV —-p) 5 >0 s (lOla)
SN oAV R A B B R L e
or simply R L R R
AEAS >0 L -, S (102)

P, e
By . Ty -
B

The condition is therefore that the energy'and the éntrtpy éhould
change in the same direction. This is. fulfilled for practically all
phase transitions, but there are a few exceptlons, such as the trans—
formations ice I to ice IT, or, ice III to ice v, (Dorsey,7/ Do . 617). .
Summarlzlng,.we find that condition (III) like the ofh@f two L
conditions, seems to be satisfied for practically all homogeneousiﬁ'
(one-phase) systems but to brggk”dowy for a few phase transformations,

The condition seems to bée more generally- fulfilled than condition (I).

17. Discussion of a hvpothetical case: A material which satisfies
-~ conditions (I) and (II) but not. (ILI) |

We have shown in Sec. 16 that probably all materials satisfying
condition (I) will also satisfy (III). However, since no general proof
could be given, it nqy still be worthwhlle to dlscuss the consequences
of a vioclation of condition (III) in a material which satisfies (I) and
(I1).

Condition (III) was used in Scc. 8 to show that the energy in-

creases monotonically with the entropy. - Gondition (III) is only =2
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.sufficient not a necesaary; condition for this; in order that the
energy have a maximum (ap/ev)E st not only be positive but-also’
must satisfy Eq. (h3). If Eq. (h3) i8 fulfilled for some point on:
the shock curve, ‘the energy must have a maxlmnm at this point, mast
then decrease, have a minimnm ‘and finally increase dgain with S at"
extremely hlgh temperatures.‘ Qf ccurse, g.may have séveral maxima.
and minima, - ' oo
| As we have shown in connectlon with Eq., (LT7), ‘the pressure will
increase with the entropy at least as long as the energy does. Only

if E2 decreases sufficiently rapldly with increasing’ ~ntropy and.in-
creasing Vé, will : : oo
2(E - B ) ‘
Pp =By * 'v;——vz—‘ (W7)

reach a maximum and thén'decrease.' To find the condition for & maxi-
mum of Pps. We proceed in a manner similar to that used in Eq. L2),

only considering E.and V as independent variables. Then we have
1 1 :
( (—) dv = - E(p?_ + p1)dv + 72'(V1 - Vz)dp . . (103)
p - .

In order that dp/dV = 0, we must have
OF 1 - |
(gv =-3 (P2 + P1) . (103a)

‘o . :

The left~hand side can be transformed, using the thermodynamic rela-
tions given by Eqs.(11) and (12),

: CEN fos\ . @p/oW)g
G0), - 6B, GRB)  =e -meey Co

so that condition (103a) reduces to

aof2R) = o(2R) (10L)
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There is no general thermodynamical or staéistical reason why Eq. (10L)
should not be fulfilled for some substance. If it is fulfilled, P, '
will have a maximum If this is the case, the extrema of the various
variablea of state must follcw each other, in the order of inoreasing
entropy, like this~ first a minimum of the volume, then a maximum of
the energy, then a maximm of the pressure, folldwed by a minimum of
the pressure, a minimum of'the;energy, and finally a moximum of the.
volume. \ . ‘ PR | | '

We shall now 1nvest1gate the consequences of the ma¥ima and minima
of energy and pressure for the stablllty of shock waves. We have shown
in Sec. 11 that a -shock wave cannot split 1nto “two waves goirig in

‘opposite directioms.if,. for ell values Py < ph{ we hate
(Ph - P1)(V1 - h) >'(P2 - P1)(V1 - Vé)f* L nJ5£}952

[reverse of Eq. (62)]. We showed 1n Sec. J1. that condition (105) is
certalnly fulfilled if the erergy increases monotonlcally with increas-
ing pressure and:entropy. We showed further that a maximum of the
energy on the shogck -curve . is a necessary but not a ‘sufPicient- condi«
tlon for a. splitting of. shgck waves. ' R S o

However, it can easily be seen that a maxlmum-of ‘the ppessuré. on
‘£he shock curve is & suf£1c1ent (not necessary) condition for 1nsta-
bility of shock waves, If a shock wave w1th “1n1t1a1" state 1 and-
"final" state 4 is to split, Eq. (57) must be fulfllled. Toe show that

this is possible, we compare the expressions = - L oy
5 =3 -
' ¥,L ” Ve, 3 (106)
~and. »: - -

D= (ugq = ug ) = (g =y p) o T (H06a)

SRR
e e

The first of these is'very easy to calculate if -the pressures p)_l and
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P3 =P, differ -only slightly, for then wave C is a small chock wave
and can be treated as almost édiabatic (see Sec, 3); we have [see

Egs. (58), (10)] : -

V, =V v
] LT3 1 gy RV
® %, 7 ¥,3 " v, cu” 7, (‘Jg)s(% - pjla), = a—h'(Pg - p)e (107)

This is always negative if ph > Ps.
On the other hand, we have from Egs. (67), (61a):

D a \/(ph - ) (V, - v,) J(pz ,i-j(v1 - 7,). (108)

If - condition (105) is fu;filled, D will be positive and therefore

' | D>s ., (108a)
On the other hand, if P), and p, are néar the maximum of ps we have
ph-p1 z'pz—-pv so that
v Py =Py

) T a5 e
.2 V1 - Vh

D = --;—(V (108b)

L

This is negative (because, just before the maximum of By X increases
with increasing E) and ID! can be made as large as we wish in com—
parison with &8l [Eq, (107)] Therefore, near the pressure max3imum,

we have

D<é . o ~. (108¢)

Therefcre ther: must be a certain intermediate value of P), (betweern
the energy maximum and the pressure maximum) for which D = &, so
that Eq. (57) is fulfilled. Shock waves in which the pressure be-—
hind the wave lies within a certain range, close to the pressure
maximum, can split into two waves going in opposite directions, as

- described in the beginning of Sec. 11,
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Let us investigate the way in which the split occurs, as a func-
tion of ph' We shall assume that the pressure does not vary much over
the region in which a Split may occur. Then Eq, (107) for $ will be
sufficieritly accurate, while D can be obtained by expanding Eq. (108):

- (Vz - h) (p)-l - p1) s (p2 - ph) (V1 - Vh)
| - 2lug g mug )

. (i09)

Condition (57) requires & = D; that is,

Py =P ) P f-::_.'; = AT -
0 - B, " TV FAm G 7 - Tp= W) = el W), (1092)
2 T Y T AN, 0,172,

s - N ..
tog r ety PP
Y

where ¢ 'is a constant, depending very slightly on the state g. Graph-
ﬂically, we can interpret Eq. (109a) as follows (see Fige 5)s On the
one hand, we draw the shoek curve which gives.p, as"a (complicated) .
function of Vé On the other hand we consider the- stralght line Eqe.
(109a) whose slope, ¢, can be calculated from known quantltles. The
| 1ntersectlons of the two curves will give the~pe551ble solutions Pos
V2 for given ph,V (see Fig. 5)o If P has a maximum and a minimua,
then for states ph near these extrema, there will be three 1ntersecf1“
tions. of the straight line with the p(V) curve, 1nc1ud1ng the inter~
section of ph' % for values of p)_L far from the extrema, there w111
be only one intersection. In the latter case, shock waves corres—
pond;ng.to ph’ L cagnot splite.

It is easy to see that three intersections may occur without p
having a maximum and minimum if only at some point of the shock

curve
dp/dV <c , - | - €109b)

where dp/dV is taken along the'sﬁoék curve, and ¢ is the quantity -~
defined in Eq. (109a). B |
If there are three interscctions, a split is possible as far as

“the kincmatics of the shock waves is concerned., Now, for thermo—~



Pressure p

Specific volume yj

Fig. 5. Splitting of shock waves. — , the shock curve in a p,V-diagram; the curve has a
maximum and a minimum. =--=---, the straight line p - p, = c(V - V4) defined by Eq. (109a). - The
iantersections A and B rcpresent unstable shock waves; C, a stable shock wave.

_.’[‘r‘_)’ .-
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dynamic reasons, the split will occur in such a way that the entropy
at the instaht immediatgly after the split is as large as possible,
This requires obviously the selection of the highest of the three inter-
sections: for then the entropy of state 2 is greater than for either
of the other two intersections, and, moreover, state 2 propagates
| most rapidly into medium 1 (see Sec. 9), In addition, state 3, have
lng the highest pressure compatlble with the kinematic conditions,
.w1ll also have a higher entropy than h and will spread into h. There=-
..fore, if there should be a shock wave corresponding to one of the
Qlower intersections (A and B) in Fig, 5, it would split into one shock
fwave correspondlng to the highest’ 1ntersectlon (C) and another small
shock wave going in the opposite direction., The shock wave would thus
flncrease 1n amplitude rather than decrease by its "split," The newly
establlshed shock wave of higher entropy change and velocity would
then be stable.

L SETY R .
-




IV, CONCLUSION

18, Relation to the theory of Duhem

The theory of shock waves 1n a medium w1th a general equation of
state has been dlscussed previously by Duhem. 1/ The principal differ-~
ence between his treatment and the present one is that he did not make
any assumptlons about the ~equation of state, while we have made sev-
eral -- namely, the conditions (I), (I1), (III), and the facts about
the equation of state at high temperatures (Sec. 5). Duhem was there-
fore not able to come to ‘such general conclusions as we did,

Duhem dld recognize the importance of condition (I). He possessed
the main results of Sec, 3 of this paperQ .namely that small but finite
compre551ona1 waves correspond to an increase of entropy if 9 p/cBV2 > 0,
while finite rarefaction waves would be stable if J p/c)V2 < 0 (ppe
177-178 of his paper). He also found that for a2p/6V2 > 0, the veloc-
ity of smail“compreseion'waves, with respect to the.lcss dense mater—
ial, is g{éater than the ve1001ty of sound; while relative to ‘the den-
ser matcrlal the shock wave moves more slowly- than sound [Eq (15)
of this paper, p. "178 of Duhem's paper] However, he could clalm the
valldlty of his statements only for a rather restricted range of den=-
51t1es behind the shock wave, without being able to state the condi-
tions of validity in physical ‘terms.

Moreover, Duhem found already that the -entropy change for small
shock waves is proportional to a higher power of the density change
than the first [his Eq. (19)] but he did not find the third-power law
[Eqe (13) of our paper]. Generzlly speaking, his paper contains part
of the résults of our Secs 3, but none of the latcr sections. In part-
1cular, he did not discuss the stability problems. (aecs. 10 and 11) and

he c0u1d not obtain the general results of Secs. L, 7, and 9.

11/»P. Duhem, Zeits. fur Physik. Chemie 69, 169 (1909). I am
indebted tJd Professor Jo Von Neumann for drawing my attention to this
paper.
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19. Summary
We have shown in this paper: .
(1) Géneral theorems can be derivéd about shock waves. in .ady: *

substance whose ‘equation 6f/staté satisfies the three conditions: .

- . (i ] ‘,.;‘ ¢ 2 .- R S . . :
. oo ; | oo o=k *(ﬁ)-;g).'} Oy o . (@9) :
.~ . "'-’ - — ” - “‘v‘_‘ f ,‘?;'.‘ o a ' R S . o c L. ';:é\ . L " . s, - . e .

S . R
SErL .‘“-.‘ V(E%) p A R AT (1)

(%%) €00 Foew. . (III)
. 7. Lo v e e e B el e s _

(2) The three condltlons are satlsfled for a1l 51ngle-phase
systems whlch we have 1nvest1gated (Secs. 12 15, 76) namely, ideal
gases w1th constant or varlable spe01f1c heat, gases obeylng Van der
Waals' equatlon, dlssoc1at1ng gases, llqulds and’ sollds at normal
temperatures,‘and sollds at extremely low temperatures. 'Condition (1)
is v1olated for most phase changes (Sec. 13). Phase changes can, how=—
ever,, be excluded from con51derat10n because they requlre too long a
time to occur in shock wives (Sec. 1) : o ’

- (3) If condltlon (I) is satlsfled for 4 substance, then all com-
pre551ve waves of small but flnlte amplltude are connectcd with an
increase of entropy (oec. 3). "' o :

‘l' (h) The 1ncrease of entropy for smalI volume change' AV is pro-
portlonal to AV [Eq. (13)] | ' b o R
“i (5) If, 1n addltlon to condltlon (D), aIso condltlon (II) is
fulfilled —= that 1s, v (ap/BE) 2 everywhere —= theén all compres-—
sive waves of whatever amplltude are connected with an increase of

zjentropy and are therefore thermodynamically stable (Sec. L). Rere~

PR,

factlon waves of finite amplltude are unstable.and dlssolve lntd-

. "

trains of 1nf1n1te51ma1 waves.
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(6) If condition (I) is not satisfied, as at the boundary of
phases, rarefaction waves of‘finite amplitude;may be stable_(Sec. 1hi
provided the phase“trehSitieh can occur, and compression waves may,
 under certain cirduueiancee:;consist of two shock waves of different
velocities, onehtravelihg behind the other, . . '

(7) If conditions (I) and (II) are satisfied, and if the state
of the material in front of‘the‘shqck wave is given (V1,S1), there Is-
one and only one solution for any value of the entropy 82 behind the
shoek wave, between S, and infinity (Sec. 7). If the state of the
material behind the shock wave is given (VZ,SZ),Athere is one and”

only one- solution fqr anywvalue of the entropy S, in front of the

1 o

shock wave, from SB to S .where SB is either zero or corresponds to

a phase boundary (Sec.. 7). “ o
(8) With increasing entropy of the materlal behind the shock

wave the spec1flc volume V2 decreases to a minimum, V2 , Which is

ordinarily reached at temperatures of the order of 10, OOén. Fan-
still higher temperatures V2 increases again to H V) (Secs. 5,8).
For some substances V2 may- have several minima.and maxima, possibly
incduding some at lower temperatures, .

If the state behind the shock wave is given (VZ,S ), then the
spe01f1c volume V1 of the material in front of the wave increases

(9) Ifcondition (III) as &éii as condltlons (I) and (II) is
satisfied, the specific energy E2 and the pressure Py of the material
behind the shock wave increase monotonically with the entropy 52 for
19 If the state behind the shock wave, V ,52,
the specific energy in front, E1, decreases monotonically with S1

even if condition (III) is not fulfilled, No similar theorem holds

given V1,S is given,

for the pressure P, in front, In any case, the energy and pressure
behind a shock wave are higher than the same quantities in front of
the wave (Sec. 8).

(10) If conditions (I) and (II) are fulfilled' the velocity of

any shock wave with respect to the material in front of it is always

greater than the v31001ty of sound in that material. For a given
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state in front of the shock wave, V S’, there 1s one. and only one
possible shock wave for every shock—wave veloclty uy greater than the

- velocity of sound, a Incr3651ng shock-wave-veloq;ty u, oo;;esponds

to increasing entrop; behmnd +the shock ‘wave,. S (Sec, 9)."“ )

(11) The veloc1ty u, aof the shock wave relative to the materlal
behind it is always 1ess than the sound velocity 2y in that materIal.
If the state: bchlnd the wave 18 glven, there is one and only one
possible- shock waveﬁfor every ve1001ty U, .between a and a certaln ‘
minimum veloc1ty u2B T If, the. velocity is Uopgs: the state of the mate- '
rial in front of‘the wave elther lles on a phase. boundary or has zero
absolute temperature. Decrea51ng ve1001ty Uy corresponds to decreas-
ing entropy ifi"front of.the shock wave, S, (Sec.. 9)..

(12) In a material satlsfylng condltlons (I) and (II), a shock
wave will overtake any waves, of infinitesimal or flnlte amplltude,
~which precode it, and will be overtaken by any wave follow1ng 1t.

(13) -If condltlons (I) and-(II) are satisfied, no shock wave
can-start-from thée Same point at the same time.and 1n the same direc-
tion as any.other wave, whether of infinitesimal or of finlte ampli-~
tude (Sec. 10)s No shock wave can split into any number of waves go-
ing in the same direction. ‘ :

(1h) In a material fulfllllng also condltlon (III), no one-dlmen—

sional shock wave can Apllt in any way whatsoever (Sec. 11).




	111. INVESTIGATION OF THE THREE CONDITIONS
	IV. CONCLUSION

