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I’reface

This dissertation presents a computational and experirnentid study of

feed-out, a hydrodynamic phenomenon that is important to inertial confinement

fusion capsule implosions. The computational work was conducted at Los Ala-

mos National Laboratory (LANL), in Los Alamos, New Mexico, with experiments

performed at the NOVA laser facility located at the Lawrence Liverrnore National

Laboratory in Livermore, California.

I was responsible for designing the experiments and the computational

investigation of the phenomenon. Fielding the experiments was the responsibility

of Robert Chrien, a staff saentist at LANL. I assisted Chrien during all but three of

the shots, performing tasks such as rnetrologizing the targets, taking part in diag-

nostic alignment, and adjusting crystal angles in the spectrometers. Experimental

questions involving code predictions, such as the X-ray camera timings, were

decided by both Chrien and myself Chrien analyzed the data and arranged for

target fabrication, a service provided by the laboratory.

The first chapter of the dissertation provides an introduction. to inertial

fusion and an overview of the campaign. Chapter two is a review of relevant the-

ories from the literature, while chapter three presents a more detailed account of

the experimental procedure than found in chapter one. A discussion of computa-

tional considerations and the code used is found in chapter four.

Chapters two, three, and four are important. Science uses an iterative
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process of theory and experiment to converge on the solution to a physical ques-

tion. Theory provides physical understanding and may be used to predict the out-

come of an experiment. Experiment is used to help confirm theoretical

predictions. If the two answers disagree, it does not necessarily mean that theory

is incorrect. Even if theory and experiment do agree, they could both be incorrect

for different reasons. The rigor of the experimental and theoretical procedures is

just as significant as agreement or disagreement between their respective results.

When faced with a discrepancy between the two, the saentist must understand

the limitations of each to resolve the problem. For example, could there have been

a consistent machining error during target fabrication, or were the opaaty tables

used in the calculation less than optimal?

Computational and experimental results are discussed in chapter five.

Details describing individual shots are found in the appendix including laser

energies and diagnostic settings. The appendix also contains lessons learned

while fielding the shots, such as which filter worked best with the X-ray cameras.

The terms “package, “ “foil,” and “target” are frequently encountered in

this work. “Package” and “foil” both refer to the planar slab of material placed on

the side of the hohlraum, which was the subject of the hydrodynamic experi-

ments. The target is collectively the package, hohlraum, backlighter, radiation

shields, and alignment wire, all of which were placed in the laser target chamber

and were the “target” at which the laser was fired.

DPS
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THE FEED-OUT PROCESS:

RAYLEIGH-TA~OR AND RICHTMYER-MESHKOV

INSTABILITIES IN THIN, LASER-DRIVEN FOILS

by

D. Palmer Srnitherman

Abstract

Eight beams carrying a shaped pulse from the NOVA laser were

focused into a hohlraum with a total energy of about 25 kJ. A planar foil was

placed on the side of the hohlraurn with perturbations facing army from the hohl-

raurn. All perturbations were 4 ~m in amplitude and 50 pm in wavelength. Three

foils of pure aluminum were shot with thicknesses and pulse lengths respectively

of 86 ~m and 2.2 ns, 50 pm and 4.5 ns, and 35 pm with both 2.2 ns and 4.5 ns

pulses. Two composite foils constructed respectively of 32 and 84 ~m ahuninum

on the ablative side and 10 ~m beryllium on the cold surface were also shot using

the 2.2 m pulse. X-ray framing cameras recorded perturbation growth using both

face- and side-on radiography.

The LASNEX code was used to model the experiments. A shlock wave

interacted with the perturbation on the cold surface generating growth from a

Richtmyer-Meshkov instability and a strong acoustic mode. The cold smface per-
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turbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differ-

ential acceleration and interface coupling, where it grew. A density jump did not

appear to have a large effect on feed-out from interface coupling. The Rayleigh-

Taylor instability’s vortex pairs overtook and reversed the direction of flow of the

Ric&myer-Meshkov vortices, resulting in the foil moving from a sinuous to a

bubble and spike configuration. The Rayleigh-Taylor instability may have acted

as an ablative instability on the hot surface, and as a classical instability on the

cold surface, on which grew second and third order harmonics.



1. Introduction

1.1 Inertial Confinement Fusion (ICF)

Inertial confinement fusion (ICF) is a process by which a small sphere

of hydrogen, the capsule, is imploded using either a laser or particle beam [Dud-

erstadt]. The hydrogen reacts to form nuclides with a lower total potential energy,

releasing energy in the process. The hydrogen is usually a 1:1 mixture of deute-

rium and tritiurn (DT) because of the higher cross section of this reaction com-

pared to other fusion reactions. The DT reaction is

D + T+ ct(3.5MeV) + n(14.lMeV).

Fusion cross sections are orders of magnitude smaller than their ura-

nium fission counterparts, but reaction rates are proportional to the density of

each ion species being burned and roughly scale to the fourth power of tempera-

ture. The ICF approach is to confine the capsule with its own inertia for a very

short time, 100’s of picosecond, but produce extremely high reaction rates with

high densities and temperatures on the orders of 1($ -104 times solid-state density

and 10 keV respectively.

Historically there have been three motivations for the study of ICF.

They are commercial energy production, nuclear weapons physics, and pure sci-

entific research. In the pursuit of each of these goals, ICF possesses advantages

and disadvantages over the alternatives.

ICF offers the possibility of a more environmentally benign commercial
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energy source than light water reactors or coal-fired plants. It would produce

much less radioactive waste than conventional fission reactors, and no green-

house gases. However, the storage of large amounts of tritiurn on site could repre-

sent an airborne radiation hazard to the local populace. ICF technology would

have to advance greatly at high initial investment, before an ICF power station

could economically produce electricity.

The major competitor with fusion from a technical standpoint is a

breeder reactor design with an accompanying waste transmutation reactor to
L

destroy the long-lived daughter products and actinides. An equivalent alternative

to the breeder-transmutation scheme would be designing a burner, which is a

breeder that burns long-lived radioactive waste. Advanced breeders could be

much safer and generate less long-lived radioactive waste than conventional reac-

tors, but still more than ICF. The breeder would be much less expensive than ICF

to develop, and have a high probability of success, as it represents a perturbation

on presently operating technology. Present research focuses on DT fusion, but

with the limited supply of lithium for tritium breeding, DT power might only rep-

resent a few centuries of electricity at current demand rates. If the more difficult

DD fusion reaction could be harnessed, this achievement might represent thou-

sands of years of power, but so could the breeder if uranium was mined from sea-

water. ICF for energy production would require a shift in the present research

orientation from lasers to

from ICF looks doubtful.

the more efficient ion beams, but even so, electriaty
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With the present ban on nuclear weapons testing, ICF has taken on a

more critical role in the understanding of weapons physics. Weapons saence is

often stated as a significant reason for building the National Ignition Faality

(NIF), a 1.8 MJ ICF laser faality with which researchers hope to achieve ignition

in ICF capsules. The NIF would be one of several faalities on which weapons

physics experiments would be conducted. It appears significant t.ht some of

those designing weapons do not view the NIF and ignition as fundamental to

weapons physics, and suggest that c}ther experiments, which are more cost effec-

tive, should be considered in place of NE. Another difficulty facing the NIF is that

the exact purpose of ignition has not yet been clearly defined by the ICF commu-

nity.

The last motivation for ICF research is pure science. Experiments can be

designed to yield relevant data on astrophysical phenomena, such as instabilities

in supernova. Equations of state in extreme regions of parameter space can be

compared to theory and the interaction of strong radiation fields with matter

investigated.

The most important machine for ICF research is the driver. The ICF

driver provides the energy needed to compress the capsule and is usually a laser

or particle beam. The driver may either directly interact with the capsule, as in

direct drive, or with a metallic structure surrounding the capsule called a hohl-

raurn, as in indirect drive [Hogan], see Figure 1-1. The hohlraum converts the inci-

dent driver radiation into X-rays, which illuminate the capsule and compress it.
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Figure 1-1: Indirect and Direct Drive Inertial Fusion

Indirect Drive Direct Drive

Fuel capsule inside of hohlraum

‘ =Z5><

a cylinder with open ends Fuel capsule

Hohlraums may be cylindrical, tetrahedral, or of many other shapes

and are usually on order of one or two millimeters in size. Indirect drive produces

a much more uniform radiation field with

drive, thereby increasing capsule stability.

conversion of laser energy to X-rays.

lesser laser beam quality than direct

The penalty is an energy loss in the

As ICF drivers, ion beams and lasers have different advantages

[Hogan]. It is difficult to focus particle beams to the small size required to directly

drive an inertial fusion capsule, unlike a laser driver. Lasers only have effiaencies

of O.25-89’O,compared to the 20-30!%0for ion beams. Ion beams can also easily pro-

duce the megajoules of energy needed for ignition and burn, while it is difficult to

produce this much energy with a laser. Everything considered, the Department of

Energy’s Fusion Policy Advisory Committee judged heavy-ion accelerators to be

the leading candidate for a reactor driver. Currently however, ICF research is

using laser drivers because they are inexpensive compared to heavy ion facilities,

and offer the potential to learn a great deal about capsule physics in the shortest
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time. Some of this information would be transferable to an ICF ion faality.

The capsule is usually a sphere composed of two types of material, the

hydrogen fuel on the inside, and an ablator on the outside. During the implosion,

the pusher confines the fuel through inertia and converts the energy of the driver

into mechanical work on the fuel. The pusher in this sense can be both the ablator

as well as cold fuel adjacent to the ablator. The object is to first compress the cap-

sule along a low adiabat to high density, then produce a small hot region at the

center using converging shocks. The cold dense fuel adjacent to the “hot spot”

traps alpha particles from the fusion process. In this way, the nuclear burn propa-

gates through the capsule, and a much larger percentage of the energy needed to

heat the capsule

driver [Lindl].

to fusion temperatures comes from fusion itself instead of the

The direct drive ICF capsule can be divided into three prinal?al regions

[Duderstadt] as shown in Figure 1-Z!.The most exterior is the energy deposition

region, in which the laser light travels. The laser deposits energy here by inverse

bremsstrahlung and resonance absorption, which is the coupling between elec-

tron plasma waves and light. Stimulated Raman scattering and stimulated Bril-

louin scattering are laser-plasma interactions that partially reflect the laser energy,

and reduce absorption in this region,. The limit of the energy deposition region is

the critical density, where the plasma frequency becomes larger than the light fre-

quency. Driver radiation does not penetrate past this point.
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Figure 1-2 Direct Drive ICF Capsule

Ablated

Material

Critical
Density

~ , Region
Energy Conduction

--ww?-$
I

In the energy conduction region, material streams off the capsule sur-

face and into the energy deposition region. Energy is transported by radiation and

electron thermal conduction from the critical density to the ablation surface. Elec-

tron thermal conductivity is found to be much lower here than would normally

be expected. The generation of large local magnetic fields and two-stream insta-

bilities, generated from the heated electrons moving toward the capsule and the

return current, can significantly reduce heat conduction by reducing the electron

mobility.

The third region is composed of the core, or unablated DT material. By

dividing the fuel disassembly time by the burn rate one finds the condition for a

good burn in which a significant fraction of the fuel is consumed, tens of percent.
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For a good burn, the integral of the fuel density along a radial line emanating

from the center of the capsule to the :pusher/fuel interface must be greater than 1

g/cm2. Frequently this integral is temed “pr.” The range of a 3.5 MeV’ alpha is

about 0.5 g/cm2, so a pr greater than 1 g/cm3 also insures good fusion energy

deposition in the fuel. It is not advantageous to continue to increase pr without

limit. It takes greater drive energy to compress to a higher pr, but with diminish-

ing returns in the fraction of fuel burned. An optimal value for DT fusion is about

3 g/c~2, corresponding to roughly 30% fuel burn [Duderstadt].

For indirect drive, the physics of the laser interaction with the hohl-

raum is much the same as the energy conduction and absorption regions of a

direct drive capsule. The hohlraum generates X-rays in the 100-200 eV range,

which ablate the capsule, and interact directly with the surface throughout the

implosion.

Of great importance to a successful implosion is syrnmetry. The hydro-

dynamics of an ICF capsule system is analogous to a basketball sitting on the

point of a pencil. As long as the symmetry is perfect, the system is stable, but if

there are any perturbations from this ideal state, the system quickly becomes

unstable. Hydrodynamic instabilities cause any asymmetry on the capsule or in

the DT to grow, resulting in mixing of the hot and cold areas of the fuel, mixing of

the ablator and fuel, or complete disassembly of the capsule in extreme cases. In

any event, much less of the fuel burns than if the implosion were perfectly sym-

metric. There are always perturbaticmw from target fabrication on the surface of
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the ablator and on the inside surface of the frozen fuel layer, see Figuxe 1-3.

Present technology can limit these abnormalities to within a few micrometers in

amplitude, but they are still a threat to proper implosion symmetry. Asymmetries

in the radiation driving the capsule can create perturbations on the capsule sur-

face by pushing harder on one region than another, in both indirect and direct

drive. For example, if there is an imbalance in the power of the laser beams, the

implosion will not be symmetric. For direct drive, the field intensities of the laser

beams are variable in space and time, resulting in a “foot print” on the surface of
u

the capsule early in time.

The two most important instabilities are the Rayleigh-Taylor and

Richtmyer-Meshkov instabilities. After the drive pulse is turned on, the Rayleigh-

Taylor instability., caused by a low density fluid pushing on a higher density fluid,

results in growth of perturbations on the ablation surface. A shockwave begins to

move through the capsule. When it reaches the inside surface of the DT ice, it

interacts with the ice perturbations, generating a Richtrnyer-Meshkov instability.

As the ablator surface perturbations grow, they feed into the fuel, adding to the

growth from the Richtmyer-Meshkov instability. When the shock arrives at the

center of the capsule, it produces a low density, high temperature hot spot in the

fuel. This light material begins to push outward on the converging colder mate-

rial, eventually stagnating the compression. A Rayleigh-Taylor instability now

develops during this deceleration phase on the interface between the hot and cold

sections of the fuel, resulting in even greater internal perturbation growth. If the

●
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●

●
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Figure 1-3: Instability Time History in ICF Capsules.

Acceleration Phase - Early Time

Ablated material pushing denser,
DT vapor

solid material results in Rayleigh-

Taylor instability here.

The pusher/DT ice interface is
shock

stable. The denser fluid (the solid

r) is pushing the lighter DT.solid ablator ablato

A Shock waves interact witi

Deceleration

Phase - Late

Time

internal DT ice perturbations,

causing a Richtmyer-Mesh.kov

instability.

Perturbations continue to grow

on ablator surface.

Hot fuel now presses against

cold fuel as capsule expands.

,.:. -

iii!!. -
~q

Interface between them is~,,:*<.,. ,.. -‘.,.,,. ‘..:-+ Rayleigh-Taylor unstable....,.:,::>-<’,”.::.:,;
‘EkA%$%;i;;::. .:,”:’-:-~_.Tm%w..e: : .,>,,;,.-.----.: >,..w ,.’.::.. ,.

Central hot spot from ihock.
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internal perturbations are too large, the hot spot cools and the capsule does not

ignite. As of this writing, the ICF community has not yet achieved ignition in

large part because of these reasons.

1.2 Purpose and Approach of Dissertation

To determine the effect ice perturbations of various amplitudes have on

indirect drive NIF capsule performance, a robustness study was conducted by

Hoffman and Wilson [Krauser] using the two-dimensional radiation-hydrody-

namics code LASNEX, described in chapter 4. Hoffman calculated capsules with

plastic ablators, while Wilson’s capsules used beryllium. They both slowly

increased the amplitude of the internal perturbations while giving the exterior

perturbations and radiation drive perfect symmetry. As the amplitude increased,

the neutron yields decreased.

The calculations showed a dramatic difference between the yield vs.

roughness curves of the plastic and beryllium capsules. The plastic capsule fell to

a zero yield at a roughness of 2 ~m RMS, while the beryllium fell to a zero yield at

a roughness greater than 8 pm RMS. The beryllium design was obviously much

more resistant to perturbations on the ice than the plastic, but why?

Why beryllium was better was a difficult question to answer. Beryllium

and plastic have different material properties and different equations of state. In

addition, both materials were doped with high opaaty elements. The shells were

different masses. The plastic drive pulse was hotter than the beryllium pulse, but
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the beryllium pulse was a little longer. At the end of the radiation puke, the abla-

tion front was closer to the DT in the plastic design than in the beryllium. To com-

plicate matters further, Wilson assumed a Planckian drive spectrum for the

beryllium capsule, while Hoffman included the high energy gold M-band in the

spectrum for the plastic capsule calculations. The plastic capsule thus experienced

greater preheat than the beryllium. Despite all of these differences, one important

mechanism was suspected of creating the difference in the yield curves.

Sometime after perturbations begin to grow on the inside of the cap-

sule, they also appeared on the outside of the capsule and begin to increase in

amplitude. As they increased in amplitude on the ablation surface, they grew

back into the capsule, eventually reaching the interior with an amplitude much

larger than the original internal perturbations. The hydrodynamic communica-

tion of an interior perturbation to the exterior and its subsequent growth was

dubbed “feed-out.”

Figure 1-4 shows the sequence of events that occur in a planar slab dur-

ing the feed-out process and is representative of what would occur in an ICF cap-

sule with a smooth outer surface and. perturbed interior. After the drive is turned

on, the hohlraum radiation began to ablate the smooth side of the package, send-

ing a shock wave through the material and compressing the package. A Richt-

myer-Meshkov instability is createci by the shock when it interacts with the

perturbation on the back of the foil, causing the perturbations to phase-invert and

grow. An acoustic mode is established behind the cold surface as part of the Rich-
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tmyer-Meshkov flow field. A rarefaction wave, created by the reflection of the

shock off the back side, began moving toward the ablation surface and is the lead-

ing edge of the Richtmyer-Meshkov flow field. After the rtiefaction reaches the

hot side, the ablation surface is “aware” of the perturbations on the back. A strong

Rayleigh-Taylor instability located at the ablation surface then causes the pert-

Figure 1-4 Package Time Histories
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urbations on the hot side to grow. The Rayleigh-Taylor instability can only exist as

long as the drive is on, but the Richtrnyer-Meshkov instability is independent of

the drive. As long as the foil is relatively thick, the Richtmyer-Meshkov and Ray-

leigh-Taylor instabilities grow independently. After radiation had burned through

a significant amount of the foil, the two instabilities begin to interact. At this

point, the perturbations on the ablation surface have fed-back through the foil

and begin to perturb the cold surface.

At least two mechanisms are believed to seed the Rayleigh-Taylor insta-

bility on the ablation surface. The flow field of the Richtmyer-Meshkov instability

on the cold surface could carry the perturbation back to the ablation surface. This

mechanism is frequently referred to in this document as interface coupling. Alter-

nately, perturbation growth on the surface could be seeded by a differential accel-

eration effect. There is less mass under the valleys of the initial perturbations than

under the peaks. If the radiation drive was uniform, it would push the lower mass

regions faster than the higher mass regions, resulting in a perturbation, and

growth. Either or both could act as a seed for the Rayleigh-Taylor instability on

the ablation surface.

Feed-out was immediately recognized as a serious threat to ICF cap-

sules. The ablation surface is a highly unstable region. Perturbations grow rapidly

on the ablation surface and can easily grow large enough to prevent the capsule

from imploding properly. The exteric~r of the capsule maybe polished to a rough-

ness of about 10 nm RMS, but the interior of the DT ice perturbations cannot be
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smoothed with present technology to less than about 0.5pm RMS. During most of

the time the capsule is imploding, the interior instabilities are not as severe as

those on the ablation surface. One might conclude that the adverse effects of large

internal perturbations would be mitigated by the short duration of the internal

instabilities. The calculations of Wilson and Hoffman showed this may not to be

the case. The larger internal perturbations coupled with the strong, long-duration

ablation front instabilities during the implosion through feed-out, degrading the

yield to unacceptable levels.
i

Differences in the feed-out of beryllium and plastic

the reason for the difference in the beryllium and plastic yield

was suspected as

curves. Although

the initial thicknesses of the beryllium and plastic ablators in the NIF capsule

design were about the same, the beryllium ablated slower. As a result, the beryl-

lium became thicker than the plastic in the implosion. The greater distance

between the cold surface and the ablation front could have reduced the size of the

Rayleigh-Taylor seed from feed-out in the beryllium. In addition, the greater dis-

tance could have also inhibited the Rayleigh-Taylor growth from feeding-back

into the interior.
u

There was an additional important difference between the plastic and

beryllium designs. The plastic had a density of about 1.0 g/cm3, while the beryl-

lium had a density around 1.85 g/cm3. This meant that there was a much larger

density jump at the intersection of the DT ice and the ablator in the beryllium than

in the plastic. The ice had a density of 0.25 g/cm3. Was it possible that a larger
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density jump could be a greater barrier to interface coupling between the cold and

hot surfaces? If the greater density jump was a barrier, the Rayleigh-Taylor seed

from feed-out would have been smaller in beryllium than plastic.

In order to understand more clearly the reason for the superiority of

beryllium over plastic, it was necessary to learn more about feed-out. Planar

experiments were performed on the NOVA laser faality at Lawrence Livermore

National Laboratory to experimentally confirm that feed-out exists and to study

its dependence on thickness and density jump. Planar slabs of material very simi-

lar to the one displayed in Figure 1-4: were accelerated with radiation from a hohl-

raum. The slab is frequently referred to in this paper as the “package” or “foil.” It

was positioned in a small hole on th~eside of a hoh.lraum, so only the side facing

inward, the hot side, received radiation, as shown in Figure 1-5. The hot side was

smooth, while the side facing away from the hohlraum, the cold side, had a

machined sinusoidal perturbation.

The two experimental setups used in the feed-out shots, face-on and

side-on radiography, are shown in Figure l-5.Notice the upper diagram display-

ing the face-on configuration. High energy X-rays were generated by firing two of

NOVA’s ten beams onto a small metal disk, the bacldighter, on the opposite side

of the hohlraum from the package. The specific energy of these X-rays was deter-

mined by the element comprising the backlighter but was always behveen 4.3-

8.3 keV. There were holes in the hohlraum just large enough to allow passage of

the X-rays through the hohlraum and through the package, after which they were
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Figure 1-5: Experimental Setups for Face-on and Side-on Radiography
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photographed with an X-ray camera. A beryllium washer was glued to the hole in

the hohlraum on the backlighter sicle. Without the washer, gold vapor from the

hohlraum would fill in the small hole.

energy X-rays from the backlighter, but

placed in the trough of the machined

Gold was not transparent to the high

beryllium was. A small gold. wire was

perturbations as a fiduaal for phase

changes. The line of sight of the camera was perpendicular to the plane of the

package.

In face-on radiography X-rays from the backlighter were attenuated

more by passing through peaks in the perturbations of the package than by pass-

ing through the troughs. The difference in attenuation produced dark areas on the

film from the valleys of the perturbations, and lighter areas from the perturbation

peaks. The data could then be Fourier-analyzed to reveal the growth of the first,

second, and third harmonics with time.

Face-on radiography quantitatively revealed perturbation growth, but

did not show the location of the perturbations. They could be on the hot surface,

the cold surface, or even in the center of the foil. Side-on radiography, also shown

in Figure 1-5, revealed the location of the perturbations by placing the line of sight

of the camera in the same plane as the package, and parallel to the initial pertur-

bations. The backlighter likewise was repositioned to illuminate the package from

the side. Package surfaces adjacent to and away horn the hohlraum were thus

simultaneously visible.

compare to calculations

Side-on radiography data was much more difficult to

than face-on and only provided qualitative information.
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In addition to the X-ray camera observing the package, two other diag-

nostics collected data on the backlighter to make certain it was performing as

expected. One was an X-ray camera observing the side opposite laser irradiation.

Low energy parts of the spectrum were filtered out passing through the disk, so

only the higher energies used for the package diagnostic created an image. The

purpose of this diagnostic was to ascertain when the backlighter was turned on

and off, and how bright the source was qualitatively. A spectrometer connected to

a streak camera observed the laser-illuminated surface, and showed the relative

strengths of the high energy lines used for backlighting.

The X-ray drive was generated by focusing eight of NOVA’s ten beams

into the hohlraum. The hohlraurns were constructed of gold due to its effiaent

conversion of the laser energy into X1rays. The M-band of gold always produced

some 2-4 keV X-rays in addition to the thermal radiation. A total energy of 24 or

25.6 kJ in the hohlraurn was requested on each shot, but in reality the energy var-

ied from about 18-27 kJ.

Experimental design was a two-step process. First, a package with the

desired characteristics was found by running various LASNEX simulations. A

postprocessor, TDG, was then run to simulate data from the X-ray camera. The

task for face-on radiography was to find the backlighter energy that would most

effectively show the perturbations. For side-on radiography, an energy had to be

selected that would show the density contours with the greatest perturbations. To

some extent, these selections were based on trial and error. A detailed discussion
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of backlighter selection for both face- and side-on geometries is presented in sec-

tion 3.2.

h-taddition to designing the experiments, LASNEX was used to compu-

tationally study feed-out and to provide a better understanding of what was

occurring in the shots. The computational results were compared to experimental

data and conclusions drawn from bc)th sets of results. The campaign was as much

a computational as experimental effort.

For this initial investigation of feed-out, the desire was to observe
*

experimental conditions ranging from weak to strong coupling of the ablation

and cold surfaces. The level of coupling was adjusted by changing the thickness

and pulse length, see Figures 1-6 and 1-7. Three cases were studied.

The first case was an 86 p.m thick, aluminum foil. The thickness was

large enough so that there was only weak coupling between the ablation and cold

surfaces. The shock hit the rear surface of the “thick” package about the same

time the drive was turning off, so

present. The thick package offered

the Rayleigh-Taylor developed.

only the Richtmyer-Meshkov instability was

the opportunity to observe how the seed for

The second foil had a thickness of 35 pm of aluminum. The shock from

the drive pulse hit the rear surface of the “thin” package after about ins, at which

time the drive had burned through much of the foil. The foil thickness was thus

much less than the wavelength, resulting in strong and fast coupling of the Ray-

leigh-Taylor instability with the Richtmyer-Meshkov instability.
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Figure 1-6: The 2.2 ns (PS-26) and 4.5 ns (PS-35) Laser Drive Pulses
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Figure 1-7 Pa,ckages That Were Shot
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All wavelengths and amplitudes were 50 ~m and 4pm respectively.

Drawings not to scale for clarity.

Both the thick and thin packages used a 2.2 ns long shaped pulse

referred to as “PS-26,” which produced a peak hohlraum temperature of 210 eV. A

time dependent X-ray spectrum for 1%-26 had previously been determined by cal-

culation and experiment and was used in the feed-out calculations to drive the

packages. The total energy of the spectrum could be increased or decreased in the

calculation, but the spectrum as a function of time was fixed. The spectrum was

non-Planckian and included contributions from the gold M-band emission.
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In between the weak and strong coupling exiremes was the most inter-

esting situation, a foil that moved from independent Rayleigh-Taylor and Richt-

myer-Meshkov instabilities to coupled instabilities as it burned through. The

intermediate situation was closest to the NIP capsules.

The intermediate packages, which were 50 and 35 ~m of aluminum,

demonstrated a large amount of Rayleigh-Taylor growth. During the entire time

the foils were moving from a decoupled to a coupled instability state, the Ray-

leigh-Taylor instability was causing the surface perturbations to grow. The inter-

mediate case thus resulted in the greatest amount of Rayleigh-Taylor growth, and

was easily designed by simply considering what factors would maximize the

Rayleigh-Taylor growth. Package thicknesses were estimated by two competing

factors. The package needed to be thick enough not to burn through before the

pulse was over but as thin as possible in order for the Rayleigh-Taylor seed to

reach the ablation front quickly. A long pulse was also needed to allow plenty of

time for the instabilities to independently form, then to grow together as the foil

burned through.

The pulse of choice for the intermediate packages was pulse shape 35,

“PS-35,” a 4.5 ns long pulse

The PS-35 source used in

with a peak hohlraum temperature of about 160 eV.

the calculations was a time dependent Plankian

obtained from experimental observation.

Beryllium was placed on the cold surface of some of the packages to

study the effect a density jump would have on the feed-out. The density of beryl-
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lium is 1.85 g/cm3 compared to alum.imgn’s 2.7 g/cm3. An experimental benefit

in using beryllium was its transparency to the backiighter. The initial perturbation

in the beryllium could be observed growing into the aluminum ablator from the

cold surface. Originally, each composite package was intended to be mass-

matched to the pure aluminum package shown above it in the Figure 1-7. Mass-

matching would have created similar accelerations and instability growth rates,

making the two easier to compare. Due to fabrication errors, this was not exactly

the case.

Aluminum was selected as the ablator material for several reasons.

Ablator material in ICF capsules is always composed of low Z elements, usually

with a Z less than 6. This is because atoms of a lower mass more efficiently con-

vert the radiation into compressional energy. To better simulate the l.naterial of

capsule ablators, it was desirable to use a low Z material in the feed-out shots.

Unfortunately. low Z materials alsc) have very low opaaties and cannot effec-

tively be observed with an X-ray camera. Aluminum was a good compromise as it

is one of the lower Z elements whose opacity is suitable for X-ray backlighting. It

also has a well-characterized equation of state, is easy to work with, and is readily

available.

The initial perturbation on all packages had a 50 pm wavelength and 4

pm amplitude. The wavelength was selected to be approximately the same as

package thickness, increasing the feed-out. The large initial amplitude introduced

some nonlinear effects but was nevertheless desirable in order to insure that the
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perturbations were diagnostically observable.

Experimental parameters varied slightly on each shot, and several

shots were needed to obtain a good time history for each package. Some of these

variations, such as drive energy, were recorded. Others, such as package thickness

vm’iations, could not be accurately ascertained.

After the experiments were completed, better calculations were pur-

sued than those used in the design. Recorded experimental parameters from the

shots and better opacities were included in later computational runs. Mathemat-

ical was used to Fourier-analyze the results and compare the time histories of the

first, second, and third harmonics to experimental data. Zone size and radiation

bin size were reduced until convergence was achieved in perturbation growth

and radiation temperature respectively.

In summary feed-out is an important effect in ICF physics because it

couples the larger internal perturbations with the long-lived, strong ablation sur-

face instabilities. Feed-out is believed to be partially responsible for the superior-

ity of beryllium capsules designs to plastic capsule designs. In order to better

understand the nature of feed-out, an experimental and computational campaign

was undertaken to study the effects of a density jump and variations in the level

●
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2. Theory

The physics of the feed-out packages maybe understood with a system

of coupled, nonlinear radiation-hydrodynamic equations, which will be dis-

cussed in this section. The radiation diffusion and Saha equations will be

reviewed first, followed by a discussion on the equations of hydrodynamics. Spe-

cial attention will be given to Rayleigh-Taylor and Richtmyer-Meshkov instability

theories as aspects of the hydrodynamics.

2.1 Radiation

Radiation is an important aspect of the experiments presented in this

paper. Radiation from the hohlraum ablates the feed-out foils and creates the

shock wave which generates the Richtmyer-Meshkov instability. It preheats the

packages and accounts for some of the heat transfer between different parts of the

foils.

Radiation flow through the fluid is determined by the radiation transfer

equation, which is a type of conservation equation. In Eulerian form, it may be

written [Zel’dovich], as:

~(~+ch”v’v)=‘v[’+$’v)-K’’”(1)

where c is the speed of light, ?zPlanck’s constant, and Kvand jv the absorption and

emission coeffiaents for frequency v respectively. The spectral radiant intensity is
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Iv. IV(7, fi, t)dvd= is the radiant energy in the spectral interval dv, passing per

unit time, through a unit area, with the direction of energy propagation contained

within the element of solid angle da about the vector ~ The area is located at

point; and is perpendicular to E The second term on the left-hand-side of Eq. (1)

is the rate at which radiation is leaving or entering the differential volume. Of the

three terms on the right-hand-side, the first is spontaneous emission while the

second is induced emission. Induced emission is emission caused by interaction

of the ladiation field with the material. The third is absorption.

Eq. (1) is a partial differential equation for radiation intensity as a func-

tion of position, time, and direction and describes a nonequilibrium radiation

field. The effort required to solve Eq. (1) maybe significantly reduced by assumi-

ng local thermodynamic equilibrium (LTE) and the diffusion approximation. LXE

implies that the temperature of a sufficiently extended and optically thick mate-

rial varies little over the mean free path of the photons, so one may assume the

local distribution is F’lanckian instead of having to calculate it. From the view-

point of a given test location, photons coming from a position with a different

temperature and Planckian spectrum would be absorbed well before reaching the

test point.

Radiation fields in LTE may be modeled with the diffusion approxima-

tion. The necessary condition for the existence of LTE, small temperature gradi-

ents in an extended, optically thick medium, serves simultaneously as

justification for the use of diffusion theory because it forces the radiation intensity
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into an almost isotropic state. If the radiation is anisotropic, then the diffusion

approximation may not be used. Caution must be exercised in the application of

diffusion to radiation, as the LTE assumption, isotropy, and therefore diffusion,

may not be valid for all frequencies. For example, the peak of the hohhaum radia-

tion spectrum used to drive the feed-out packages is about 150-200 eV. For most of

the plasma, LTE at this temperature is a good assumption, but not for the ablated

material. In addition, there are high energy components to the spectrum in the

keV range. These photons stream through the packages with e-folding distances

on the order of the size of the package, breaking the LTE assumption. As they rep-

resent only a small portion of the total energy in the radiation field, diffusion may

still be used.

Diffusion in a radiation field in LTE may be written as:

s=pvmmdv =-(Y”’T3)vT (2)

stating that the flux of radiant energy of all frequencies, ~, is proportional to the

gradient of the temperature, T. The symbol 1 is the average mean free path for a

Planckian distribution over all frequencies and is commonly termed the Rosse-

land mean free path. The total energy lost or gained per unit volume of fluid, per

unit time due to radiation transport, q, is now simply q = VO~. Thus, by assum-

ing LTE and diffusion, the radiation transfer problem has been reduced to a prob-

lem very similar to heat transport. This approximation and is frequently known

as the radiation heat conduction approximation [Duderstadt].
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Some comments should be made in regard to the opaaty of materials

[Zel’dovich], p, which is the sum of the scattering and absorption coeffiaents usu-

ally designated by K’S. opaaty is a strong function of the temperature of a mate-

rial, because the opacity for the three forms of absorption, bound-bound, bound-

free, and free-free, are so different. Bound-bound transitions correspond to the

electron changing orbitals in the atom and have extremely large cross sections for

very speafic energies. Bound-free transitions can be from eight to eleven orders of

magnitude lower in cross section than bound-bound, but represent a continuum

of energies, unlike the bound-bound. A bound-free transition occurs when an

electron is ejected from the atom. A free electron can only absorb energy from a

photon if it is passing very close to an ion. If an ion is not in the vicinity, the elec-

tron can only serve as a scattering center for the photon. This type of absorption is

referred to as free-free or inverse brernsstrahhmg and has a cross section propor-

tional to the square of the ion density. Of the three types of transitions, free-free

tends to have the lowest cross section.

As temperature increases, the ionization increases, and so the opacity

decreases. The density of ion states is thus very important for good opacities and

is usually calculated with the Saha equation,

()2 u~ ~ ~ 2zmekT 3/2 m
‘m+l =

z
-Ei/(kT)

—— urn = e
nm ne urn

.
h2 i=l

The subscript m denotes the ionization state; n is the density of a particular state,

ne is the density of electrons, kT is temperature in units of energy, and Ei is the
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exatation energy of the ion in the it% state; u is the partition function. The Saha

equation is valid for local thermodynamic equilibrium.

From the above discussion, one can see the ablated material from the

feed-out packages will beat a high temperature and have a low opacity and will

be transparent to the hohlraurn radiation. The ablation front will be composed of

atoms in the process of being ionizeci and heated, and will absorb the bulk of the

radiation from the hohlraurn. Material behind the ablation front will have the

highest opaaty, and be the coldest. Chdy photons in the keV range will affect this

region. Because of their long mean free path, the keV photons stream through the

ablation front, depositing energy deep in the package. This results in expansion

and preheat of the material before <hock arrival, and may partially stabilize the

Richtmyer-Meshkov instability by creating a density gradient.

2.2

its. The

focus of

Hydrodynamics

The physics of the feed-out experiments is dominated by hyclrodynam-

Rayleigh-Taylor and Richtmyer-Meshkov instabilities, which are the

these experiments, are hydrodynamic effects. The hydrodynamics con-

trols the evolution of the perturbations, the density,, velocity, pressure, and many

other important fluid quantities.

The equations governing hydrodynamics are the equation of continuity

equation of motion,

derived by writing a

and the energy equation. The equation of continuity is

mass balance cwer a volume of the fluid, and allowing the
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volume to approach zero. Likewise, the equations of motion and energy are

derived by writing balances over momentum and energy. A detailed derivation

and description of these equations maybe found in the text by Bird, Stewart and

Lightfoot [Bird].

.
Some comments should be made as to why fluid theory is acceptable

for the highly ionized gases that compose ICF packages. Both electromagnetic

and hydrodynamic forces are present in these gases. There are two conditions

necessary for the hydrodynamic forces to dominate. First, the ratio of the electro-

magnetic potential energy to the kinetic energy of a particle must be small. The

potential energy comes from a test particle’s interaction with other charged parti-

cles in the gas. As the particle moves through the fluid, a large kinetic energy and

small electromagnetic potential energy results in small changes in velocity and

momentum as it passes other charged particles. This effect is similar to what one

would expect in a nonionized gas. The ratio of these two energies is easily calcu-

lated, as it is proportional to the inverse of the number of particles in a Debye

sphere [Krall]. The second condition is that the frequency of collisions must be

much greater than the plasma frequency. High collision frequency ensures that

before the fields can effectively move a test particle any distance, collisions are

pushing it in the direction of the flow.

There are two formulations of hydrodynamics. The Eulerian or conser-

vative formulation is derived by writing the balance over a stationary volume ele-

ment through which the fluid flows, and it represents the viewpoint of an
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observer in the laboratory frame. In the Lagrangian formulation, the volume is

flowing with the fluid, and the equations predict changes that occur as one fol-

lows a path with the fluid motion. These

Eqs. (3)-(5) listed below are in

two methods are equivalent.

Eulerian form. The variables are, p den-

sity,, v velotity, t time, p pressure, g gravity U internal energy, q heat “flLLx,and ~ is

the shear force per unit area due to viscosity. Velocity, heat flux and gravity are

vectors, while ~ is a tensor. The equation of continuity is

1

ap
z= -(v.pfi) .

Rate of mass accurmdation Rate of mass flux

in differential volume in or out of

at some point in the fluid. differential volume.

The equation of motion is

--[v.pEE] –Vp

Rate of increase of Rate of momentum Pressure force

momentum per gain by convection on element per

unit volume. per unit volume. unit volume.

+pg.

Rate of momentum gain gravitational force on

by viscous transfer per unit fluid element

volume. per unit volume.

(3)

(4)
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The equation of energy is given by

Rateof gain of Rate of energy input

internal and kinetic per unit volume by

energy per unit volume. convection.

+p(fi.~) -(vopti)

Rate of work done on Rate of work done on
&

volume by gravity. fluid per unit volume

by pressure forces.

-(vq)

Rate of energy input

per unit volume by

heat convection.

-(v.[g● 5]) .

Rate of work done on

fluid per unit volume

by viscous forces.

(5)

The Lagrangian formulation is written using a derivative following

the fluid motion. This is called a substantial derivative, and is given by

Applying this derivative to Eqs. (3)-(5) and using the continuity equation to sim-

plify the results, the Lagrangian form is found to be

Dp— = –p(von)
Dt

D5pm = – Vp– [v.$]+ pg

()
L.I+&-

‘Dt
V.?+p(fi● g)–(v.pz)–(v*[g● q).

(6)

Notice the equation of motion

law, mass x acceleration= force.

in Eqs. (6) is now in the form of Newton’s second
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There are three equations, not counting vectors, and four unknowns in

the system of equations above, with the unknowns being=, U, p, and p. The sys-

tem needs to be closed with an equation of state, which is an equation relating one

thermodynamic property to two others. In this case, there needs to be a relation-

ship between U, p, and p.For an ideal gas, one may use p = RpU where R is a

constant of proportionality. Unfortunately, this is an overly simplified expression

for ICF plasmas, which normally require the use of a tabulated equation of state

from detailed calculations.

The hydrodynamic theories presented in the following sections often

entail many assumptions in order to obtain simple, closed form solL~tions. The

assumptions severely limit the practicality of the results, but they also allow for

clearly understandable theories, providing great insight into the

workings of the physics. Computational solutions are used to study

problems of radiation-hydrodynamics with fewer assumptions.

The following four sections focus on the Rayleigh-Taylor

fundamental

the complete

instability. A

general overview of the Rayleigh-Taylor instability will be provided in section

2.2.1, then a derivation_of the classical linear growth rate in section 2.2.2,. A discus-

sion on the effects of a density gradient and ablation will ensue. Section 2.2.3 is a

review of mode coupling, while 2.2,,4 discusses the effects of stratified fluids on

the Rayleigh-Taylor instability. The Richtrnyer-Meshkov instability will be pre-

sented in section 2.2.5 with a short discussion of mode coupling. The Richtmyer-

Meshkov instability in stratified fluids is presented in section 2.2.6. Acoustic
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modes, which are a result of the Richtmyer-Meshkov instability will then be dis-

cussed in section 2.2.7. Section 2.2.8 presents a simple theory for feed-out from

differential acceleration.

2.2.1 Introduction to the Rayleigh-Taylor Instability

The Rayleigh-Taylor instability occurs when the density and pressure

gradients in a fluid have opposite signs, in other words, whenever a heavy fluid is

accelerated by a lighter fluid. In this context, heavy and light refers to higher and

lower density fluids respectively. A good example is when one turns a container

of oil and water upside-down. The oil, which is a lighter fluid, is then supporting

the water against acceleration from gravity. If the interface is perfectly flat, the

system is stable, but if there are any perturbations on the interface, stability is lost

and the perturbations begin to grow. The water moves to the bottom and the oil to

the top. Entropy is thus increased by converting a state of ordered energy storage,

potential ertergy of a top heavy fluid, to a state of disordered energy storage, tur-

bulence and heat generated through viscosity.

Preasely how perturbations grow has been of intense interest to ICF

researchers. Perturbation growth determines how capsule symmetry may be lost

when different fluids begin to mix. The evolution of a single sinusoidal perturba-

tion is particularly instructive in understanding the Rayleigh-Taylor instability,

because any initial perturbation on the interface maybe decomposed into a Fou-

rier spectrum. The time history of a single mode is displayed in Figure 2-1. With
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Figure 2-1: Time History of Rayleigh-Taylor Instability
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weak shocks and amplitudes less than a tenth the wavelength, the perturbation

will grow exponentially early in time. Exponential growth maybe derived by lin-

earizing the hydrodynamic equations and is thus the linear phase of the instabil-

ity. The time history of the perturbation amplitude, q, in this stage is given by

where q. is the initial amplitude, k is the wavenumber, A is the wavelength, and y

is the growth rate. The Atwood number, A, is defined as:
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A=
PH - PL
PH+PL’

where p~ andPL are the densities of the heavy and light fluids respectively. The

acceleration g is considered positive if it is directed from the heavy to light fluid.

In’that case, there is exponential growth of the perturbation. If the acceleration is

directed from the light to the heavy fluid, then it is considered negative, meaning

y is imaginary. This results in stable oscillations, such as water waves.

When the amplitude is somewhere between a tenth to a whole wave-

length, nonlinear effects become dominant and the growth slows down. At this

point, the nature of the growth depends strongly on the Atwood number. For

As 1 the dominant effect is volume conservation of the high density fluid, with

the constraint that the gravitational potential energy is minimized [Haan June

1991]. The light fluid flows upward into the heavy fluid in rounded shapes called

bubbles, while the heavier fluid falls into the lighter fluid in long narrow spikes.

The potential energy of the system is decreased by narrowing the spikes, with the

tips moving further down.

The spike tips eventually reach free fall, while the bubbles rise at a con-

stant velocity proportional to ~offman 1994]

vB
r

= a $gA,

where u is a constant. This expression is the consequence of a balance between the

buoyancy and drag forces acting on the bubble.
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For A = O as the spikes are being formed, they become altered by the

Kelvin-Helmholtz rollup [Haan June 1991]. This is a shear instability that occurs

at the interface of two fluids with different tangential veloaties, see Figure 2-1.

The linear growth rate for the Kelvin-Helrnholtz instability is given by [Haan June

1991]

= k%R2
PIP2

Y
(P1 + P2)2’

where pl and p2 are densities of the two fluids andv R is their relative veloaty. As

a spike pushes into the lighter fluid, there is a velocity differential between the tip

of the spike and bottom of the bubble. The density term in y for the Kelvin-Helm-

holtz instability is high, creating a fluid instability at the spike tips ancl retarding

their growth. The result for small Atwood numbers is a symmetric mushroom

between the light and heavy fluids. For intermediate Atwood numbers, one finds

a spike with a mushroom on top. The feed-out packages have an Atwood number

close to one, so the Kelvin-Helmholtz instability is not a concern.

Modeling of the Rayleigh-Taylor instability through its entire evolution

requires different kinds of theoretical approaches. While q < ?JIO, the linear the-

ory is adequate. For the weakly nonlinear regime, potential flow models maybe

used, which assume the velocity may be described as a harmonic potential. Haan

developed such a model, which willl be described later [Haan August 1991]. It is

valid only to second order, representing growth of the second harmonics. For the

strongly nonlinear case with multiple interacting modes, a model was proposed
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by Ofer IOfer], improving slightly on one previously proposed by Haan [Haan

June 1991, Hoffman 1994]. Ofer and his colleagues suggested using Haan’s sec-

ond order potential flow model up to the point where a mode begins to saturate,

then switdhing over to a linear growth prescription more representative of satura-

tion. The model is part analytical and part empirical. For very late times the Ray-
,

leigh-Taylor instability in the spike and bubbles phase, analytic theory maybe

used to predict very limited things such as the terminal bubble velocity. More

commonly this regime is analyzed
&

described by empirical formulas.

through computations and experiment and

2.2.2 Single Mode

Following Hoffman

Rayleigh-Taylor Growth

[Hoffman 1994], the Rayleigh-Taylor instability

growth of a single mode will be derived for a classical instability. The expression

for the growth rate will then be amended by including terms to account for abla-

tive stabilization, which is present in the feed-out experiments. The starting point

is Eqs. (3) and (4), with the viscosity term removed from the momentum equation.

By substitution of Eq. (3) into Eq. (4), one may obtain a simpler form of the

momentum equation. The two equations together then are

4?+vo(fq = ()
at

(7)

P$@) + P(F “ W = –Vp+f)g.

A small perturbation is introduced into the system by replacing each hydrody-
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namic property in Eqs. (7) with two quantities, Eq. (8)

P = P()+PZ

5 = Zo+Fn

P = Po+Pz”

The variables with the “O” subscripts represent

(8)

equilibrium and are the “zeroth-

order” aspect of the fluid motion. They satisfy Eqs. (7) by themselves, so one may

write

apo
z +Vqpoi$) = o

afio
P% +p(zo ● V)tio = –Vpo+pog.

(9)

The quantities with the subscript “z” in Eqs. (8) represent the perturbation being

placed on the equilibrium properties and are very small. They are sometimes

referred to as the “first-order” quantities.

After substituting Eqs. (8) into Eqs. (7), Eqs. (9) are subtracted, and the

result is linearized. The process of linearization involves the elimination of any

products of perturbed quantities, as these will be much smaller than terms that

are linear in the first order terms. The linearized eauations are

atio ai7
%t~ —=+ p(zn . vi50+ fio ● Vtin) + pz(zo ● ViJo) = – Vp + png

+ ‘Oat

(lo)

Now an initial condition is applied to Eqs. (10). For the Rayleigh-Taylor

instability problem, one assumes the two fluids are initially at rest, implying,
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fio = O. In addition, one can make a simplifying assumption that the flow is

incompressible. Incompressibility is valid if accelerations in the flow are not

strong enough to significantly change the density, and the fluid moves without

either expanding or compressing. To apply this assumption, the divergence of the
.

perturbed velocity is set to zero

Vozn = (-). (11)

Substituting the initial velocity and incompressibility into Eqs. (10), one obtains

(12)

For this derivation, it is assumed that gravity only acts in one direction,

which is from the heavy to the light fluid, and perpendicular to the interface. Let

this direction be z, giving

gx=gy=o” (13)

In addition, p. is uniform throughout each of the fluids, with the exception of a

discontinuity occurring at the interface. Thus, one may write

apo apo
32 ‘~=o” (14)

Because it is nonzero at the interface, the derivative of p. with respect to

z must remain in the equations. Eqs. (13) and (14) are now substituted into Eqs.

(12), with the result in component form below. Eq. (11) is also included because of



●

●

●

●

9

●

●

●

e

9

●

41

its usefulness.

aP7c fm. apo ~
‘z — + vzz~at

=

aPz av=x av=y av=z
‘~ m ‘&j ‘Tz = 04

aP7c
‘z ‘P=g

(15)

Eqs. (15) are solved by Fourier transforming, which converts the deriv-

atives into products. Only transformations with respect to x and y, are made, as

the z direction does not share the same symmetry as the other two directions. The

following Fourier transform pairs are defined:

Vxx(kx, Iiy, z, t) ‘- v~J& % z! t) ~#x> q, L f) -’ pJZ y>z, ~)

Vzy(kx, )$, z, t) e vny(x, y, z, t) q~~$ ~y, z, t) - p~(x, y, z t).

V#cx, kY,Z, t) - vnZ(% Y>z? ‘E)

The zeroth-order quantities are not functions of x and y which simplifies the Fou-

rier transforms. kx and ZJ are the x and y components of the wavevector, ~, with a

magnitude of k = F kx + kY, which is called the wavenumber. The wavelength

that corresponds to a particular wavenumber is given by A = (2n)/k. In solving

Eqs. (15), one may assume the time dependence of the solution is proportional to

iyt
e, which is a standard assumption for finding solutions with the Fourier trans-

form. After performing the transforms and substituting

Eqs. (15) become

the time dependence,
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wo%y=–iky%y

apo
ylln + vzz~ = o

avnz. 0. (16)ikxVnx + ZkyVny+ ~ =

After some algebraic manipulations of Eqs. (16) and with the help of the defini-

tion of the wavenumber, one may write

(17)

Eq. (17) is an eigenvalue problem, meaning it only has solutions for a specific pair

of y and Vm, once k, g, and po(z) have been defined; y is the eigenvalue, while Vm,

is an eigenfunction.

Away from the interface, p. is constant, so its derivatives are zero. One

may thus cancel it from Eq. (17) and remove the derivatives, This leaves

a’vnz
= k2VZz ,

z

which has the general solution,

v - A(kx, ky, t)e
-kz

‘z+ B(kx, ky, ~)e .7CZ-

The vertical velocity should vanish at infinity, implying B = Ofor z e O

and A = Ofor z >0. The two solutions should match at the interface, where at time

zero there is some initial condition, X(kx, ky) = VnZ(kx, ky, z = O, t = O). The SOIU-
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tion should also contain an exponential time dependence, as this was the basis for

the derivation of Eqs. (16), resulting M the solution

To calculate y, an additional boundary condition is needed. By integrat-

ing Eq. (17) over the interface along an infinitesimally small element of the z axis,

a jump condition maybe obtained

::[{ :~z)-k’Pov.z[l-$g]]dz=olim j ~z ‘O~z
&+o

2

- lcw(p~ + p~) + ‘5$W(PH – PJ = 0“
Y

Solving for y,

(PH- PL)Y2=&~pH+ PL) = k@ “

(18)

(19)

Eq. (19) shows the origin of the Atwood number, A. Notice there is a positive and

negative component of the square root, yielding growing and decaying modes.

At least two other factors add stability to radiation-ablatecl plasmas

that are not accounted for in Eq. (19)1, a density gradient and the ablation process

itself. In the feed-out experiments, alblation partially stabilizes the insti~bilities on

the hot surface, while a density gradient partially stabilizes instabilities on both

surfaces. Density gradient stabilization will be presented first.
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Consider a more realistic ICF situation including radiation from either a

hohlraurn or a laser. As radiation ablates material from a solid foil, the ablated

material streams away into vacuum, and a flat density gradient is formed. The

growth of a perturbation on this gradient is an eigenvalue problem like the

growth on a sharp interface, with the specific eigenvalue and eigenfunction

depending on the density profile. For an exponential density profile, the eigen-

function is exponential, as in the sharp interface problem. The eigenvalue cannot

be written down in closed form, although one may approximate it.
b

A back of the envelope estimate is possible by deriving an effective

Atwood number [Haan June 1991]. In the sharp interface situation, the perturba-

‘kizl hus sampling effective densities attion falls off away from the interface as e , t

z = tl /k. Assuming the density varies as e“~, where L is some scale length,

then the effective densities of the perturbation samples are

PH
l/(kL)

= pOe pL
-1/(kL)

= pOe .

Giving an effective Atwood number and growth rate of

A=
PH – PL = ~anh 1

pH + pL, ()E
(20)

,= Jgktanh(&).

For kL >>1, the perturbation wavelength is much smaller than the den-

sity scale length, resulting in an effective Atwood number close to zero. This rep-

resents the maximum stabilizing effect of the gradient, with the growth rate
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approaching y + @L. For kL <<1, the perturbation is much bigger than the den-

sity scale length. The effective Atwood number approaches one, with the growth

rate becoming, y + &k. Stabilization of the interface thus occurs for modes with

a wavenumber greater than about k > 1/L. A more rigorously derived and fre-

quently encountered solution to this problem is [Haan June 1991, Hoffman 1994]

Y
r

,= gkA
l+kL’

which is not significantly different from Eq. (20).

Another important stabilizing effect in radiation ablated fluids comes

from the ablation process itself. Think of the interface from the accelerating refer-

ence frame in which the heavy fluid is stationary, see Figure 2-2. Assume the per-

turbation in the heavy fluid has the classical fall off and growth rate, e-~’ and eYt,

respectively. Consider the situation after a time, At from time zero. The perturba-

tion has grown by eYAt,but the interface has moved much deeper into the heavy

fluid from ablation. The portion of the interface “shaved off” by ablation is given

by v*Af, where VAis the interface velocity in the heavy fluid. This is given by

1 amVA=——= (mass ablation rate per cm2)/p~opHat

This movement of the interface results in a decrease in the perturbation amplitude

of kvA. The net growth is then [Haan June 1991]
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y = yC–fJkv~. (21)

where ~ is a constant that must be determined by experiment and/or computa-

tion. The c subscript on y refers to the classical growth rate. Eq. (21) is a simple for-

mula that has not been rigorously derived, but is used extensively in ICF research

and first introduced by Takabe [Takabe]. As with the density gradient problem,

there is no rigorous closed form solution to the eigenvalue problem of an ablated

interface.

the total

length of

Consider the implications of the ablation process. E YC~ ~kVA , then

growth rate is zero or negative, which occurs at the threshold wave-

L = (2@32v~)/(gA). Wavelengths shorter than this value will not grow

Figure 2-2: Ablative Stabilization
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due to the stabilizing influence of the ablation. As the size of the wavelength is

increased above this value, ablation will play less and less of an effect. Ablation,

like the density gradient, serves to stabilize the shorter wavelengths.

One may combine the stabilizing effects of burn-off and a density gra-

dient into one formula [Haan June 1991, Hoffman 1994]

(22)

Eq. (22) is an expression for incompressible fluids, while laser ablated plasmas are

compressible. Compressibility effects produce a small net change in growth rate,

under 20Y0, from the incompressible state depending on the size of the wave-

length [Haan June 1991].

Some care should be taken with the application of Eq. (22). The linear-

ized perturbation equations, Eqs. (10), assume the perturbed quantities to be

small in relation to the equilibrium quantities. If this is not true, Eq. (22) is no

longer valid. Eq. (22) is only applicable for small perturbations with an amplitude

less than 10% of the wavelength, and early time periods in the growth.

A great deal of effort has been put into refining Eq. (22). However, there

is some question as to the utility of continuing to refine the expression. Mathemat-

ical solutions require mathematical assumptions as to the nature of the density

gradient, ablation rate, and many other properties of the system. ‘ll~e actual

experimental values of these properties may not be well known. Eq. (22) is only as

accurate as the assumptions which were used to create it. Refining the expression
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to a mathematical level of accuracy beyond the uncertainties in the assumptions is

futile.

2.2.3 Multiple Mode Rayleigh-Taylor Growth

.
At the onset of nonlinearity, the single mode begins to couple with

itself, producing higher order harmonics which in turn couple with each other.

The result of the addition of these higher order modes is the bubble and spike for-

mation. The theory of mode coupling is important for a proper understanding of

the Rayleigh-Taylor instability and the feed-out experiments. Both higher har-

monics and bubble and spike formation were experimentally observed in some of

the packages. One would expect that the growth of higher harmonics in the feed-

out experiments would be slightly less than that predicted by the following theo-

ries. Both ablation and density gradients stabilize higher order modes more effec-

tively than lower order ones, and both stabilization processes are present in the

experiments.

Three models of the nonlinear Rayleigh-Taylor instability will be dis-

cussed, each corresponding to a different stage in its evolution. The first is Haan’s

weakly nonlinear mode coupling model which describes fluid behavior at the

beginning of the nonlinear regime with only second harmonics present [Haan

June 1991, August 1991]. A second Haan model assumes a later time, with many

harmonics present and a large number of saturated modes. The last model by

Youngs is applicable during late times the nonlinearity, when the interface is so
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mixed that the concept of Fourier mc)des is no longer valid ~oungs].

In the early stages of the nonlinear regime, fundamental modes begin

to couple with themselves creating second harmonics. Self-coupling is clearly

seen in Haan’s weakly nonlinear theory. The theory is a potential flow model and

was derived assuming a plane interface between inviscid, incompressible fluids,

with surface tension, T. The system is initially at rest in a gravitational field with

the interface located at z = q (z, t), where z = (x, y). I?eriodic boundary condi-

tions apply at the edges of a box of length L in the plane of the interface, and the

fluid is assumed stationary as z + :k~. The interface may be decomposed into

modes of a Fourier series. Their coefficients are given by

(23)

where ~ = (kX, kv).

Let @~ and ~~ be the velocity potentials in the heavy and light fluids

respectively. These potentials may likewise be Fourier expanded in a consistent

fashion with the boundary conditions

The pressure of each fluid is given by Bernouli’s equation and is

(24)
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(a(j V2
)

~=pz. T__gz . (25)

There are three boundary conditions at the interface. First, the pressure step

across the interface is determined by the surface tension and the curvature

This is actually two equations, @ may either be OHor ~~ The two equations must

agree, which is the second boundary condition. The third condition states that the

pressu~e step across the interface must be a function of the surface tension and

curvature of the interface

PH - PL [)~d2q+d2q+H*T
——

dx2 dy2 “
(27)

HOT refers to higher order terms that are neglected in this analysis.

Haan substitutes Eqs. (23) - (25) into the boundary conditions Eqs. (26)

and (27). The boundary conditions are applied at z = q (x, t) instead of z = O,

because the interface is located at z = q(x, f). For example, the term a$ /illz

would be expanded as

●

●

m

9

Combining the boundary conditions, Haan arrived at a differential

equation for the time evolution of the interface
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with ~3 = k – ~2. k, k2, and k3 are wavenumbers, or magnitudes of the vectors.

The unit vectors are defined as:
.

The growth rate is not the classical because of the inclusion of surface tension, and

is expressed as

/
y(k) = gkA - ‘k3

(PFI-PL)’

If the second order terms are neglected, the solution to Eq. (28) for an

initially stationary fluid is the standard linear result, as derived in the previous

section, and is given by

~:”(t) = nz(o)cosh[y(k)t] . (29)

Even if an exact solution to Eq. ~!8) including second order terms could be

derived, its validity would be questionable, as terms of third order and higher

were neglected in its derivation. These terms are certainly as important as the sec-

ond order terms when the system is fully nonlinear. As a result, Eq. (28) is only

valid during the weakly nonlinear phase of perturbation growth. Haan solved the

equation approximately by substituting Eq. (29) into the terms on the right hand

side of Eq. (28), which simplifies the expression. The result is a bit lengthy, but for

most practical ICF applications it may be approximated as
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(30)
*

?).(t) = T@)+A~~f;(Of(t)2G(i k2).
ii2

where G(Z, k2) is given by

, ;Y2(k2)[l -iz “ i] + ;Y(k2)Y(k3)[; -$2 “ k3 -i2 “ q

G(1, i?) = . . .

(30). The

.--,
{[Y(~2) +Y(W1’ -Y’(@}

Notice how the time and spatial dependence are neatly separated in Eq.

origin of second harmonics is clearly seen in the second order coupling

terms of the expression. A condition of applicability of Eq. (30) is that the modes

contributing to the summation be adequately modeled by Eq. (29) because Eq.

(29) was used to approximate these modes to obtain a solution. The fundamental

modes must remain unchanged to second order for the theory to remain valid.

Mode coupIing has a significant effect on perturbation growth from the

Rayleigh-Taylor instability. Figure 2-3 shows this by applying Haan’s model to

three different cases of the Rayleigh-Taylor instability: single mode classical, mul-

tiple mode classical, and multiple mode stabilized by ablation and a density scale

length. The solid lines in the Figure 2-3 represent the growth of an initial pertur-

bation due to linear theory only whereas the dashed lines show mode coupling

results. The significance of the line delineating 1/k2 is the boundary between line-

arity and nonlinearity. As the modes of the spectrum reach this line, they grow

more slowly, so there is a gradual progression of the fastest growing mode from

high to low order. The fastest growing mode will be the smallest wavelength not

*

9

a
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effectively stabilized or saturated. “fius small structures initially dominate the

flow, evolving to larger and larger structures as the dominant wavelength

increases.

Figure 2-3 shows mode coupling has a stronger influence on the classi-

cal than the ablative Rayleigh-Taylor instability because the fastest growing mode

is much smaller in the classical than in the ablative instability. The smaller modes

have a shorter e-folding time and form harmonics of both higher and lower fre-

quencies quicker.

For evolution past the weakly nonlinear stage, Haan proposed a second

model in which modes do not saturate based on their individual amplitude, but

rather on the combined amplitude of modes within some distance &from them in

wavenumber space. After some analysis, the saturation amplitude was found to

be

ns(k) = v/(Lk2) .

where v is a parameter taking into account& and the amplitude at which the indi-

vidual modes would saturate. Before a mode saturates, it grows linearly. After

saturation, it will continue to grow at a constant rate equal to the linear rate at the

time of saturation. This rate is
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Figure 2-3: Mode Coupling
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This theory is satisfactory for the ablative Rayleigh-Taylor instability

for which saturation is the most significant nonlinear aspect of the physics. It is

thus useful for modeling most ICF plasmas. It is not applicable for classical Ray-

leigh-Taylor instability problems, as it does not include mode coupling which is

the most important nonlinear effect in the classical Rayleigh-Taylor instability.

●

●
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Ofer proposed a model combining Haan’s mode coupling and saturation theories,

which is applicable to both the classical and ablative Rayleigh-Taylor instabilities

[Ofer].

After many modes have coupled and saturated, the interface reaches a

disordered state where the two fluids mix. Bubbles and spikes have formed and

Fourier modes are no longer a valid concept. Youngs computational.ly investi-

gated the interpenetration of the fluids during this time. He found that the domi-

nant wavelength continued to increase in size, as in the mode-coupling regime.
$

The mechanism may be best understood through bubble competition rather than

mode coupling. If a bubble of the lighter fluid is slightly larger than its neighbors,

it grows more rapidly and eventually crowds out the surrounding bubbles. When

the dominant wavelength reaches about ten times the wavelength of the initially

fastest growing mode, the initial system parameters have been forgotten. The evo-

lution could thus be predicted in all cases by simple expressions and no knowl-

edge of original conditions.

A good measure of the evolution of the instability is the width of the

mixed region, & For a given density ratio, the mixing process is described by a

similarity solution with scale length proportional to& and may be expressed as

6.F9
()

~2 gt2 . (31)

If large amplitude, long wavelength perturbations are present, then the growth of

the mixed region will exceed Eq. (31). To define 6, a volume fraction of the dense



56

fluid at the point (x, y z) is used and designated~l(x, y z). Let the initial interface

between the fluids be in the x-y plane, with the z axis normal to the interface. The

average of~l at a height z is then

;1(2)

given by

Integration over dx dy refers to integration over the x-y plane. Youngs continued

to define the following

kl,= the difference in height between the position the undisturbed interface

would have reached and the point where ~1 = 0.99, or the penetration

of the light fluid.

lzz= the difference in height between the position the undisturbed interface

would have reached and the point

Then one has 8 = kl + hz. Computational

showed

where ~1 = 0.01.

study and application of Eq. (31)

(PI-(32) 2
hl

= ‘(pl + p2)@ ‘
(32)

where a = 0.04 – 0.05. Eq. (32) was confirmed experimentally, with values of ~

slightly higher than those derived computationally. Youngs found that the ratio

hJhl increased as the density ratio increased. For the particular multimode calcu-

lations he performed he found
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h2

~ = 1“5

PI=20 3=25
P2 hl “

2.2.4 The Rayleigh-Taylor Instability in Stratified Fluids

Due to interface coupling, the growth of perturbations, whether from

the Rayleigh-Taylor or Richtmyer-Meshkov instability, is different when the fluid

is of a thickness on the order of a wavelength. The previous discussions relating to

linear and multiple mode growth assumed an interface between two semi-infinite

layers, where finite thickness effects were not a concern. Finite thickness effects

are important in the feed-out packages, as the wavelength is 50 pm and the pack-

ages are from 35-86 ~m thick. In addition, some of the packages contained a layer

of beryllium on the cold side. As the initial densities of beryllium and aluminum

are 1.8 and 2.7 g/cm3 respectively, this resulted in three fluid interfaces where

perturbations grew and interacted: the ablated material/ah.uninum, the alumi-

num/beryllium, and the beryllium/air interfaces. Because the fluids were com-

pressible, these interfaces were not clearly distinct, but they formed density

gradients as one fluid flowed into another. The incompressible theories presented

here by Mikaelian and Ott provide insight into the compressible case.

One can clearly see the physics of interface coupling in Mikaelian’s

incompressible, linear model for stratified fluids [Mikaelian 1982,1983, and 1995].

For example, take the situation where the densities on either side of a central
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material are the same, giving the density pattern PA/PBiPA” ~ ~S CWeZ~ka~

lian found that

[
nl(f) = ~tan[~l (cot[~]ql(o) + 712@))COSIYfl

(+ q2(0) – tan [:]m(o))cos[lftl}

[( [1

8 )nz(f) = ;tm[ol cot ~ 712(0)+ml(o) Cos[ytl

+(~l(o)-~n[;l~l(”’)cosh

(33)

where q is the perturbation on each interface, with the acceleration vector, g,

pointing from the second to the first interface; t is time, y is the growth rate for the

system and 0 is a coupling angle, which are both defined by the following set of

equations:

2w(z~)/w(zJ d= k(ll-1)
sin [6] =

1 + (w(zl)/w(z2))2 g 1 + R2 + 2Rcoth[k~]

W(zl) k~[1—=l+Stanh Z
W(Z2)

1 + R2 + 2Rcoth[kz]) (34)

S = sinh[k~]
R=PB

<“

W maybe thought of as the z spatial component of the Vm term in section 2.2.2.

The z coordinate is perpendicular to the plane of the interface; ~ is the thickness of

the intermediate fluid layer. Interface coupling may be seen in Eq. (33). ql(t) is a

function of both ql(0) and q2(0), as is qz(t). Even if ql was initially zero, it would
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still grow due to the coupling. .An interesting thing happens ii one sets

~l(o)@(o) = tan [0/2]. The growing modes on both interfaces cancel, and the

interfaces become stable. Likewise, if q ~(0)/q2(0) = cot [f3/2], the osallatory

modes cancel. This is a type of freeze-out, which is also seen in the Richtmyer-

Meshkov interface coupling.

For the system of multiple interfaces, shown in Figure 2-4, the expres-

sion for the growth of an individual perturbation is somewhat more complex. A

brief review of the derivation of this expression will now be presented.

Mikaelian’s model assumes uniform density in each layer and neglects

viscosity, surface tension, and heat transfer. The derivation starts with Eq. (17).

For this derivation, one may replace V~ with just the spatial component in z,

which will be designated here as W. The other two spatial components and time

dependence may be canceled out of the equation. To obtain the jump condition,

Figure 2-4: Stratified Fluid Layers.

Perturbations on interfaces in x-y plane. ~ gravity
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one again integrates Eq. (17) over each interface, but the result for the stratified

fluids case is slightly altered from Eq. (18). It is given by

(35)

wh~re the A operator refers to the difference in the fluid quantities above and

below the interface. Eqs. (35) is a system of equations for N -1 interfaces and may

be written out as:

i ~~(w(z~)) + CIW(ZJ = (x)~w(z~) i=l

AiW(zi _ ~) + BiW(zi) + CiW(zi + 1) =
(J

1 W(Zi) (36)

A~_lW(Z~.Z)+B~_lW(Z~-l) =
(J

: ‘(zN-l) i=hl-1.

The subscripts on z refer to the value of z at the ith interface. The quantities in Eq

(36) are defined as:

Ai =
‘Pi

Ci =
sinh[hi](pi+ 1– Pi)

‘Pi+ 1
x

2
sinh[ki+ I](pi+ 1– Pi) = gk

[

k~.

[1 1

1

(37)

Bi =
Pi+lri+l+piri r, = tanh ~ + i= 2...2-2

(Pi+ 1- Pi)
1 sinh [k~i]

1 i=l,lv-1

This is an eigenvalue problem with eigenvalues 1/X and eigenvectors,

W, and maybe written in matrix form

.

a
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U/

The matrix M is a (N - 1) X (N - 1) band matrix with elements Ai, l+, Ci,

from Eq. (36); W is an N - 1 dimensional eigencohunn with elements

W(ZI )$ W(Z2), . . . W(2N _ ~) which are the values of W at the interfaces. There are

N – 1 eigenvalues, each with its ccjrresponding eigenvector. Unlike the single

interface case, the eigenvectors do not correspond to the growth of a particular

interface. The eigenvectors with thejr respective eigencolumns are referred to as

normal modes. To obtain the growth at an individual interface, the contribution of

all the normal modes to that interface must be summed. The relationship between

W and q is simply W(z) = ~q/N. UJsingthisands urnmi.ng over all modes one

finds the amplitude at interface i to be

The 1 subscript on W and y relates each eigenvector to its respective

The y used here is the one given in Eq. (37).

(38)

eigenvalue.

Mikaelian’s theory is only valid in the linear regime, but Ott derived a

theory for stratified fluids that is valid into the early stages of the nonlinear

regime [Ott]. Unfortunately, the theory is limited in applicability to large Atwood

numbers and large A/~, but may be used to provide insight into the evolution of

the feed-out foils after the foils have become thin from ablation. The theory pre-

dicts the growth of perturbations on an infinitesimally thin ribbon of fluid sand-
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wiched between massless fluids on either side. The derivation is elegantly simple.

Using Newton’s second law, Ott wrote an expression for the force on a differential

length of the thin film, which included pressure and gravity. From the accelera-

tion, he derived equations for the position as a furdion of time, which were a set

of linear coupled partial differential equations. Solving these, he found the posi-

tion of a piece of the thin film, originally located at (x = ~, y = O) was given by

(39)

where the functions ~~(K, t) and ~~(K, f) are solutions to

~+ Kgg=o. (40)

The superscript a, labels the four linearly independent solutions of Eq. (40). If one

assumes ~- e-Zot, then there are two oscillatory roots with co = f~g, one grow-

ing root, co = i~g, and one decaying root, @ = –i~g. As the K components do

not correspond to a perturbation that is sinusoidal in space, the theory is nonlin-

ear. Because of this, K and co are similar to k and y of the linear theory, but not

identical.

Ott observed the evolution of a speaal case of Eqs. (39), with
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where CS is the sound speed. Stability is assured in a compressible system by a

lack of density inversions on the interfaces. The maximum growth rate for any

multilayer system with no surface tension, a free lower boundary and either a

fixed or free upper boundary, is y := wk.

Considering the multimode work of Haan in the light of the stratified

fluid work presented in this secticm, one may realize that any harmonic modes

generated by nonlinearity should couple across the interfaces. Interface coupling

of the harmonics could result in the system approaching nonlinearity faster, as

there would be additional second order terms in Haan’s mode coupling expres-

sion. Such a coupling was not experimentally observed in the feed.-out experi-

ments, probably because the ablative stabilization discouraged harmonic growth

on the hot surface.

2.2.5 The Richtmyer-kfeshkov Instability

If a shock passes through a perturbed interface, the perturbation will

usually grow. This is the Richtmyer-Meshkov instability. The effect of the shock is

to briefly accelerate the perturbation, giving it a velocity with which it coasts

afterward. This instability occurs in the feed-out packages when a shock created

by hohlraum radiation interacts with a perturbation on the cold surface of the foil.

The growth of a perturbation under the influence of the Richtmyer-
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(41)

where the initial amplitude is given by H. This curve is composed of a number of

sinusoidal modes, but as H becomes small, they all disappear except the funda-

mental sinK~o, and the solution approaches linear theory. Eq. (41) evolves kto

bubbles and spikes, with fluid flowing into the spikes from the bubbles on either

side. When the ribbon of fluid folded back on itself forming a loop, the solution

became unphysical. Mikaelian showed his linear theory to be equivalent to Ott’s

for cases of small perturbations [Mikaelian 1996].

Compressibility effects in stratified fluids are important for a more

accurate understanding of the real systems encountered in experiment. Yang and

Zhang theoretically studied general properties of stratified incompressible and

compressible fluids using the linearized Euler equations [Yang 1993]. Their work

provides some insights into compressibility effects in such systems. They proved

that all eigenvalues, or perturbation growth rates, for a stratified fluid system are

real and nondegenerate. They showed that a system of compressible fluids is

always more unstable than an incompressible system with the same equilibrium

density distribution.

compressible system

and for

Two necessary and sufficient conditions for stability of a

are for there to be no density inversions on any interface,
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Meshkov instability maybe estimated by applying the linear Rayleigh-Taylor

instability model to the perturbation, during the acceleration period of the shock.

The perturbation will then grow acccxding to

q(t) = qoeyf.
.

Take the second derivative of this expression with respect to time, then make the

assumption that the time period during which the acceleration is nonzero is very

smail, such that fs O

have the expression

during this period. Then the exponential goes to one and we

2

Integrating twice gives the perturbation amplitude as a function of time

~ . l+kAv~f,
%)

where v~is the difference in fluid velc)city across the shock. This simple analysis of

the Richtrnyer-Meshkov instability is referred to as the impulsive model and was

first presented by Richtmyer [Richtmyer]. There are some difficulties with the

impulsive model. It is only valid in the linear regime. The impulsive model also

predicts immediate growth of the perturbation after shock passage. Of course this

does not happen because the veloaty imparted to the trough and crest of the per-

turbation are equal. Also, the shock compresses the perturbation and both fluids

as it passes by. The amplitudes before and after shock passage are thus different,

leading to some ambiguity in the expression.
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Yang, Zhang, and Sharp compared the impulsive model to computa-

tional solutions of the linearized hydrodynamic equations, which are more accu-

rate ~ang 1994]. They found the best agreement by using post-shock amplitudes

for the reflected shock case and the average of the post- and pre-shock amplitudes

for’the reflected rarefaction. For the weak shock limit, the impulsive model and

linear theory provide the same solution, but they diverge as shock strength

increases. The agreement is also improved as the adiabatic exponents of Jhe two

fluids increase, while remaining approximately equal to one another. Good agree-

ment was found to be particularly true for the reflected rarefaction case. The larg-

est discrepanaes occur when the adiabatic exponents are substantially different

and the shock is very strong.

The impulsive model was presented here despite its flaws because it

provides a clear insight into Richtmyer-Meshkov instability physics. For a more

rigorous treatment of the instabili~, one may apply linear perturbation theory

directly to the Richtmyer-Meshkov problem. First, a solution to the Riemann

problem must be obtained, which is simply the problem of a shock hitting a flat

interface. The hydrodynamic equations are then Linearized around the solution to

the Riemann problem. This two step process is necessary because the differential

form of the hydrodynamic equations is not valid at the jump interface created by

a shock, but only in the fluid on either side of a shock.

There is no closed form analytic solution to the Riemann problem, but

there is a way to solve it geometrically by constructing a wave diagram in the

9
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pressure-velocity plane, p-v plane, see Figure 2-5 [Yang 1994]. One can show for a

given state of the fluid ahead of a shock, the veloaty behind the shock is given by

,
1

1

()
-.

v = M‘[(yG+l)p+(y~- l)pal 2.V.-(P -Pa) ~, (42)

Figure 2-5: Riemann l%oblem
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The subscripts a refer to the state ahead of the shock, whereas quantities

without subscripts represent those behind the shock; y~ is the adiabatic exponent

of the gas. Eq. (42) is a curve in the p-v plane. Now consider what happens when a

shock hits a discontinuity. There will be a transmitted shock, and either a reflected

rarefaction or shock. Both the reflected and transmitted waves will have curves

given by Eq. (42) on the p-v diagram. Curve ML is the curve for the transmitted

shock, RL is for the incident shock, and AB is the reflected wave. The states of the

fluid behind the transmitted shock and reflected wave must be the same. Thus,
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the solution to the Riemann problem for the state of the material at the interface is

the intersection of the two curves on the diagram, at point M. If point M is above

R, as in the case shown for the curve AB, then the reflected wave is a shock. If M

was below Ron AB, a rarefaction would be the result.

, Sometimes curves ML and RL cross at a point S, as shown in the figure.

In such a case, as shock strength increases, All moves upward to the position CD.

On CD, M is below R, meaning the reflected wave is a rarefaction. Thus, whether

a shock or rarefaction is reflected depends on the strength of the inadent shock.
L

The nature of the reflected wave maybe determined as follows. In gen-

eral, if the incident shock moves from low to high impedance, YGZPZ+ YG1P1,

then M is above R and a shock is reflected. From high to low, a rarefaction results

and is referred to as “normal reflection.” If the material properties of the two

gases satisfy inequality (43)

(43)

then the situation is more complex, and curves RL and ML cross at the critical

shock strength of

2(YG1P1‘YGIP1) = P–Pa
s = (YGI-l)PI -(YG2-1)P2 ~“

The subscripts 2 and 1 refer to the material the shock is moving from

and into respectively. If Al? is below point S, normal reflection occurs, but if it is
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above, then normal reflection is reversed. If the shock strength is preasely S, then

the impedances of the gases exactly match, and there is no reflected wave in linear

analysis.

If there is an initial perturbation at the interface, then the shock or rar-

efaction reflected from the interface will also carry a perturbation. The reflected

shock or rarefaction is the leading edge of the flow field of the Richtmyer-Mesh-

kov instability. Fluid in the flow field will be imprinted with the perturbation. A

perturbation on a shock will decay with time and distance away from the inter-
L

face, but a perturbation on a rarefaction will neither grow nor decay. A stable per-

turbation on a rarefaction implies that the imprint on the ablation surface could

be larger when the reflected wave is a rarefaction than a shock. The reflected wave

in all the feed-out experiments was a rarefaction.

The perturbations at the interface may undergo one of two types of

phase inversion: direct and indirect. Direct phase inversion is caused directly by

the shock-interface interaction, and phase inversion occurs at or before the shock

has passed the interface. In indirect phase inversion, the perturbations are not

phase-inverted immediately after the shock has passed, but are moving in the

direction of inversion. Later in the evolution of the interface, they invert. Direct

inversion cannot occur when the reflected wave is a shock and only occurs when

the reflected rarefaction is sufficiently strong. Indirect inversion rarely if ever

occurs when the reflected wave is a shock. Thus, for a direct phase inversion to

occur, the reflected wave must be a mrefaction.
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Freeze-out is a condition where the perturbations neither grow nor

decay after shock passage. This type of freeze-out should not be confused with

freezeout from interface coupling. No perturbation growth occurs because the

shock reflected from the interface exactly cancels the effects of the shock transmit-

ted through the interface. This situation can occur for both reflected rarefactions

and shocks, but it cannot occur if the two adiabatic exponents are equal. It is

believed impossible for freeze-out and total transmission to occur at the same

time.

Just as the impulsive model is not as rigorous as the linear model, the

linear equations are not as accurate as the nonlinear hydrodynamic equations.

Each model predicts a different growth rate with time. To study the differences

between these models, Holmes, Grove and Sharp computationally investigated

the Richtmyer-Meshkov instability between air and SF6, and between air and He

[Holmes]. They compared the results of the linear model to nonlinear hydrody-

namic equations. The shock strength was Mach 1.2 in air, and the perturbations

0.24 cm in amplitude and 3.75 cm in wavelength. A sketch of their general results

is shown in Figure 2-6. Twice there were deviations of the linear from the nonlin-

ear results at 70 and 200 W. Both of these deviations result in a decrease in the

growth rate from the linear prediction and are generated by the creation of sec-

ondary shocks from nonlinear interactions. The secondary shock interaction at

200 w is so strong, it results in a permanent deceleration of the bubble. In addi-

tion, the linear solution contains acoustic waves, whereas in the nonlinear case
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Figure 2-6: T~ical Richtmyer-Meshkov Growth Rate
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these waves may steepen into secondary shocks. There are two important features

of the linear solution causing these ctifferences. Characteristics are not allowed to

focus, creating secondary shocks, and linearization constrains the geometry of the

wave fronts to be sinusoidal.

As with the Rayleigh-Taylor instability, mode coupling occurs in the

Richtmyer-Meshkov instability. Mode coupling is slower in a Richtmyer-.Meshkov

instability because the fluid is under acceleration for a much shorter time than in

the Rayleigh-Taylor instability. Given sufficient time, the harmonics combine to

form bubbles and spikes. Haan extended his mode coupling model far the Ray-

leigh-Taylor instability to the Richtmyer-Meshkov instability [Haan August 1991].

The impulsive model was used, with the assumption that g = O and the pertur-

bation is coasting at some constant velocity, which leaves the derivation of Eq.
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(28) unchanged. The solution is

assuming the dominant modes have been growing long enough that

During late times, the bubble and spike velocities may be described by

the power law, v = cf-a where c and a are some constants [Holmes] .There is a

sharp ~ontrast between these exponentially decaying velocities of the Richtmyer-

Meshkov and Rayleigh-Taylor instabilities. In the Rayleigh-Taylor instability, the

bubble approaches a constant veloaty and the spike undergoes free fall for high

Atwood numbers.

2.2.6 The Richtmyer-Meshkov Instability in Stratified Fluids

If there are multiple fluid interfaces within the distance of several per-

turbation wavelengths of each other, a Richtmyer-Meshkov instability on one will

couple with all the other interfaces. The situation with multiple interfaces is

shown in Figure 2-4, with the gravity vector pointing in the direction of accelera-

tion from the shock. Even if an

unstable interfaces will produce

interface is stable by itself, coupling with the

perturbation growth. This is analogous to the

Rayleigh-Taylor interface coupling discussed in section 2.2.3. Richtmyer-Meshkov

interface coupling is one of the two mechanisms by which the perturbation on the
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cold surface of a radiation driven fcil feeds-out to the ablation surface. It is thus

important in understanding the feed-out experiments. The second mechanism,

differential acceleration, will be discussed in section 2.2.7.

A theoretical basis is alwa:ys a good start for the study of any phenome-

non of interest. Mikaelian extended his stratified fluid theory to the Richtmyer-

Meshkov instability using the impulsive model IMikaelian 1985, 1995]. The result

is a simple expression that clearly shows the physics of interface coupling but

does not address such complexities as compression or radiation. Taking the sec-

ond derivative of Eq. (38) and replacing g with v~~(t – t~) where t~ is the shock

arrival time, then integrating twice gives

~-1~-1 ~2W~(zi)

qi(f) = ~i(”) + tii(”)i+ ‘S ~ ~ 11 m(~j(”) “ij(”)f~)(t- ‘~)e[f”- ‘~1s (u)
l=lj=l 1

There are some problems with this expression. It assumes the same velocity is

imparted to each interface by the shock, which is unrealistic. As the shock inter-

acts with each interface, either a reflected shock or rarefaction will result, which

will interfere with the growth on other interfaces. Also, Eq. (44) assumes the

velocity from the shock is imparted at the same time to all the interfaces, which is

unrealistic. To apply Eq. (44), the acoustic impedances of the interfaces must

match or be very close, and the time necessary for the shock to pass through the

various layers must be short compiired to the growth rates of the instabilities.

Nevertheless, one may use Eq. (44) to learn about interface coupling of the Richt-

myer-Meshkov instability.
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By taking a two-interface problem where the densities on each side of

the middle layer are the same in the pattern A/B/A, Eq. (44) simplifies consider-

ably to

qz(f) = 712(0)+~::;1(?12(o)-sin[~l~l(o))f?

(45)

where 0 is a coupling angle. O is again defined by Eq. (34). Subscripts 1 and 2 refer

respectively to the first and second interfaces the shock hits.

Eq. (45) has many interesting characteristics. Interface coupling and

feedthrough can easily be observed here. In addition, if q ~(0) /q2(0) = sin [19],

then the first interface does not grow. Likewise, if q2(0) /qI(0) = sin [0], the

second interface does not grow. The freeze-out described here for the Richtmyer-

Meshkov instability is similar to freeze-out in Rayleigh-Taylor interface coupling,

with the exception that only one of the two ir$erfaces may be frozen at the same

time. Freeze-out with the Richtmyer-Meshkov instability has been computation-

ally observed but remains to be experimentally verified [Mikaelian 1996].

As an educational exercise, the growth rates of three cases, the second

of which corresponds to the feed-out experiments, are considered using Eq. (45):

Case A: ql(0) = q2(0) = qO sinuous shape,

Case B: ql(0) = qO T2(0) = 0/

Case C ql(0) = –T2(0) = q. varicose shape.
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A density ratio of p~/p~ = 3 is used and a normalized growth rate for

the iti interface is defined as, NGRi = ~i/(qoV~~). The normalized growth rate is

the coupled growth rate divided by the growth rate of an uncoupled interface

with an Atwood number of one. Because the fluid interfaces in this example do

not have an Atwood number of one, the normalized growth rate is not exactly

unity when the interfaces are growing classically. Figure 2-7 shows a, sketch of

approximately how this value varies with h. For h = 10, all of the interfaces have

decoupled, and the classical growth rates are observed, but for lcr=O.01, the inter-

faces have completely coupled, and have the same growth rates. Case A turns into

a varicose shape after shock passage, as the interfaces grow in opposite directions.

Freeze-out occurs in this case for low h. Case B is representative of the situation

in the feed-out experiments. As h becomes small in this case, interface 2 begins to

grow with interface 1, even though it has no perturbation, producing a sinuous

shape which was experimentally verified with face-on radiography. The growth

rates actually increase over the classical value as the two interfaces couple. The

growth rates in Case C are also larger than classical for strong interface coupling.

Both interfaces always have the same growth rate in this case. Case C also

becomes sinuous, but more strongly so than Case 1?. One can see that interface

coupling can either increase or decrease the classical growth rate depending on

the situation.
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Figure 2-7 Sketch of Normalized Growth Rate
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Nonlinearity., compressibility and density gradient effects have signifi-

cant influence on interface coupling with the Richtmyer-Meshkov instability but

are not included in Mikaelian’s theory. All three of these effects are present in the

feed-out packages. Systems with these characteristics are too complex to be ana-

lyzed with theory, and are always either computationally or experimentally stud-

ied. A paper by Baltrusaitis presented calculations and experiments performed in

order to study the Richtrnyer-Meshkov instability in thin films that were nonlin-

ear, compressible, and had a density gradient [Baltrusaitis]. SF6 gas flowed

through a contoured nozzle into a shock tube filled with air. Both sides of the noz-

zle were corrugated, producing a gas curtain with a varicose cross section and dif-

fusive boundaries. The exact shape of the perturbations could not be controlled

preasely from shot to shot, but the initial conditions were recorded before each

shot. The dominant wavelength of the initial perturbation was about 6 mm, while

the curtain thickness was around 3 mm. The shock was a Mach 1.2. Diffusion of
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the gas formed a density gradient at the fluid interfaces, similar to the density gra-

dient formed in the feed-out packages from preheat.

..-5 ..-, . . . . . .

lhree ctmerent types of flow pattern were observed and modeled.

mushrooms developed when the initial perturbations were predorni-

the upstream side of the gas curtain, or when the amplitude of the

perturbation was much greater than the downstream perturbation.

downstream mushrooms evolved from a large perturbation on the

Upstream

nanny on

upstream

Likewise,

downstream side of the curtain. A sinuous pattern developed with no mush-

rooms when both interfaces had roughly equal perturbation amplitudes, or the

downstream side was slightly larger. The gas curtain remained intact beiween the

mushrooms, connecting them in a bubble formation. Because SF6 is heavier than

air, the shock on the upstream side generated growth but no phase inversion. The

shock created growth and phase inversion of the downstream perturbations.

Thus, for an initially varicose curtain, the phase of the downstream side would be

inverted to match the upstream, forming a sinusoidal pattern.

These results may be understood by considering vortex dynamics. As

the pressure gradient from the shock interacts with the density WadLent at the

interfaces, it generates vorticity. The strength of this vorticity is directly propor-

tional to the amplitude of the perturbations. Thus, the interface with the largest

amplitude has the largest vorticity, and dominates the flow. Computational analy-

sis showed that only one pair of vortices were in the gas curtain, the competing

vortex pair from the weaker interface having been overcome by the larger. Even
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in the sinuous case, where both amplitudes were equal, there was only one vor-

tex, albeit a much weaker vortex than those of the mushroom curtains.These

results may also be understood from an interface coupling standpoint. When the

ratio of thickness to wavelength is small, Mikaelian’s interface coupling theory

predicts that the perturbation grows on the entire ribbon of fluid as a unit, not

separately on the interfaces. This was certainly the case with the gas curtain

experiments and is the reason for the gas curtain having to “select” one vortex

pair to dominate its evolution. A very similar selection between the Rayleigh-Tay-

lor and Richtmyer-Meshkov vortices was observed in the feed-out calculations

and is described in chapter 5.

Mikaelian computationally modeled the experiments in the Baltrusaitis

paper and predicted an additional flow pattern that was not observed in the

experiments IMikaelian 1996]. If the curtain was initially sinuous, Mikaelian pre-

dicted that both upstream and downstream mushrooms would develop. Pertur-

bations are initially in phase in a sinuous pattern. The shock reversed the phase of

the downstream perturbation creating a varicose pattern, which created double

mushrooms as it continued to expand.

So far, Richtmyer-Meshkov and Rayleigh-Taylor interface coupling has

been discussed as two separate issues, but the two are a coupled system in the

feed-out process. The only publications found investigating such a coupled sys-

tem were by Bel’kov [Bel’kov]. Calculations were performed on laser driven foils

with an initial perturbation on the cold side, very similar to the packages
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described in this dissertation. Foil thicknesses of 3 and 5 pm were selected, with

perturbation wavelengths of 10 and 2 ~m. Calculations were first run with these

modes on the hot surface of the package, then on the cold surface to observe the

difference in results. Both single and multiple modes were studied to observe

mode coupling in feed-out. Ott’s model agreed with the computational results

very well, both for initial perturbations on the front as well as on the back. The

applicability of Ott’s theory indicates the foil was sufficiently thin compared to

the wavelength that both interfaces were strongly coupled and grew at the same

rate. Qualitatively, it was shown that the interaction of the two modes differed

somewhat when the perturbations were placed on the hot or cold surfaces. The

difference was caused by acoustic-gFavity waves being generated in the case of

perturbations on the cold surface, but not generated when the perturbations were

initially on the ablation surface. Acoustic-gravity waves are part of the lRichtmyer-

Meshkov instability and are a subject discussed in the next section. IJnlike the

Bel’kov calculations, the feed-out foils move from states where the lRichtrnyer-

Meshkov and Rayleigh-Taylor instabilities are not coupled to the state where

there is complete coupling and the R,ayleigh-Taylor instability dominates.

2.2.7 Atmospheric Type Modes

The calculations and experimental data both suggest that all the feed-

out packages have an internal osallatory mode which interacts with the instabili-

ties. Because of the acceleration of the foils, there are at least three important inter-
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nal modes allowed by the physics. These are the acoustic, gravity, and Lamb

modes, which are all present in the atmosphere. After these three candidates had

been identified the task was to determine which mode was present in the experi-

ments. The acoustic mode is usually assoaated with the Richtmyer-Meshkov

instability as sketched in Figure 2-6 so it was initially considered the most likely

candidate. Indeed, later calculations indicated that the mode in the feed-out pack-

ages was probably acoustic; however, a short description of each is presented here

because it is necessary to understand how to differentiate between the three
>

modes. In addition, the physics of the packages allows for all three, and any one

of them could be found in future experiments similar to the ones presented here.

The acoustic mode has a different dispersion relation than classical

acoustic waves under the influence of acceleration. A general dispersion relation

for the acoustic and gravity modes is presented in Gossard and Hooke [Gossard]

6-’)(1-$)=$
The symbol N2 is called the Valsala-Brunt frequency and is given by

.. . .. ..

(46)

while r is termed the Eckart coefficient,

lap g
r = ——+

Zpaz ~; “

Eq. (46) was originally derived as the dispersion relation for internal oscillatory
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modes propagating in the atmosphere and is for the speaal case of a nmrotating

earth. The z coordinate is altitude. Because the density and sound speed are a

function of altitude, the Eckart coefficient and Vasala-Brunt frequency are also.
.. . .. ..

The expression assumes no vertical component to the propagation.

The atmosphere is much like the feed-out foils and ICF packages in

general. It is a compressible fluid, under the influence of a gravitational field, and

decreases in density with altitude just as the ablation and cold surfaces of the foil

decrease in density as one moves away from the center. There are four roots to Eq.

(46) w~ch are forward and backward propagating acoustic and gravity modes.

The gravity mode may be understood in terms of an internal Rayleigh-

Taylor instability. In incompressible fluids, the Rayleigh-Taylor instability is a

mode that oscillates as a stable wave if y is imagina~, or, if y is real, has growing

and decaying parts. In either case, the Rayleigh-Taylor instability exists on the

interface of the fluids and is driven by gravity. Any penetration into the fluids of a

growing perturbation drops off exponentially from the interface. In a compress-

ible fluid, the mode may exist inside the fluid itself in which case it is an internal

gravity wave. To visualize this, imagine a fluid particle in a gas which has a vari-

able density with height due to a gravitational field. If the fluid particle rises, its

pressure will drop to equilibrate with the surrounding fluid, but it will still be

slightly denser than the fluid at that height. As a result, it will be pulled “bygravity

back to equilibrium, and due to inertia, pass the equilibrium position, moving

lower to a position of buoyarq. The oscillation may be stable, or increase in
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amplitude with time depending on the fluid conditions.

An approximate sketch of the solutions to Eq. (46) is shown in Figure 2-

8. The acoustic branch of Eq. (46) is given by the conditions co2/k2 > c; and

0> N. It approaches the classical acoustic dispersion relation for large k,. For

small k, it has a cutoff frequency, N: = N2 + c~172,below which it does not propa-

gate. The gravity branch is given by the conditions co2/k2 e c: and o <N. It does
.

.. . .. ..
not propagate above the Varsala-Brunt frequency, which it

approaches as k becomes large. One may see that differences in

asymptotically

the dispersion

relations is the key to distinguishing between the acoustic and gravity modes. The

Lamb mode is defined by the intermediate condition for a nonrotating earth,

(.02/k2 = c:, which is just the classical acoustic dispersion relation. Because of

this, the Lamb mode is not always easily distinguishable from the acoustic mode

Figure 2-8: Atmospheric Type Modes
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based on the dispersion relation alone.

Depending on the state of the fluid, the gravity and Lamb modes may

have a real component, making them unstable. The first to investigate this in rela-

tion to inertial fusion plasmas was %annapieco [Scannapieco]. He performed a

linear perturbation analysis on the equations of hydrodynamics, similar to the

one in section 2.2.2, with two important differences. He assumed a zeroth order

density variation in the direction of gravity of, pO(z) = pO(0)ez’~ where His a

scale length, and he assumed compressibility. The equivalent expression to Eq.

(19) was no longer second-order, but rather an eighth-order polynomial in y,

admitting complex conjugate pairs of gravity, acoustic, and Lamb mocles. As the

value of H changed, so did the stability of the modes. Table 2-1 shows. the stable

and unstable modes. The symbol Y(; is the adiabatic gas constant. The acoustic

modes are always osallatory. The classical Rayleigh-Taylor instability is the grow-

ing internal gravity mode for H >0, however, the growing gravity mode for Hs -

qi2/g is not a fiyleigh-’Tayk mode. The Lamb mode is the most interesting, as it

has a real component to the growth rate for all but the specific case of H = -c~2/

y~. The Lamb mode is almost always unstable.
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Table 2-1: Mode Stat

H Acoustic Gravity

H>O oscillatory growing

H > ‘c~2/yGg oscillatory osallatory

H= -c,2/y& osallatory oscillatory

El< -c,vyGg oscillatory oscillatory

H > -c~2/g oscillatory growing

my

Lamb I

oscillatory

growing-oscillatory

growing-oscillatory
I

Scannapieco’s results have important ramifications for the feed-out

foils and ICF capsules. They imply that internal fluid instabilities may exist in

addition to the Rayleigh-Taylor and Richtmyer-Meshkov surface instabilities. The

internal instabilities could be disruptive or benign to capsule performance. Scan-

napieco’s paper indicated that Lamb instabilities would probably saturate rapidly

after growth in the linear phase. Thus, to distinguish between acoustic and Lamb

modes, one looks at the linear behavior. If there is growth and an acoustic-like dis-

persion relation, the mode is probably a Lamb mode.

2.2.8 Differential Acceleration

Feed-out of a perturbation from the cold to the ablation surface occurs

by at least two mechanisms. Richtmyer-Meshkov interface coupling, which was

described in section 2.2.6, is one mechanism, and differential acceleration is

another. Both of these effects result in a perturbation on the ablation surface 180°
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out of phase with the original perturbation on the cold surface. Both differential

acceleration and interface coupling seed the Rayleigh-Taylor instability and

growth on the ablation surface begins.

Differential acceleration may be understood by considering two col-

umns of fluid, one running through the trough of the initial perturbation and the

other running through the peak. The column of fluid running through the peak

will have a greater mass. Because the force of ablation from the X-ray drive is uni-

form across the hot surface, the acceleration of the thinner column will be greater

than that of the thicker one. As the thinner column begins to move past the

thicker, a perturbation will appear on the hot surface.

A simple expression predicting the feed-out from differential accelera-

tion is easily derived [Hoffman 1997], see Figure 2-9. The mean acceleration of the

foil is g = F/m where F is the abli~tive force and nz the average foil mass. The

mean position of the hot surface, x(t), neglecting ablation, is x(t) = gt2/2. The

ratio of the difference in mass of the fluid columns, Am, to the average mass may

be written, Am/m = ‘qo/z. Combining these three equations, the amplitude of

the perturbation on the front surface is q~~(f ) = Ax(t) = x(f )qo/z. Differentiat-

ing to obtain the growth rate, one finds, ~~~(t) = i(t)qO/z = vP~qO/~, where

Vps is the post shock veloa~ of the fluid. The acoustic waves generated by the

Richtmyer-Meshkov instability will cause the differential acceleration to saturate

as the cold surface perturbation phase inverts. Saturation is expected to occur on a
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time scale on the order of the frequency of the acoustic wave, which is approxi-

mately tPI = )dcs. The maximum growth from differential acceleration is then

%Amux = (vP~/c~)(Uz)qo. Note that this expression is a function of A/z, like

interface coupling.

Figure 2-9: Differential Acceleration
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