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Errors when Shock Waves Interact due to Numerical Shock Width*

RALPH MENKOFF

Theoretical Division
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(send correspondence to Ralph Menikoff (505) 667-7761, FAX (505) 665-4055)

ABSTRACT

A simple test problem proposed by Nob, a strong shock reflecting from a rigid WW1l,&mou-

strates a generic problem with numerical shock capturing algorithms at boundaries that

Noh called “excess wall hea~ing.” We show that the same type of numerical error occurs in

general when shock waves interact, The underlying cause is the non-uniform convergence

to the hyperbolic solution of the inviscicl limit of the solution to t!~e PDEs with viscosity.

The error can be understood from an analysis of the wymptotic solution, For n propa-

g~ting shock, there is a difference in the total energy of the parabolic wave relativr to thr

hyperbolic shock. I’&reovcr, the rhtive tmergy (Iepends on the strength t,: the shock. TIN*

error when shock wavw il~teract is dlw to the tliffertmcc in the rt~lutive vnrrgi~w Iwtw(wl

the incoming nnd o~lt,going shock wuves. It is ntidogotls to a l)hase shift in n scdtt~rillg [:ln-

trix. .4 umservntivr (lilfmenring schmw corrrctly (Icscribm tlw Hugmiot julnp cofl(lit.iolls”

for n stcutly Inqmgnting Aock, Therrfore, the mror from the wynlptoticw occllrs ill t Iw

trnnsicnt whm thi~ wnve~ iutmnct, The w~tropy error timt omlrs in tht: intmwtitm rvgioli

rmmin:f h)cdim! Imt (h.m not dis~ipntr. A :wnling nr~ummlt slmws thnt [w tht” viscosity

C(dficirnt g(Mwto zmx). the mror shrinkh ill slmtin] rxtm[d I)llt is rollst.nllt ill Itingllitll(b,

LN(JII’SIm)l)lrm of thu rdlccti(m of al sll(wk (LXMII:{ rigi(l wnll i~ r(l{llvnlmlt II) t.lw s:;lllllwtri(’

illllmct of two shock wnvrs of tlw (qll)osit(” fnlllily ‘l’lIt*n!;yll]l)toti(= Ilrglllll(’llt Sllow!i 111111

t 11!’ SIUII(* type of (mliwricnl (*rrl}r wfNIhl IW{’I’O-WlIrII tlw sll(wks nw ~~ftIIIr(lIinl strvtl,~t il

‘1’!IIIs, N(di’H proldc,n is illdicntive t}f n 1111111Irnl rrror t,lmt !W{’IIMwhtw sllo~’ks il)t(’r~l~-t

(IIW to t,l)r Illillwri(’nl sluwk wiflth.
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Errors when Shockwaves Interact

1. Introduction

The equations for ideal fluid flow

()

P
d, pu

p(+u~+E)

March 4. 1!393

form a hyperbolic system of conservation laws

(

pu \
+ a, @ + P

)

= o

#4~u2+E)u+Pu

(1.1)

where p is the density, u is the particle velocity, E is the specific energy, P( V, E ) is the

pressure and V = 1/t~ is the specific volume. Dissipation only occurs across a shock

wave and physically is accounted for by imposing the Rankine- Hugoniot juxnp relations

across the shock discontinuity. Finite difference shock capturing algorithms are freq~wntly

used to obtain a numerical solution to the fluid flow equations. These schemes have i~

numerical dissipation that gi..’es u sll(wk wave u small width me~urecl in grid cells, b[It ml

artificially large spatial width compared to the typical shock width that physically occurs.

The effect of the artificial shock width is largest when shock waves interact. To determinv

the eifect of the numeric-al shock width, we analyze the asymptotic solution for n simplv

shock interaction when a viscous dissipntivr term is Mlrlcd to the ideal fluid tvllmtitms,

The prohlrm w{’ c(].wi(ler in [lrt~lil is n strmig shock ill ;tii i(h’.al giu rdh’ct.ill,q frt)[ll

n rigid wtdl, This is (wlllivnl(tl]t to t}w il~trrm”tit)ll l)(~tww=ll tvl~lml strength sll<)(”ks of tlw

(qqxniitr fmnily, It is silllilfw to n tmt p.-ol)lrn~ ,N(dl [3] introtlllce[l Lhnt rxtmplify rrr(ws ill

Illullrrirnl cuhnht.ions (Ilw to nrtiticinl viw’otiity. 111 L~oh’~ IA)lwn the iuitid (Int,n (x)llsistls

of u Il]lif(mn stut,r t)f cold ~~LS with u r[)llstnllt vehwity (Iirrrtrd t,{)Wilr(hi m rigi(l wnll, Its

wd~lt,i(m INWn str(mg olitgoillg :dltwk. [hv’nllsv of t,lw Zrrt) illitid st~llnd slwwl, W1:~lldytir

wd~ltii,lil r~ists in I)liillnr, :.ylilltlrirnl NI1(ISl)tm”icnl gr(~llwtlry. ‘1’yl)il.dly, illllli(~ri(.;il s(dlllit)[ls

lI;Iv(’ ;III (vltrony mnw nt tlw lMNIII,luy, ‘I’lIt~ sllo(k illh’rlwfitu~ llr(ddrlll (x)llsitlvr~’~i Il(v(’

is I(WSsillglll~ tl!lcll tlw 1$~)11lmll~lrlll, ‘1’11(.illitinl slntr is ww~lIIml to Il:tvr n sllloo~ll”

wnv(’

)( ’1”

iw
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energy in the visuous solution have the same value as those in the hyperbolic solution. \V~’

define the shock position of the viscous wave to have the same total mass aml momfixltun]

M the hyperbolic shock wave. An important q~iantity in the asymptotic antdysis is rhe

energy of the viscous shock relative to the energy of hyperbolic shock.

We show that there is a shift in the relative energy between the incoming and outgoing

waves. This implies that an entropy error must occur during the transient shock inter-

action. For a shock reflection, the transient take’- place when the shock profile ()~(~rliips

with the boundary. .After the transient, the entropy is frozen in place, i.e., col~verts iiloIi~

particle trajectories, and the error does not dissipate.

A scaling nrgument due to Noh shows that as the viscous coefficient goes to mm

the entropy error decreases in spatial extent but not in magnitude, It implivs th;it the

convergence t~f the invisci(l limit to the hyperbolic. solution is non- ul]iform in rr,gioIls wherr

shocks l~FLveiutvractd.

2. Asymptotic

I:!’)l



Errors when Shocli Waves Interact \larch-1. 1993

Simil~ly, the position of the wave could be defined by rnatrhing the total lxlonl(mtllll~.

T!m shock position based on molnentllm is obtained from Eq. (2.2 j by replacing t IW llli~ss

density p with the momentum density pu.

In steady state the mass flux is everywhere constant

p( IL–0) = lrl

Hence, there is a linear relation between mass density and momentum density pu = po + Ill,

Consequently the shock positions, bawd on rither the l.mss or momentum of the witvt~s,

are the same.

One collld dso I-Nwe thr shock position (m the total energy, HowevYr t.hv t’11(’rgy

(Iensity t“ = ( } U2 + E )p i:i not Galilean invariant, This would lvaci co a lloll-lllli(llll’ll~:ss ill

the shock position. Illstcatl, we (Mine t,hr relative tvwrgy hctween tlw visci)lls I)r(dilt. illl(l

the (liscontilluo~~s sh(wk with the shock positi~)ll INUKX1on mass

J
I*

[
1*,)~’r= f!,f(~~--~“h)} fff(t:t-,,)rb r,

J
I*..:ff,r ( t“ - t:,, ) -- (J’,, - .r~ ) ( & -- t:,, ) (2,3)

Ib

\Vt’ IIott” tllilt, (ft- “ “* () (xmrs]x)li(ls to ;II1 t’xtxvis (wrrgy ill t,li(’ visc[)lls I)r(iil(s t~v(’r III!’

{lis~’t)~lt,illll(]~lsstlo(-k,

\Vr llt’~t N]l[nv Il]lnt I II(* r(’lativ{’ f.llf’r,~y is (;nlil!’lill illVltliilllt, Iul(l 11~’llt”(’WcSll !I[hlilit-,1.

111 n r Ift’rfvwe hmtw IIltn’iIIg wit,ll rf’lativ(’ V1’l{wity u’ t,llt’ t’llc’r,gy fl~~ll:;ity is II;lllbf(ll Illftl

lImt, IIIIS il(l(lilltlll;ll

If’ !4:IIIII’ follll :1,! Ill

I,llt’ !+Ill)(’k I)t)’.lll{)ll
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3. Von Neumann.. Richtmyer Viscosity

Viscosity can be incorporated into the fluid equations by adding a viscous ~ressllrt?

onto the fluid pressure, P -+ P + Q in Eq. ( 1.1 ). We analyze the viscous fluid cquaticms

using a von Xeumann- Richtmyer viscosity [?) and an ideal gas equation of state. The von

Neumann- Richtmyer viscosity is defined by the viscous pressure

Q={:’‘e2(’o’u)2’U2v:s:’
(3.1)

where C. is a dimensionless viscosity and e is a hmgth scale proportional to the shock

width. Without loss of generality we can set CL, = 1. For an ideal gas

Pt” =(-y - l)E

with y > 1,

[11tlliti CWV, there is i~n twact analytic formlda for the visrous profile of ;1 shock wavr

[4], Let a IN! the shock velocity imd the vari~ble

(:1.:))

(3.1)

(:),:))

,)
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The integral is of the form evaluated in the appendix. It can be simplified to give

w, =Wb+

where q = t; /}~ is the compression ratio

a weak shock ~~ ~ 1 and w~ ~ O while

+r<ws <o.

(),) }-1
r ——

~(o–1)

of the shock. W’e note the limiting cases: for

It is convenient to calculate the relative energy of the shock profile in the rrst, frame

of the shock front, i.e., u = O. In this c~e the kinetic energy is \pu2 = \rra2V’ ad the

energy density can be expressed as

Substituting this expressicm

E= +r71U’+(T–1)-’P

into Eq. (2.3) for t hr relative energy

(3.10)

we obtain

-+

?rt-,,– ( ffl,, — Iftb)(t:~ – t-(, )I (3.11)
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(2) J&Tisafunction of the shock strength,

For weak shocks A&T/t’ - ( Ph – P.)J a[lclff]r stro[~g shocks d~r//*(P~– Pu).

(3) b~rvmi- with v,ax~dhex]ce theeqllatioll c)fstate.

This is a conseq~lcnce of the fact that the viscous pressure depends only on the (Iensity

and velocity, hence the shuck profile depends on the equation of state.

These important properties care expected to ht~ true for any reasonable viscosity ;mti tquu-

tion of state.

4. Example of Reflected Strong Shock

The effect of the shock width on ii shock

of a strong shock Alectillg from a rigid wall,

interaction can he seen in the simple c~a.se

To compare the viscolls s{)lutitjl~ with tht-

hypertmlic solution, we complltc the difference in the relatlve energy between the incoming

shock and the outgoing shock, ~~’r = d~~i - J~~r. We note that AEr >0 carrcspmls to

R net rxcew energy in the viwms slmck l)rofiles compared to the hyperbolic sh[wkis.

Lt’t ‘he prrss~lre Iwhin(l tlw inc(uui[lg sh(wk IN*P,,. “1’hr c(mlprcssion rati[> (of ;1 s:nlll,g

sl~(wk is 7~,,= ( ~ + 1)/( ~ -. 1). Tlw rfdhv.ttxl sil(wk is charncterizt’(1 l)y its I)rrssllr(’ rntio,

Pr., /~.. = 1 + 2~/( ~ - 1), ill:(i its r(mlprcssif)ll I’utlo, p,.,,/IJ9 = ~/( ~ .- 1),

I
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(l) A#+’xw T+l

This singularity is due to the singularity in the compression ratio at y = 1.

(2) A&T =Oatys 2.4

(3) The minimum value of L@ % -0.34 occurs at 7 ~ 4.65

(4) A&7-+ oas”/+m.

We note that in general A&T is not zero.

The constant flux ahead of the outgoing wave can be accounted for by comparing tht~

position of the shock in the viscous solution to that of the hyperbolic solution, The shift

in the energy of the viscous shock profiles implies that a steady state outgoing wave can

not simultaneously satisfy the flux relations for mass, momentum and energy. Instecwl,

the shock interaction must result in a transient. The transient occurs on both a fast and

slow time scale and results in an entropy error when comparing the viscous solution to the

hyperbolic solution.

Over the fast time scale, (shock width) /(shock velocity), the viscous pressure smoothes

out any discontinuity in the non-degenerate or acoustic modes. This is important wh~n

the positions of the imnming and outgoing shock waves are within n few shock wi(lths of

the wall. The pressure and particle velocity rapidly equilibrate towards the vrdum t)f thv

hypvrbcdic wdution i~~ the incoming shock profile changes to the outgoing profile. [)n the

slow time scnlc, tl~e viscous sol~ltion is close to the solution to the Riemann prohl(’in iiil(l

the outgoil)g shock pr(dilc approaches its stcruly state solution.
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during the trtmsient in which the shock profiles change. After the pressure and particle

velocity have equilibrated, the viscous pressure in the interaction region approaches zero

and the subsequent chang~ in entropy is negligible. Without heat conduction which would

give rise to diffusion of entropy, the entropy error is frozen into the particle trajectories.

Thus, the bulk of the entropy error from the interaction is confined to within a few shock

widths of the wall.

Let us consider in more detail the interaction region for the case when A&T >0. Near

the wail the outgoing viscous wave must have a deficit in energy equal to A&T in o:-der

to compensate for the ener~ dif%rence in the shock pro.i~s. Because the wall w uses the

particle velocity to go to zero, the energy density reduces to & = p13 = P/(Y – 1) and

is proportional to P. When the reflected wave has propagated a couple of shock widths,

the pressure has approximately equilibrated to the value behind the outgoing hyperbolic

shock. In order to conserve total energy, the viscous shock front must be slightly behind

the hyperbolic shock front. Then to conserve mass, on average p must be above the value

~ is. approximately constant, a high value for p implies onfor the hyperbolic shock. Since .

average the entropy S x log( P/pY ) is low.

At the wall, the pressure rise is more characteristic of a single strong shock then a

double shock. Since the t-mtropy is greater for a single strong shock then for two sequential

shocks to the same final pressure, right, at the wall we expect the entrol)y to h~ high ;UNI

the density to be low. This implies there is an oscillation in the density and entropy in

the vicinity of the wall. The pressure and density determine the specific tmrrgy throlll~h

t.he rquat ion of State. At the wall, a low vn.lue of p results in a high vnluc ~lf E, This

ngrww with the results of nummicai cnlclllnti{)ns nnd is what LWi)h 13] cnllcxt rxc(’ssiv(t w:di

Il(wtillg, rven though tlwre is n tlnulpfvl osrill:~ti[}ll iu tlw (Ilwrgy i~t)ollt the VdII(I 1)~’llil]{l

t.hr llylwrholic shock.
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the value for the hyperbolic shock. .+s time progresses, further errors in entropy outside

the interaction region are negligible.

We note that the initial data for Nob’s test prwblem corresponds in effect to taking

the relative energy of the incoming wave to be zero. In this case, the energy difference for

the interaction is A&T = ti&~. .Again, in general A&T is not zero and an entropy error

occurs from the transient interaction that forms the outgoing shock.

Finally, to understand the small distance it take for the shock to form and the pressure

and velocity to equilibrate we estimate the magnitude of 6&~ relative to the energy in the

shock profile. For illustrative purposes we assume y = 5/3. From Eq. (3.3) the shock width

is Ax = 2.72/. The compression ratio of a strong shock is q = (I + 1)/(7 – 1 ) = 4. From

Eq, (3.12), the energy ratio is 6&~/Ax&, = I/g. Thus the energy in the shock profile will

have a small effect on the shock interaction after the outgoing shock has propagated a

couple of shock widths.

5. Non-uniform convergence of Inviscid Limit

One important consequence of shock interactions is that the convergence of the inviscici

limit to the hyperbolic solution is non-uniform. This may be deduced through a scaling

argument introduced by Noh [3],

The inviscid fluid equations are scale invariant, Scaling space and time amounts to ;l

choice of unite. Viscosity introduces a l~ngth scale which breaks the invrwianvv. Howrvm.

under scaling, the viscous pressure is multiplied hy w constant. Therefore, by s(:idil~g

the coefficient of viscosity along with the leugth WA time SACS, the equntions arc i~g;lill

invnriant A wdution to the fluid equations with the von Neumann- Richtmym viscosity

is invariant under }.hc trnusformation x’ = (k~, t’ “= (Yt and C; = n2CU. F~lrthcrnlorc,

this trnnsformatiou preserves velocity and hcmw the initial value (laLa. As a -* 0, the

rutropy crr~)r at thr wall is c{m~tnrlt in ll~~agllitlltie btlt, derretises in spmti:d rxtrllt. HII1l(”{I

thr inviscid limit for this cww ctmvurgm ill L 1 or L’2 l~ut uot ill L’ml

10
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A shock reflecting from a rigid wall is equivalent to the symmetric collision of two

shocks, i.e.. equal strength shocks of the opposite family. The argument that the cause

of the error is due to the asymptotic shift in the relative energy between the incoming

waves and the outgoing waves implies tl Lt. the fact that the incoming waves are of equal

strength is not important. Hence, shock interactions in general will result in non-uniform

convergence of the inviscid limit.

6. Effect of Source terms

Noh also has a version oi the shock reflection test problem in cyhndrical and spherical

geometry. This

source terms.

introduces an additional effect on shock propagation due to geometrical

The geometrical source terms are singular at the origin. Consequently, as the shock
.

approaches the origin the source terms become comparable in magnitude to the viscous dis-

sipation within the shock profile. When this occurs, the conservation form of the rq~lati(~[~s

no longer implies the Hugoniot jump condition across a shock.

,4 real effect in which the Hugoniot jump conditions are modified occurs for detontitiun

waves !1]. In this case the competition between chemical reactions and geometrical source

terms gives rise to the curvature effect in which the detonation velocity depencls on the

curvature of the shock front. An artificially large numerical shock width and geometric

source terms can have a similar effect near the origin,

An ideal converging shack, fronl the Gurdeley similarity solution, is singular at t.lw

origin. The shock width provides a kmgth st.nle which regularizes the singularity whm~

the shock reflects from the origin. After reflection there Me huge gradients I)tthind tlh{l

shock front. The sht N.lc lIW to !Jropngut(* il s~lttici(~llt tli,jtitll(.~ fr(ml t lw twi~iu ill ()r~ltv.

f~~r tll(! gradients lwhin~ tile shock to h{! SIIAU1lconlpnrc(l to t hose in t h~~sll~)t.k I)r(dilc.

This is n il~~t~~~[iry (.():l<liti[)ll for t,ll(’ Hllgollii)t, jllllll) c(]tl(iitious to ~~l)ply IM.I.(WS t.l~c.~ilt~(’k

i~dep(w(hmt t)f the forlll of tlissipntiou,

11
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Thus, when source terms or gradients behind the shock front are large compared

to the dissipation within the shock profile, the viscous solution can differ significantly

from the hyperbolic solution. Again the error is in the entropy and is expected to be

localized. Finite difference shock capturing algorithms have an artificially large shock

width. Numerical solutions with schemes that have the smallest shock width will minimize

errors of this type and be closest to the hyperbolic solution

7. Conclusion

We have analyzed the problem ot’ a strong viscous shock reflecting from a rigid wall,

For the von Neumann-R.ichtmyer viscosity, we have shown that the same type of entropy

error occurs as in Nob’s test problem. The error is due to the difference in energy relative

to the hyperbolic solution of the viscous profiles for the incoming and outgoing shock

waves. A scaling arguments shows t,hat as the viscous coefficient goes to zero ti~e entropy

error decreases in spatial extent but not in magnitude. Furthermore, the entropy error is

convected with the fluid and does not dissipate.

From the asymptotic energy argument, we expect the same behavior

an arbitrary shock interaction with any dissipative mechanism that results

shock width, provided there is no heat conduction to diffuse entropy, The dissipntitm lxlity

correspond to a term added to the hyperbolic PDEs, ~,g., an M tificial viscosity, (Jr :~nl~IN

numerical in nature, e.g., resulting from truncation errors in the diffrrencing schcmr ( m i~

Riems.nn solver used in the Godunov method. The fnct that hyperbolic fin,itr (liffrrrnri~

schemes deliberately undmresolve the shock prohle is not criticrd. The i,rummti(m vrr(m+
*

merely introduce an oscillation in the ~id( profilty M the position of the: slNwk [r[nlt

propagates IJetween ~rid points,

The entropy rrrtw wlwn visro~ls slitwk l}r(~til{’sillt,’rnct illll)lif’~ II II,U1lll]ift~rlll I, )Iittr

gcnrv of thr inviscid limit to the llylwrl)t~lilm st)lllti[)ll. i~oll Illlifornl (“OII V(’l”Kf’11(”1” I’Ii[l l)f*

w.pccted d the shock frmlt, An ;Adititnl:ll 11(u1~illiftmllity rnn twr[lr ill n rl.gioll ill wlli(ll

j “~
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the solution is smooth resulting from a shock interaction that occurred in the region’s past

history.

A more severe form of this entropy error occurs when a shock wave is incident on

a material interface or contact. For materials with different equations of state or when

the contact is a discontinuous chaznge in zoning, there can be a large transient resultin:~

from the change in profiles for the incident, transmitted and reflected shock waves. In

Lagrangian algorithms the effect is partially ameliorated by choosing the grid such that

the wave speed in units of zones per time step is the same for the outgoing shocks on each

side of the interface. However, the minimal error is similar to that which occurs for the

shock interaction discussed here,

In more complicated fluid flows, additional errors can result from the inhomogeneities

caused by the entropy error from shock interactions. For example, subsequent shock waves

will scatter

is partially

subsequent

off the inhomogeneities and spread the spatial extent of the error. This effect

ameliorated by the fact that shock heating raises the sound speed. Hence

reflected shocks have a lower Mach number and the additional entropy errors

they cause decrease as the shocks weaken. Another example occurs in an unstable two

dimensional flow. The inhomogeneities from shock interactions can be the seed for il

perturbation which leads to instability growth.

For some applicaticms, the non-uniform convergfince is important. he exmnple is

when comparing the calculated temperature at a wall to experimental data. The numericnl

entropy error from a reflected shock results in a high wall telnperBture which (I[ws not

dissipate in time. Moreover, the calculated wall temperature does not in]wove undvr lu,’sl~

rcfhwment. Having under~t~x.d the cmlse, one cm compcnmte for thi~ error, r.g., with

sufficient readution by averaging over a small region in the vicinity of the wnll. All~)t,hw

rxmnple is + the material is chemically reactive. ~n particular, for ml rxpkwlvv n

numcricrd hot spot cnused by n dmch intcrnction can initintfi (Ietmmtion. ~~cn,tly

Mm-t the fluid flow.
L

The qmtird rxtmml of tlw entropy error wher~Am& interact iti pk&m-ti(ulnl r,t)tli(’
n

shtwk width. ‘1’luls, thin error i~ wndlcst for those nltmmical schur;w t.lmt Illininlizc t II(*

n.rtiticinl Aock wi~lth. In pnrticdm, this tyI)e of vrror can be Aixninited by usII~g n fr(~llt

trnckillg mlg(xit lm.

13
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Appendix: Evaluation of Iritegral

The nded integrals can be evaluated by contour integration as follows. Suppose

a > 6>0 and n is a non-negative integer, Let z = e’z. Then the basic integral of interest

can be expressed as

I

n
dz

Cos(m)

1

-idz
=Re —.

Zn
—

o a+ bcos(x) co z a+~b(z+ l/z)

1

.n

= Irn ,1~ —.——
(’0 :bz2 +(IZ+ :b

where Co is the arc of a unit circle in the upper half of the complex plane.

The denominator of the integrard on the RHS has two zeros located at

Z* =
[
–a * (a2 1–62)*/b,

These lie along the real axis with z. < -1 and -1 < z.+ <0. Let C be the path formed

by closing the path Co along the x axis but going around the pole at z+ in the upper half

plane. By apply+ng Cauchy ’s residue formulae wn obtain

Using thr symltwtry of dw sill IuI(l cOS fllnctions (wcr n ludf cycle we Il:)t(! two sl)(’rinl

I
j= 1

1

u 1
dx ----— —~---– “:” ([,r . - -.---–-—----

-\. (1 -t-hslll(.r) ,, (1 + !) (“os( .r )

r

‘= ((11 .- ~;i)i

1
)“

(“( l!li(r )

/

n sit]x(.r)
t{,r -- –—------- tlx .. ..- .- ...-

~w (1 t /)slll( .1’) . [) II 1 I)(”I) H(r)

I J‘1
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!
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