UISCLAIMER

by an agency of the United State Bor any agency thereof, nor any of thei service by trade name, trademark assumes any legal liability or respon information, apparatus, product, agency thereof. The owned rights. (hose endorsement. Rect privately constitute or imply its 2 state Government or any infringe nocessarily perosuods 5 of any process 5 ã Government expressed herein do not PIDON report was prep "at as an account of work hocessarily product States (ğ cxpress 2 Neither the United States directored, or represents that its specific commercial United the accuracy, completeness, or otherwise does not VALTADIY. ä à authors favoring makes any to any ъ 5 anufacturer. crameat. CONCIDENT OF **Interna** adation. Ĵ 5 0000 nted ß ğ 3

LA-UR- 93-3396

Title:

Contentions 1

Los Alamos National Laboratory, an attimutive action/squal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government relates a nonexclusive, royalty-free license publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National requests that the publisher identify this article as work performed under the suspices of the U.S. Department of Energy

The Effect of Processing Parameters on Plasma Sprayed Beryllium for Fusion Applications

Richard G. Castro, Paul W. Stanek and Loren W. Jacobson Material Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87544 (USA)

Donald F. Cowgill Physics of Materials Department Sandia National Laboratory, Livermore, CA 94551 (USA)

ABSTRACT

Plasma spraying is being investigated as a potential coating technique for applying thin (0.1-5mm) lavers of beryllium on plasma facing surfaces of blanket modules in IhER and also as an in situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (598% of theoretical density) of beryllium will be required in order to maximize the conductivity of the beryllium coatings. thermal A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary qas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits.

1.0 Introduction

Fabrication and maintenance of surfaces that are directly exposed to the plasma in magnetic fusion energy (MFE) devices will present challenging problems in the development and design of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. Plasma spraying technology is currently being evaluated as a potential method for tabrication and maintenance of plasma facing components (PFC's) which will be subjected to severe environmental conditions as a result of either normal of off normal operating conditions. At present, the ravored armore materials for plasma interactive surfaces are beryllium, carbon, or tungsten [1,2].

Beryllium has been selected as the prime candidate for PEC's for TTER due to some ci its advantages over both carbon, and tangsten [3,4].

One advantage of beryllium over carbon is the ability to use plasma sproying for in-situ repair of demaged components in high beat flux regions of ITER i.e., divertors. Additionally, plasma-sproying of boryllium is also being considered as a potentially large surface area deposition technique for coating first wall blanket modules unde from either vanadium or stainless steel. Coating these modules with a thin (0.1-1mm) larger of bo.yllium will protect the underlying walls from the attack of oxygen or water and provide at the same time an acceptable plasma facing material.

Entensive investigations of plassa spraying of boryllius were done during the late 1960's and early 1970's by Union Carbid- Speedsay Laboratory (UCML) and the Alomic Molapone Remarch Establishment (AMRE) for a number of defense related projects. Processing conditions and the thermo-physical properties of planna-aprayed heryllium produced during this puriod can be found in the book Beryllium Actourty and Tuchmology, Volume 2, which was published in 1979 (5). These investigations for used on the process optimization of beryllius plasma appaying using state of the art equipment available at that Depart densities of heryllium were reported to be t ime • . approximately 90% of boryllium's theoretical density (1.85 g/mc3) with ponesity levels on the order of 10 12% in the as approved condition. There levels are substantially loser than densitios required for 1752 (and denominatorial with 1.2% paroutly). Lower porcetty levels are needed in order to maximize the thermal conductivity of the sprov deposits in order to transfer heat away from components in high best flux regions of 1753.

A limited amount of remearch on the planma mpraying of beryllium for magnetic fusion energy devices has been reported in the resent literature [6,7]. The mout recent investigations conducted by Eattelle, columbus in 1990, minuted an improvement in the armproyed densities over remults which were achieved by both AmPE and 0000. Densities were reported to be on the order of 90 to 90% [8]. These levels were far minor of early claims by Eattelle of 90% dense planma aprayed beryllium with 95% deponit efficiency (fraction of material deposited on a matrice)[6]. In all of the previous investigations, planma upraying of beryllium was done under a controlled ment environment at atmompheric presence.

Achieves on an planear appropriate technology costs the part describe have already that by operating under a reducted probably conditions (above to reducted probably conditions) achieves the antidependent of demonstration costs be achieves a reducted probably demonstration costs be achieves a reducted probably demonstration costs be achieves a reducted probably demonstration of the d

Excilent point in the weater theory, while the remails and wetter, compared inequality plattines of the computed point of the ,

- transferred arc heating/cleaning of the substrate which improves deposit density and adhesion,
- broad spray patterns for coating large surface areas,
- and the ability to spray reactive materials under a protective atmosphere,

A large number of processing variables can ultimately affect the quality of the beryllium spray deposits when spraying under a reduced Operating parameters which have a direct influence on the pressure. dwell time of the injected beryllium powders will significantly affect the dearee of melting ot the beryllium powder feedstock. Investigations have shown that powder size, powder morphology, powder injection, particle velocity, and the heat content (enthalpy) of the plasma, can substantially change the melting behavior of the injected powders [10].

In this investigation, results will be presented on deposits of beryllium produced by low pressure plasma spraying. The effects of powder size, powder morphology and the use of helium as a secondary plasma gas on the as-deposited density will be discussed. Characterization of the beryllium spray deposits will include optical microscopy, chemical analysis, thermal conductivity and outgassing studies.

2.0 Experimental Details

2.1. Beryllium powder production

Los Alamos National Laboratory has recently been investigating the centrifugal atomization process for producing spherical beryllium and beryllium alloy powders as feedntock material 1.01 advanced consolidation processes i.e., hot reputatic pressing (HTP) and plasma The centrifugal atomization process involves vacuum apraying. induction melting of a beryllium metal charge in a Mgo crucible while directing the molten beryllium metal through a 2105 transfer tube onto the surface of a rapidly spinning wheel which is driven by an air turblne, Fig. 1. The liquid beryllium metal is mechanically atomized into finely divided droplets at the periphery of the spinning wheel. The droplets are solidified in flight inside the atomizing chamber by a transverse flow of helium que that also caraies the beryllium powder product into a cyclone deparator. This process produces spherical boryllium powder with solidification rates on the order of 10^4 10^6

degrees C/sec. With the current equipment configuration, the beryllium powder is collected in a canister below the cyclone separator, valved off, and transferred to an inert-gas dry box for powder classification. Parameters which can influence the resulting beryllium powder size distribution are given in Table 1.

Table 1. Parameters which can influence the size distribution of centrifugally atomized beryllium powders.

Melt temperature					
Pour temperature					
Superheat					
Disk speed					
Nozzle diameter					
Atmosphere					

The powders produced by the centrifugal atomization process were screened using stainless steel sieves to the following size fractions.

Λ.	A. 400 mesh				(< 38 µm)				
в.		270	+400	mean	(38	μm	-	53	μm)
С.		200	+270	mesh	(53	μm		75	μm)
D.		140	+200	mesh	(75	μin		100	5 µm)

Particle size fractions A,B,D, were selected for this investigation because they contained the largest fractional yields of the atomized powders and also represented a wide range of particle sizes.

2.2 Beryllium plasma opraying

Spray deposits of beryllium were made using the low pressure plasma spray chamber at GANG, Fig. 2. This chamber contains a commercial 8G 100 Plasmadyne torch which is mounted over a translating copper cooled substrate. Accurate control of the processing gases used in the plasma spray process was accomplished using a multi-gas flow control system. Beryllium powder was feed into the plasma spray forch by using a weight; loss control system which integrates a commercial powder feeder with a Toledo weight scale to measure and control the feed rate of the beryllium powder feedatock during the spray operation. Plasma-spraying of beryllium using this facility can be done under either a reduced pressure environment or in an argon atmosphere.

To understand the effect of processing parameters on the as deposited densities and deposit efficiency of plasma-sprayed beryllium, parameters were changed from an initial standard operating condition which was established using commercial S-65 beryllium powder from Brush Wellman Inc., Table 2.

Spray torch	Plasmadyne SG-100
Current	700 amps
Voltage	30 volts
Primary arc gas (Ar)	30 s1m
Powder carrier gas (Ar)	2.5 s1m
Powder feed rate	.5 lbs/hr
Spray distance	76.2 mm
Substrate translation	39 ipm
Atmosphere	argon
Anode/Cathode	145/290

Table 2.Standard Operating Condition

The following processing parameters were investigated:

particle size and particle morphology secondary gas addition, (helium) chamber pressure

Spray deposits of beryllium were made on (3.175 mm) thick copper substrates which were translated back and forth under the plasma spray torch. A bell shaped deposit was produced on the copper substrates after spraying for 5 minutes. Deposit thicknesses ranged from 7mm to 10mm at the thickest region of the deposit with deposit lengths on the order of 50mm. Removal of the beryllium deposits from the copper substrates for subsequent characterization was done by bending the substrate until the deposits detached. As deposited densition of the beryllium spray deposits were measured using a water immersion technique (Archimedes principle). Measurements were made on the thickest region of the spray deposits after cutting/grinding to remove the outer fringes of the bell shaped apray deposits. Deposit efficiencies (the fraction of material deposited on the substrate) were determined by measuring the weight of the substrate before and after depositing beryllium. The difference in weight was compared to the total amount of beryllium powder dispensed during the plasma spray run. Since the beryllium powder feed-rate is controlled by a weight/lose system which places the powder feed hopper on a weight scale, an accurate amount of powder present in the hopper before and after the spray operation could be determined.

2.3 Deposit Characterization

2.3.1 Microstructural and Chemical Analysis

Characterization of the beryllium spray deposits in the as-deposited condition was accomplished using polarized light microscopy and chemical analysis. Spray deposits were cross sectioned, mounted and polished for viewing in polarized light. Samples were etched with a solution containing 3\$-HF, 3\$-HNO₃ and 3\$-H₂SO₄ for 3 to 5 seconds to determine the microstructure of the as-sprayed deposits. Chemical analysis was performed by Brush Wellman Inc., Elmore Ohio, on the centritugal atomized beryllium powders, the beryllium plasma spray deposits and the beryllium over sprayed powder using a combustion analysis technique.

2.3.2 Thermal Conductivity Measurements

The room temperature thermal diffusivity was measured on free standing beryllium samples 6mm in diameter by 5mm long. Measurements were made at Oak Ridge National Laboratory using a thermal pulse technique in which one face of the specimen was illuminated with a xenon flash lamp and the other was monitored with an IR detector. The temperature as a function of time is plotted and the thermal diffusivity is calculated from the resultant experimentally determined thermal transient. The thermal diffusivity (D) was calculated using the following expression

where \mathbf{x} is the specimen thickness and $\mathbf{t}_{i,j}$ is the time required for the back face of the specimen to reach balf its maximum temperature. The thermal conductivity (\mathbf{k}) for the beryllism spray deposits was calculated using the following expression

where ρ is the density and C_p is the heat capacity.

2.3.3 Vacuum Outgassing

Thermal desorption spectra were obtained on several samples of plasmasprayed beryllium at Sandia National Laboratory, Live more, California, to determine their vacuum outgassing characteristics. The outgassing system consisted of a turbo-pumped, ultra-high vacuum quartz tube furnace with a UTI 100°C residual gas analyzer(RGA). measurements were made on small block-shaped samples (100mg, 5x5x2 mm) by first loading them into an unheated portion of the furnace and preoutgassing the tube to 800°C to remove the contaminants resulting from The samples were then remotely transferred into the air exposure. heated zone for thermal desorption. Several samples were run at the same time to gain sufficient signal for accurate measurements. The sample temperature was ramped linearly from room temperature to 600°C at 10 ^OC/min using a temperature programmer. For one experimental run (#2), the temperature ramp was paused at 350°C for 90 minutes to examine the effect of vacuum baking at 350°C. RGA signal amplitudes were converted to gas partial pressures by calibrating against carbon moverside and hydrogen standard leaks.

3.0 Results and Discussion

3.1 Beryllium deposit densities and microstructure

The effect of processing parameters (particle size, helium gas addition and low pressure plasma spraying) on the as deposited densities are given in Table 3.

Table 3.

The effect of processing parameters on as deposited density

Particle	St andard	Secondary	Reduced	Secondary
aize	spray	дав (Пе)	pressure	gaswreduced
(mersh)	condition	addition	(450 torr)	pressure
400	88.43%	92.34	94.13%	94.89%
(48 µm)				
270 (400	91.8%	92.2%	91.2%	12.38
(54 48 µm)				
140 (200	• 60.0%	+ 60,0%	· (.) ()%	- 60,0%
(106-75-µm)				

The highest deposit densities were achieved using the beryllium atomized powders which were below 38µm. The spherical morphology of the atomized powders, Fig. 3a. allowed for better feeding of powders into the spray torch than commercially impact ground beryllium powders which are more angular and difficult to feed below 45µm Fig. 3b. Beryllium atomized powders in the size range of 53-38µm also showed relatively good deposit densities (91-92% T.D.) when spraying with the helium gas addition at a reduced pressure of 350 torr. The larger beryllium feedstock powders (106-45µm) were difficult to melt using the standard operating conditions and required an increase in the operating current from 700 amps to 800 amps in order to melt the beryllium and adhere to the copper substrates. The deposit densities (<60%) were considerably lower and did not significantly change with the introduction of the helium secondary gas and the low pressure No further analysis was done on these spray spray environment. deposits which were made from large diameter powders.

A graph of the as-deposited density, deposit efficiency and the level of porosity of plasma sprayed -38µm beryllium powder under the various processing conditions is given in Fig. 4. The highest deposit density (94.9%) was achieved using the standard operating parameters given in, Table 2, with the addition of 15-standard liters per minute (SLM) of helium as a secondary plasma gas while operating under a reduced pressure (350 torr). This operating condition also resulted in the highest deposit efficiency (approximately 60%) with a porosity level on the order of 4 percent. These observed increases were attributed to the higher heat content (enthalpy) of the plasma jet with the addition of the helium secondary gas, and the higher particles velocities that result when spraying under a reduced pressure. increased particle velocities improve the impacting and splatting of the melted and partially melted beryllium feedstock powders resulting in better bonding and consolidation of the deposit.

Microstructural analysis of low density beryllium plasma sprayed deposits with density levels on the order of 90%, show a large population of unmelted beryllium particles with corresponding porosity adjacent to these unmelts, Fig. 5a. In the case of the higher density beryllium deposits, the presence of unmelted beryllium particles decreased with a corresponding decrease in porosity level, Fig. 5b. Unmelted beryllium particles were still present in the deposits although a greater degree of consolidation of the unmelts seemed to occur during low pressure plasma spraying.

3.2 Chemical Analysis

Analysis of the -400 mesh $(38\mu m)$ beryllium atomized powders, beryllium spray deposits and the over-sprayed beryllium powder (which was collected on the bottom of the spray chamber) was performed to determine the oxygen level and other impurity elements. The oxygen levels of these samples were compared to commercial SP-65 beryllium powder produced by Brush Wellman, Inc., and beryllium plasma-sprayed deposits produced by Battelle, Columbus, Fig. 6.

The oxygen level of the plasma sprayed beryllium deposits (.35%) was approximately half that of the starting atomized beryllium powder (.65%) and much lower then the over-sprayed beryllium powder (1.15%). In addition, the oxygen content of the spray deposits was lower that what was previously reported in earlier investigations done by the UCSL and AWRE [11]. Oxygen levels in the beryllium spray deposits in these investigations were reported to have increased from approximately 20 to 140 percent over the starting beryllium feedstock powder.

Metallic powders which were deposited using low pressure plasma spraying have shown oxygen levels in the spray deposits at least as high as the levels present in the starting feedstock powders. When plasma-spraying copper using hydrogen as a secondary plasma gas, oxygen levels in the spray deposits were shown to have decreased below the starting powders [7]. In this investigation, helium was used as the secondary plasma gas and should not have affected the oxygen level in the spray deposits.

The lower oxygen level in the beryllium spray deposits is not well understood but may be attributed to the plasma/particle interactions that occur when spraying beryllium powders which contain a surf : layer of BeO. During melting, the powders may tend to segregate inberyllium and beryllium oxide particles due to their differences in melting points and densities (BeO-3.03 g/cm³, M.P.-2823K and Be-1.85 g/cm³' M.P. 1560K). This segregation may cause different particle trajectories of the Be and BeO particles as they exit the plasma torch. The BeO particles may solidity in flight before impacting the substrate and subsequently defect off the substrate. Additionally, the Boo particles may be significantly smaller then the Bo particles and become entrained in the processing gases which are deflected around the substrate. These two possibilities may account for the higher oxyden levels present in the over sprayed powders. Further investigations are being done to understand these results.

Elevated levels of Fe, Ni, 'n were also detected in the atomized beryllium powders, and the subsequent sprayed deporits when compared to commercial impact ground SP-65 beryllium powder manufactured by Brush Wellman, Inc. These elevated levels are a result of the erosion that occurs in the inner walls of the stainless steel cyclone separator during the beryllium powder production. Efforts are underway to coat the inside surfaces of the cyclone separator with plasma sprayed beryllium in order to minimize the contamination of the beryllium powders through impact with the stainless steel walls.

3.3 Vacuum outgassing of plasma-sprayed beryllium

The observed quantities of outgassed species per gram of sample material are given in Fig. 7. The major gas species are water vapor (18 amu) and hydrogen (2 amu). Measurable quantities of methane (16 amu), carbon mone de or nitrogen (28 amu), and ammonia (17 amu) are also observed. Here, the NH₃ and CH₄ values are the residual amplitudes for 17 and 16 amu obtained after subtracting off the fragmentation contributions from H₂O and NH₃, respectively. Neither the interruption of the temperature ramp performed in experiment (#2) nor the size difference of the two sample sets affected the total quantities released per gram. The hydrogen released is roughly the same for the two experimental runs; however, more was released in the forms of NH₃ and CH₄ in run #1. Typical quantities outgassed from 85% and 95% dense, S-65 beryllium samples from Brush Wellman, Inc., are also given for comparison.

Much of the outgassing behavior of the plasma-sprayed samples is dominated by the presence of the large H_2O signal. It is not known whether this signal is typical of plasma sprayed material (resulting from post-processing exposure to air) or is an artifact of the specific sample pretreatment. Prior to outgassing, porosity and density measurements were done on these samples by immersing each in water. The H_2O probably resides in the oxide present on the surface of the spray deposits. BeO is know/ to be very hygroscopic and accommodates several waters of hydration, forming BeO·xH₂O.

The thermal desorption spectra for the plasma sprayed (PS) material is shown in Fig. 8. The water is weakly bound and can be desorbed at low temperatures. Hydrogen production at higher temperatures probably results from the reaction of residual H₂O with beryllium at these temperatures. Desorption spectra for the other species are compared with S-65 spectra in Fig. 9. The PS material exhibits a low temperature N₂/CO peak (28 amu) not found, or weakly present, in S 65. Most of the NH₃ detected for the PS material occurs at this lower temperature. The CH₄ increase for two lower porosity materials also occurs at a lower temperature.

Pre-baking the PS material at 350 °C for 90 minutes removes the water peak, but has little effect on the high temperature hydrogen peak. It also removes the low temperature N_2/CO peak without affecting the high temperature N_2/CO peak, as shown in Fig. 10. From careful analysis of companion mass peaks, particularly 12, 14, and 16 amu, it can be concluded that this low temperature peak is N_2 , whereas the high temperature 28 amu peak is CO. Apparently, it is the presence of weakly bound N₂ which gives rise to the formation of NH₃. This nitrogen may result from post-process absoption from air or may be due to nitrogen present in the initial powder feedstock. It also may be present in the processing gases as was described in reference [11]. If present in the powder, nitrogen may be removed by outgassing the beryllium powder feedstock prior to spraying. Other weakly-bound contaminants, including water, should also be removable by a pre-As mentioned above, removing the water may also outgassing step. reduce much of the detected hydrogen. However, experiments investigating air exposure of outgassed S-65 have shown both N_2 and H_2 rapidly return to near their pre-outgassed levels. Thus air exposure must be prevented following such a pre-outgassng.

Water outgassing from the PS material continued throughout each experiment, but varied somewhat with sample temperature, T. Even after baking at 600 O C for 90 minutes, substantial H₂0 outgassing remained. Figure 11, gives the H₂O outgassing as a function of time for the PS and 85% dense S-65 materials. Each data set can be fit with an exp(-t^{1/2}) function indicating diffusion-controlled release. Thus, although the water is weakly bound, probably in the oxide on the surface of each deposit, it appears to follow a very tortuous path to release. Outgassing from the PS material is substantially slower and will require a much longer pumpdown time.

3.4 Tnermal Conductivity

Results of the room temperature thermal conductivity measurements are given in Table 4.

Sample	Mean Thermal Diffusivity (cm ² /s)	Specific Heat (J/kg·K)	Density (g/cm ³⁾	Thermal Conductivity (W/m·K)
A	0.2269	1750	1.7500	69.49
В	0.2145	1750	1.7141	64.34
C	0.1586	1750	1.6702	46.36
D	0.1442	1750	1.6653	42.02
E	0.1567	1750	1.6668	45.71
4	0.1246	1750	1.6997	37.06

Table 4.

Room temperature thermal conductivity of plasma-sprayed beryllium

thermal conductivity of the beryllium spray deposits were The significantly lower than that of pure beryllium which has a thermal conductivity of 218 W/m·K [12]. These results were in general agreement with previous thermal conductivity data taken for plasma sprayed beryllium produce by inert gas plasma-spraying at Battelle, Columbus [8]. An increase in the thermal conductivity also corresponded to an increase in the deposit density, except for sample F. The low thermal conductivity values in all cases can be attributed to the porosity and layered microstructure throughout the bulk of the The presence of interfaces created by impacting deposit, Fig.5. beryllium liquid particles will be a controlling factor in maximizing the thermal conductivity of the spray deposits. Improvements in the conductivity of plasma sprayed beryllium can result thermal by minimizing the splat interfaces through better melting and deposition, and also through post heat-treatments. Spray deposits of beryllium which were produced by Battelle, Columbus were heat-treated at 900°C for 1 hour to promote diffusion bonding across splat interfaces. An increase in the thermal conductivity from 25-200% over the as-sprayed beryllium resulted [8]. Since heat-treatments or consolidation by hot isostatic pressing will not be applicable for ITER, post-deposition surface conditioning techniques such as laser surface treatments should be investigated.

4.0 Conclusions

- The spherical nature of the beryllium centrifugal atomized powders, in comparison to the angular impact ground powders, allowed for better feeding of powders below 38µm into the plasma-spray torch.
- 38µm spherical beryllium powder, made by centrifugal atomization, produced the highest deposit densities under the investigated conditions.
- Increases in the deposit density and deposit efficiency of plasma sprayed beryllium resulted when spraying under a low pressure condition (350 torr) with helium as a secondary plasma gas.
- Oxygen levels in the beryllium spray deposits produced by low pressure plasma spraying were lower (by a factor of two) than the starting atomized beryllium powders.

Outgauging of plasma sprayed beryllium was dominated by the presence of H_2O and H_2 .

The thermal conductivity of plasma aprayed beryllium was significantly lower then pure beryllium. Dicrostructural features such as aplat interfaces may be a controlling factor.

Acknowledgments

This investigation was funded through Sandia National Laboratory, Fusion Technology Department under the guidance of Dr. Robert D. Watson. The authors would like to acknowledge Oak Ridge National Laboratory for the thermal conductivity measurements, K. Elliott for the beryllium plasma-spraying and J. Montoya for sample preparation and metallography.

References

- 1. J.B. Whitley, K.L. Wilson and D.A. Buchenauer, J. of Nuc. Mat., 155-157 (1988) 82.
- R.F. Mattas, D.L. Smith, C.H. Wu, T. Kuroda and G. Shatalov, J. of Nuc. Mat., 191-194 (1992) 139.
- 3. K.L. Wilson, R.A. Causey, W.L. Hsu, B.E. Mills, M.F. Smith and J.B. Whitley, J. of Vac-Sci Techn A 8(3) (1990) 1750.
- 4. K.J. Diets and the Jet Team, Fusion Technology, 19 (1991) 2031.
- 5. D. Webster and G.J. London., Ed. "Beryllium Science and Technology", Vol 1., D.R. Floyd and J.N. Lowe, Ed. Vol 2., (Plenum Press, New York, 1979)
- M.F. Smith, R.D. Watson, R.T. McGrath, C.D. Croessman and J.B. Whitley, J. of Nuc. Mat., 171(1990) 158.
- M.F. Smith, C.D. Croessman, F.M. Hosking, R.D. Watson and J.A. Koski, 2nd Plasma-Technik Symposium, Lucerne, Switzerland, Vol 3. (1991) 43.
- 8. Private communication with Dr. R.D. Watson of Sandia National Laboratory, Fusion Technology Division, Albuquerque, N.M. USA.
- E. Muehlberger, Proc. 7th Int. Thermal Spray Conf. Proc. London, (1973), 245.
- 10. D. Apelian, R.W. Smith, M. Paliwal, and W.R. Schilling, International Metals Review, 28(5),(1983) 271.
- R.G. Castro, L.A. Jacobson and P.W. Stanek, "Peryllium Processing Technology Review for Applications in Plasma Facing Components", Los Alamos National Labor Lory Report, LA 12545 MS, (1993).
- 12. Y.S. Touloukian, R.W. Powel, C.Y. Ho and P.G. Elemens, Thermophysical Properties of Matter, Vol.1, Thermal Conductivity of Metallic Elements and Alleys, IE1/Plenum, New York, NY (1970).

Fig. 1. Schematic of centrifugal atomization process

Fig. 4. Beryllium lew presance plasma aproy facility at GANG.

a born a born born and the second structure of the sec

Fig. 4. An deposited density, deposit efficiency and porosity level of planma aprayed (38µm) beryllium powder aprayed under the various operating conditions and compared to results previous reported by Battelle, Columbus [8].

• •

(B) and the information because peloaraman approace to be a will example to wait to provide the exact control areas for a transformer to the data to perform the wait by the term of the data to perform the wait by the term of the data to perform the data to perform the data to exact the term of the data to be written in the weat to be additional to be the data t

٠. ,

Fig. 6. Comparison of oxygen levels of commercial SP-65 beryllium powder from Brush Wellman Inc., plasma sprayed beryllium deposits produced at Battelle, Columbus, centrifugal atomized beryllium powders produced at LANL, beryllium spray deposits produced at LANL and the over sprayed powders.

ł.

Fig. 7. Quantities of gases produced by heating as received plasma sprayed (PS) and S 65 materials of the indicated densities.

Temperature (°C)

Fig. 8. Gas description spectra from 93% dense plasma sprayed beryllium samples.

Fig. 9. Comparison of the N_2/CO , NH_3 , and CH_4 desorption spectra for plasma sprayed (PS) and S 65 materials of the indicated densities.

Fig. 10. Comparison of desorption spectra for (PS) material pro-baked at 350°C for 90 minutes with unbaked material. Pro-baking removed the water peak but not the water outgassing.

`.

,

Fig. 11. Water release rate at 600° C.

The Effect of Processing Parameters on Plasma Sprayed Beryllium for Fusion Applications

Richard G. Castro, Paul W. Stanek and Loren A. Jacobson Material Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545 USA

Donald F. Cowgili Physics of Materials Department Sandia National Laboratory, Livermore, CA 94551 USA

Lance L. Snead Metals and Ceramics Division Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

Outline

- Facilities
- Applications
- Requirements
- Preliminary Results
- Future Activities

Centrifugal Atomizer Schematic

Beryllium Powder Morphology

Brush Weilman: Type SP-65 impact attritioned

LANL: Type XSR centrifugal atomized

Plasma Spraying of Beryllium for ITER

JATIELLE MUNJAH SPRHYED BERYLLIUM LIN

Optimizing Spray Deposits of Beryllium

Increase particle melting:

- particle morphology
- particle size distribution
- substrate temperature
- particle dwell time:

low velocity laminar flow

high flame temperture

Layered Assembly of Impacting Discs

H. Herman, 1988

Operating Parameters for Plasma Spraying Beryllium

Primary gas	(Ar) - slpm	30.0
Powder gas	(Ar) - slpm	2.5
Powder feed rate	grams/min	3.8
Spray distance	cm	7.6
Translation speed	cm/min	99.0
Chamber pressure	torr	500.0
Oxygen level	ppm	100.0
Current	amps	700.0
Leak-up rate	milltorr/min	5.0
Substrate (Cu)	mm	3.2
No. of passes		140.0
Spray time	min	5.0
Total powder sprayed	grams	9.0

A Comparison of Oxygen Levels in Beryllium Spray Deposits and Beryllium Powders

Outgassing Behavior of Plasma Sprayed and S-65 Beryllium

Water Release Rate at 600 °C for Plasma Sprayed and S-65 Beryllium

Plasma Spraying of Beryllium for ITER

Critical Research Areas:

- Optimize plasma spray parameters to produce high density/high thermal conductivity deposits of beryllium.
- Optimize centrifugal atomization process to produce high yields of low oxide, -400 mesh spherical beryllium powder.
- Investigate surface preparation techniques on the bond strength of plasma-sprayed beryllium
- Evaluate the performance of plasma-sprayed beryllium coatings under pulse fusion conditions.
- Fabricate a robotically controlled plasmaspray test cell to evaluate remote manipulation and in-situ repair.