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Flows in two or more space dimensions are intrinsically more complicated than
one dimensional flows.  Primarily this is due to the greater degree of freedom of
motion in higher dimensional flows,  but there are important and related
mathematical reasons for the greater complexity as well.  As we saw in the
previous lecture the method of characteristics played an important role in the
design of the propagation algorithm for contact discontinuity motion.  This is by
no means the only application of this important theory.  The method of
characteristics also is central to the design of the higher order Godunov methods.
It is basically through these ideas that the higher order corrections are added to the
basic Godunov method.  Perhaps the key feature that makes the method of
characteristics useful in analysis and computation is that it reduces the
relationships between flow variables from partial differential equation relations to
ordinary differential equation relations along the (generally unknown)
characteristic curves.  Although the characteristics are unknown in the sense that
they can not be determined without knowledge of the solution,  they are generally
easy to approximate for a single time step,  and the characteristic equations for the
flow variables can be easily approximated by discrete equations that yield second
order accurate equations for the updated flow variables.
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In contrast characteristics in higher space dimensions correspond to space-time
hypersurfaces (e.g. moving curves in two space dimensions) and the flow
variables along the hypersurfaces are related by partial differential equation
relations.  For concreteness let us give the formal definition of a characteristic
surface for a multi-dimensional flow.  Suppose we have a system of quasi-linear
partial differential equations:
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Then a characteristic surface is a space-time hypersurface that is locally of the
from φ(x,t) = 0,  where φ is a solution to the highly nonlinear partial differential
equation:
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If we let n = (nk) denote the spatial normal to the characteristic surface for fixed t,
and let  denote the instantaneous speed of the moving surface in the direction n
then:
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and the characteristic equation becomes:
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In contrast to one space dimensional flows where characteristics are spawned by a
single point,  characteristics in multi-space dimensional flows are generated by
codimension two space-time surfaces,  most commonly codimension 1 surfaces at
a fixed time level (in 2D these are curves).  Given such a initial object we form the
characteristic surface through that object by solving for the bicharacteristic rays
through each point on the generating object.  We get one such ray for each
characteristic family of the partial differential equation.  Suppose k(u(x,t),ξξξξ) is
the kth eigenvector of the matrix:
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k

Then the bicharacteristic ray through a point x0 on a surface with spatial normal n0
is given by the solution to the system of ordinary differential equations:
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For the Euler equations the characteristic speeds are:
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and the corresponding bicharacteristic rays:
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We can write a bicharacteristic form for the Euler equations:
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We see that these equations have a form similar to the one dimensional equations,
but that in each case the flow along a characteristic is driven by terms involving
derivatives orthogonal to the direction n.  It is this additional coupling between
directional derivatives that complicates the analysis of a multidimensional flow.
For more information on bicharacteristics and their role in solving partial
differential equations see Courant and Hilbert Volume II.
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The diagram on the right shows a
schematic picture of the representation of
the flow in the vicinity of a tracked
interface.  The representation consists of a
set of lattice points that are associated with
the flow states at the center of a spatial
grid.  For simplicity we assume this grid is
rectangular.  The tracked interface is
shown as a piecewise linear curve.  The
linear segments are called bonds.  The
flow near the front is described by two
states associated with the points on the
curve.  These states can be regarded as the
limit of the flow variables as the
discontinuity front is approached through a
given side of the interface.  Note that we
assume the curve is oriented.

Grid State
Tracked Points (left,right) States
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An important aspect of the front tracking method in two or more space dimensions
is the description of the geometry of the discontinuity fronts.  The following set of
definitions describe the most common set of objects used in describing the
collection of tracked objects.  Each definition corresponds to a data class in the
front tracking implementation used in FronTier.
•POINT:  Describes a geometric location in space.  When associated with a

tracked interface,  POINTs are extended by inheritance to a data class that
contains state data associated with the limiting values of the state data at either
side of the interface.  These states are referred to as the left and right states at the
POINT.

•BOND: BONDs are directed connectors between pairs of POINTs.  Each
BOND structure contains pointers to a start and end POINT as well as pointers
to a previous and next BOND.  This linked list allows BONDs to be connected
into piecewise linear curve segments.

•TRI: A TRI corresponds to a geometric triangle.  Each TRI contains pointers to
three POINTs that form the vertices of the triangle. A TRI contains pointers to
three adjacent TRIs called its neighbors so that TRIs can be linked together to
form piecewise linear surfaces. This structure is only used for three space
dimensional flows, but is included here for completeness.
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•CURVE: A CURVE is a piecewise linear curve.  Since  BONDs can be linked
together to from lists,  it suffices for a CURVE structure to contain pointers to
the first and last BOND on the CURVE.  The set of POINTs on the curve can
be accessed by looping through the BONDs on the curve,  starting at the first
and ending at the last.  The previous and last pointers of the first and last
BONDS of a CURVE respectively are null.

•NODE: Interaction points between CURVEs are called NODEs.   Each
CURVE is associated with two (possible the same) NODEs that mark the start
and end of that CURVE.  Each NODE has an associated POINT that gives its
position.  NODEs are the only allowed locations where two or more CURVEs
can meet.  NODEs contain lists of pointers to the CURVEs that meet at that
NODE.

• SURFACE: SURFACEs are three dimensional structures that correspond to a
piecewise linear surface.  They consist of a collection of connected TRIs and a
set of CURVEs that form the topological boundary of the SURFACE.



Los Alamos National Laboratory
Hydrodynamic Methods Front Tracking in Two Space Dimensions 10LA-UR 99-3985

The previous set of data structures are used to describe the geometric and
connecting  properties of the tracked objects.  In many cases the physical meaning
of a geometric object is more naturally associated with the topological properties
of the object,  such as whether it locally separates space.  The following set of data
structures are designed to describe the embedding properties of the tracked objects
in the relevant Euclidean space for the flow.  Within the dimensional context of a
flow each geometric object (point, curve, surface, etc.) has a pointer to a
corresponding (possible empty) topological object and vice versa.  So it is
common when the flow dimension is understood to speak casually as if the
geometric and topological object were the same.  Thus one may speak of a surface
in a three dimensional flow as being the same as a hypersurface.  But one must be
careful in the terminology since for a two dimensional flow a hypersurface
corresponds to a curve.
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•HYPERSURFACE: A HYPERSURFACE is associated with every co-
dimension one collective geometric object.  For one dimensional flows these are
POINTs,  for two dimensional flows CURVEs,  and for three dimensional
flows SURFACEs.  A HYPERSURFACE is generally regarded as a locally
space separating oriented manifold with boundary.  Each HYPERSURFACE
contains two integer labels for the two spatial regions that bound it.  It is
required that these labels be consistent so that HYPERSURFACEs  bounding
the same region have the same label on their appropriate sides. These structures
describe the main wave fronts in a flow.  Lower dimensional objects are
generally associated with interactions between waves.

•HYPERSURFACE ELEMENT : HYPERSURFACEs  are composed of
collections of HYPERSURFACE ELEMENTs.  Depending on the flow
dimension there are either empty, BONDs or TRIs for respectively one, two, or
three space dimensional flows.  Currently there are no topological properties
associated with HYPERSURFACE ELEMENTs,   this label just gives a
convenient way of accessing the geometric information associated with surface
element without having to reference the specific dimension of the flow.
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•HYPERSURFACE BOUNDARY: These are the boundary objects associated
with a HYPERSURFACE. In two dimensional flows these are NODEs,  while
for three dimensional flows they are CURVEs.  This object is undefined for a
one dimensional flow.

There are several other miscellaneous structures that are used in various special
cases.  Furthermore each of the above objects constitutes an inherited class which
means that the objects have associated operators for their allocation and
manipulation.  These objects may also be extended to incorporate new properties
by higher level libraries.
One further data structure is an INTERFACE  which is a collective object
containing pointers to all geometric and topological objects that constitute the set
of tracked features in the computation.
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Hypersurfaces correspond to wave fronts and are classified according to the
type of wave they model.  We generalize the notion of waves to include
boundaries,  both physical and computational.

•Boundary Hypersurfaces:
• SUBDOMAIN - A boundary hypersurface between parallel subdomains,  includes

periodic boundaries.
• REFLECTION - A artificial boundary indicating reflection boundary conditions.

These are implemented like a subdomain boundary except that the velocity data is
reflected.

• DIRICHLET - A boundary where a specific flow state is imposed.
• NEUMANN - A alternative form of a reflecting boundary that is suitable for

hypersurfaces not aligned with the computational grid.  Reflecting walls.
• PASSIVE - An inactive boundary.
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•Wave Front Hypersurfaces:
• CONTACT: A contact discontinuity,  slip surface,  or material interface.
• Forward Wave Family

• FORWARD SHOCK WAVE
• FORWARD SOUND WAVE LEADING EDGE - The leading edge of a forward

rarefaction wave.
• FORWARD SOUND WAVE TRAILING EDGE - The trailing  edge of a forward

rarefaction wave.
• Backward Wave Family

• BACKWARD SHOCK WAVE
• BACKWARD SOUND WAVE LEADING EDGE - The leading edge of a backward

rarefaction wave. _
• BACKWARD SOUND WAVE TRAILING EDGE - The trailing  edge of a backward

rarefaction wave.

When the dimension of a flow is understood we will often speak of the type of a
point, curve, or surface as being the type of the corresponding hypersurface.  Thus
we may say a curve is a CONTACT in a two dimensional flow.



Los Alamos National Laboratory
Hydrodynamic Methods Front Tracking in Two Space Dimensions 15LA-UR 99-3985

Hypersurface boundaries are associated with wave front interactions.  They
are also described by a type identifier.  As with hypersurfaces, if the flow
dimension is clear, we might speak of a node type in two dimensions as being
the type of the corresponding hypersurface boundary.

•Boundary Hypersurface Boundaries:
• PASSIVE -  A hypersurface boundary for a pair of PASSIVE hypersurfaces
• FIXED - A hypersurface boundary that is in a fixed position,  such a corner of the

computational domain.
• CLOSED - An artificial hypersurface boundary formed by a closed loop.
• NEUMANN - Intersection of a CONTACT with a NEUMANN boundary.
• DIRICHLET - Intersection of a wave front with a DIRICHLET BOUNDARY
• SUBDOMAIN - Intersection of a wave front with a SUBDOMAIN BOUNDARY
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•Wave interactions:
• REGULAR REFLECTION - Hypersurface boundary associated with the regular

reflection of a shock with a NEUMANN boundary.
• ATTACHED SHOCK - A shock wave attached to a wall corner.
• MACH - A Mach triple point.
• CROSS - A crossing of two shocks of different families.
• OVERTAKE - An overtake of one shock by another of the same family.
• REFRACTION - The refraction of a shock through a material interface.
• TRANSMISSION - A refraction with a subsonic state behind the incident shock.
• CONTACT-CONTACT - A triple point junction of three material interfaces.
• WAVE END - A breaking point of a shock,  the wave terminates at zero strength.
• TOTAL INTERNAL REFLECTION - A refraction with no transmitted wave.
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FronTier has been developed using an objected oriented approach so that
manipulations and inspection of interface properties is done through a set of
operators.  It is beyond the scope of this course to go into detail,  but some of the
more important operations are listed below.

•Interface manipulation
• create
• copy
• delete
• add point
• delete point
• redistribute points
• join/merge
• split/divide
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•Interface inspection
• coordinates of a point
• states at a point
• compute normal at a point on a hypersurface
• get neighboring object (such as from one bond to the next)
• find the topological component of a location

•Interface propagation
• Propagate (time advance) a point on a hypersurface
• Propagate a wave interaction (for example a tracked shock wave refracting through

a material interface
•Solution evaluation

• evaluate the solution at an arbitrary location by use of an interpolant that preserves
the discontinuous nature of the solution across a tracked interface.



Los Alamos National Laboratory
Hydrodynamic Methods Front Tracking in Two Space Dimensions 19LA-UR 99-3985

The figure on the right shows the
geometry for the normal point
propagation operator.  The normal at the
give point is computed by forming the
secant vector between the two adjacent
points and rotating by 90 degrees. The
solution function is evaluated to obtain
two states located at a distance of ∆n on
either side of the front.  Using these states
together with the states on the front,  the
1D propagate operator the normal
direction is used to compute the new point
position and a pair of normally propagated
states.

We will complete this lecture with a description of the two dimensional point
propagate operator that advances the location and states of a point on a tracked
front.  This operation uses operator splitting by dividing the propagation step into
two phases,  a normal propagate and and tangential propagate.
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Operator splitting requires that after the propagation in the direction normal to the
interface is accomplished a second update in the tangential direction must be
performed.  The figure below shows the geometry for this update.  The update is
done in two steps, one on either side of the interface.  Starting at the point to be
updated we move along the tangent line in
increments of ∆T, and obtain left and right
states along this line by projection and
interpolation along the interface. Note that
we are assuming all points on the
interface have already been propagated by
the normal update operator.  For
simplicity the diagram shows a three point
stencil.  The resulting states are then
passed to a one dimensional finite
difference solver that returns a pair of
updated states.  The position of the
interface points are not changed by the
tangential update operator.
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1. Show that if a bicharacteristic ray intersects a characteristic surface of the same family,
then that ray lies entirely inside the characteristic surface.

2. A shock wave is said to belong to the kth characteristic family and to be stable in the sense
of Lax if the shock speed satisfies the inequality:

   Show that for a perfect gas, forward shocks are stable in the sense of Lax if the pressure
increases across the shock from right to left.

k
r

k
l
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• Courant and Hilbert, Methods of Mathematical Physics, Volume II, Interscience
Publishers, 1962. (see in particular chapter VI.)

• R. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problem (2nd ed.),
Interscience Publishers, 1967

• I-L. Chern, J. Glimm, O. McBryan, B. Plohr  and S. Yaniv, Front Tracking for Gas
Dynamics, J. Comp. Phys., 62, pp. 83-110, 1986.

• J. W. Grove, Applications of Front Tracking to the Simulation of Shock Refractions and
Unstable Mixing, J. Appl. Num. Math. 14, pp. 213-237, 1994.
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Before proceeding with a discussion of examples of interface interaction
algorithms,  we need to discuss some basic utilities a bit more in detail since these
are basic tools used in implementing the interaction resolution methods.  The basic
operations are:
•Component lookup: given a position in space, identify the connected

component formed by the tracked fronts that contains that position.
•Nearest interface point: given a position in space, find the nearest interface

element to that point.  This information includes the hypersurface element (point
for 1D, bond for 2D,  tri for 3D),  the side on which the position lies with respect
to the element,  and the coordinates of the projection of that point onto the
hypersurface element.  If the orthogonal projection does not lie on the element,
this projection is the nearest point on the element to the given position.

• Intersections check:  tests all surface elements for non-trivial intersections. The
intersections operation returns a possibly empty list of all intersections found.
This test is performed every time step to check for wave interactions.

• Interface redistribution:  as the interface expands and contracts in different
locations,  the distributions of the sizes (and shapes in 3D) of the hypersurface
elements can become distorted.  Redistribution regenerates the interface
hypersurface elements into a more even distribution of sizes.
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• Solution function: given a position and a component find an interpolated state
value.  If the given component does not match the component of the position,
then that position is projected onto the nearest point with the correct component
and interpolation is performed at the projected location.  Optionally this function
can specify a hypersurface,  in which case the position is projected onto the
hypersurface prior to interpolation.  In this case the given component must
belong to the hypersurface or else an error condition is flagged.

• Interpolation functions:  Encapsulated functions to perform linear or bilinear
interpolation on sets of state values.  Input consists of the states to be
interpolated together with the interpolation weights.

•Equation of state encapsulation:  computes thermodynamic functions of a
state. Such functions include pressure, specific internal energy, and temperature.
This class hides specific information about the equation of state from most areas
of the code.

• Interface surgery utilities:  Functions to add/delete points from interface
elements.  Functions to split or join interface objects along specific objects (for
example split a curve into two curves at an interior point thus creating a new
node,  or join two curves at a common node).  Functions to trim sections from
interface objects such as cutting off bond sections from the end of a curve.
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•Point propagate: Normal propagation and tangential propagation operators for
points on hypersurfaces.

•Node propagation encapsulation:  wrappers for physics dependent node
propagation routines.

•Encapsulated finite difference solvers:  this encapsulation allows the
implementation of multiple solver options in the code.

• I/O and diagnostic utilities:  print vector and scalar fields,  restart dumps, and
perform data analysis.

• Initialization and restart: Set up the Cauchy data for a simulation.
•Parallel Communication utilities:

• Send and receive arrays of states data
• Send and receive interface structures,  include reconstruction of addresses
• Clip interface to a rectangular region.  This operation is used to send a copy of an

interface in a buffer zone near a parallel boundary to a neighboring processor
• Merge two interfaces along a common boundary.  Used to merge the

communicated interface into the main interface on a processor.
• General parallel support provided by the Message Passing Interface Package.
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This a partial list of some of the more important utilities used in FronTier.  We
will not go into a detailed discussion of most of these operations,  but it is
important to understand a few of the basic operations,  in particular the
computation of components,  nearest interface points,  and intersections, since
these operations are central to methods used to propagate points and resolve
wave interactions.
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A valid interface is by definition one that is non-self intersecting except at nodes
(or in three space dimensions hypersurface boundaries, i.e. curves).
This fact means that a valid interface
divides the computational domain into a
set of connected components and that the
component value at a given location can
be computed by projecting that point onto
the nearest interface and using as the
component value an integer label
associated with the corresponding curves.
More precisely each hypersurface has two
associated component labels,  one for each
side.  The consistency condition requires
that hypersurfaces bounding a common
region have the same component label on
their sides that bound that region.  Any
inconsistency in the component labels is a sign that the interface is tangled.  The
figure shows a schematic of the mapping between interface component labels and
the component assignment to a region.
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The operations of computing the component of a position,  finding the nearest
interface point,  and determining intersections all have a common feature.  They
each involve looping over all interface hypersurface elements and performing an
algebraic computation.  Indeed the basic operation of finding a component
essentially computes the nearest interface point and uses the component on the
appropriate side from the hypersurface nearest the point to specify the component.
Intersections on the other hand must loop through all pairs of hypersurface
elements and compute the intersection,  if it exists, of the two elements. In all
three cases the algebraic operations are nontrivial and put a large load on the
computation.   Fortunately the basic operations in each case are also essentially
local in the sense that if the two elements (point and hypersurface element or pair
of hypersurface elements) are spatially distant from one another,  then it is not
necessary to actually compute the corresponding quantity (distance or
intersection).  This means we can considerable speed up the evaluation of a given
operation by precomputing a hashed list of the interface elements associated with
a geometric decomposition of the computational domain.  In practice this
decomposition is based on a rectangular lattice called the topological grid.
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The topological grid has a mesh size that is independent of the computational
mesh used as the spatial discretization of the conservation system.  Furthermore
this grid is always required to be square. This grid is used as a hashing bin for the
interface elements.  In practice we usually use a grid size for the topological grid
that is about three to six times that of the computational grid.  Associated with the
topological grid are lists of interface elements that lie close to each topological
gird cell.  For example in two space dimensions,  associated with each cell(i,j) of
the topological grid are integers
                N(i,j) = number of bonds close to cell(i,j)
               M (i,j) = number of separate components close to cell(i,j)
               bond(i,j,k), k = 1,..,N(i,j)
               curve(i,j,k), k = 1,..,N(i,j)
               comp(i,j,k), k = 1,..,M(i,j)
that gives the addresses of the N(i,j) bonds that lie close to that block, the address
of the curve that contains each bond, and a list of the components associated with
that cell.  The notion of close can be taken to mean intersects for practical
purposes.  If no bonds lies in the vicinity of a given cell,  then the corresponding
list of bonds and curves for that cell is empty. In addition we have an array,
compon(i,j), that contains either the unique component number of that cell or the
identifier ONFRONT.
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The topology lists are formed by looping over all hypersurface elements on the
tracked interface and for each element computing the blocks that intersect the
element.  This in turn is done by decomposing the element into pieces that are
sufficiently small so that their endpoints lie in adjacent topological cells.  The
component numbers for the topological mesh cells are set by continuation.  Once
the component number of one cell is determined (say by projection onto a
hypersurface element in an adjoining cell) this component number is assigned to
all adjacent cells recursively in all directions until an ONFRONT cell is reached.

Utilization of Topology Lists
The topology lists are used in the obvious ways.  To find the nearest interface
point to a location,  identify the grid element containing that location.  If that cell
is ONFRONT then we need only check elements in that and the immediately
adjacent cells for the nearest element (it is here that the requirement that the
topological grid be square is imposed).   If the cell is not ONFRONT we resort to
looping over all hypersurface elements on the interface.  Fortunately this is a rare
case since in practice we only require the nearest interface points for locations that
are close to the interface. For intersections we only need to check for intersections
between elements with a common cell.
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The intersections operator returns a list of the interface crossings.  In two space
dimensions each crossing structure contains the addresses of a pair of crossing
bonds,  the curves containing the crossing bonds,  and a point marking the position
of the intersection.  Cross structures are maintained as a doubly linked list,  which
aids in the processing of the intersection list as described in the lecture on
resolving tracked wave interactions.  In three space dimensional flows the cross
structure contains the assembled information describing the intersection of two
surfaces.  This consists of a curve like structure (called a c_curve)  whose “bonds”
correspond to the intersections of triangle elements.  The data structure that
describes a linear segment of a c_curve is called a c_bond and contains pointers to
a pair of intersecting triangles,  the surfaces containing the triangles,  and the
geometric information describing the intersection segment.   This information will
be used in the interface surgery functions that slice a pair of surfaces along their
intersection forming a set of new surfaces that only intersect along the newly
formed curve.  This information is then passed along to other functions that
determine which of the new surfaces are physical and should be retained and
which should be removed from the computation.
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The two diagrams show examples of two and three dimensional crossings.  Note
that in two space dimensions crosses are discrete and thus it is necessary to
process the cross list to identify corresponding crosses.  Any formation of
interface crossing indicates a wave interaction that must be resolved.
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Front tracking can be described as a semi-Lagrangian numerical method for the
interface points.  The points are propagated using the dynamics of the flow field in
neighborhood of the points,  and the hypersurface elements that join the points
will stretch and contract as the points converge and diverge from each other.
Eventually this can lead to a very high variance in the size and shape of the
interface  elements.  Such a distribution will also lead to the formation of
numerical instabilities in the interface.  To avoid this problem the tracked interface
is periodically re-interpolated to form new elements that have a more uniform
distribution in the size and shape of the hypersurface elements.  In two space
dimensions this is done by moving from a physical node along a curve, inserting
new points at a constant distance with respect to the arclength along the curve and
removing the intervening points.  The algorithm in three dimensions is more
complicated.  It requires examining the triangles on the interface according to their
size and aspect ratio.  Large triangles are subdivided into small ones,  and small
triangles are combined with adjacent triangles.  Poor aspect ratio triangles can be
treated in a variety of ways  including deletion by merging two adjacent points and
diagonal flipping between two adjacent triangles.  A recent algorithm by X. L. Li
uses a combination of this technique and an interface reconstruction technique
based on level set ideas to provide a robust 3D algorithm that also automatically
resolves 3D tangles.
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The need for interface redistribution is a necessary evil in the front tracking
method and must be treated with care.  Redistribution introduces an artificial
surface force that has a stabilizing effect similar to surface tension.  It is important
that this operation be applied with the minimum frequency necessary to damp
numerical oscillation but not to over suppress the physical growth of
perturbations on the interface.  It also has different affects for tracked shock wave
verses contact discontinuities.  In the case of shocks,  which are generally fast
moving waves that are asymptotically plane wave stable, a large amount of
redistribution is generally desirable since it reinforces the natural tendency for
shocks to approach a plane wave steady state.  On the other hand contacts are
unstable with respect to perturbations and a much lower frequency of
redistribution is desired to avoid over damping the physical growth of
perturbations.  In practice we have found that for two dimensional flows a
redistribution frequency of every four time steps for shocks and every twenty time
steps for contacts are reasonable compromise values.  However the true
frequencies are problem dependent and are specified by the user.
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As we have already seen, an important operation in the interface propagation
algorithm is the evaluation of flow states at positions located at specific distances
off the front in the direction normal to the front.  This operation is supported by
the hyperbolic solution function.  The input for this operation is a spatial position
and a component number for the region in which the evaluation should take place.
If the component of the given position does not agree with the requested
component,  then that position will be projected onto the nearest position in the
desired component.
In two space dimensions we construct a triangulation of the computational domain
using the centers of the computational cells and the positions of the tracked points
as vertices.  This is a constrained triangulation with the requirement that no
triangle cross the interface, or in other words,  no triangles have vertices with
different components.   The solution function looks up the triangle that contains
the given location and uses linear interpolation on the state data associated with
the triangles vertices to evaluate the flow at the given location.  In practice we
only triangulate a region near the front.  If the rectangle formed by four adjacent
computational cell centers contains no interface point,  we use bilinear
interpolation on this region instead of linear interpolation.
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In three space dimensions we do not construct a global interpolation grid due to
cost and complexity of constructing a full 3d tetrahedrazation which would be the
generalization of the 2D triangulation.  Instead we first locate the rectangle formed
by eight adjacent cell centers (a cell on what is referred to as the dual lattice to the
computational grid) and using only those vertices inside this dual lattice cell
whose component number agrees with the input component number we find the
four closest vertices whose convex hull contains the given location,  and then use
linear interpolation on the states at these four vertices.  If no such set of points is
found then we obtain the state information by projection onto the nearest tracked
hypersurface element with the correct component.
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FronTier uses a distributed memory model for its parallel implementation and
will work on any machine that supports the Message Passing Interface (MPI)
standard.  Parallelism is achieved through a fixed grid domain decomposition.
This method,  which is commonly used for hyperbolic problems,  decomposes the
computational domain into a set of disjoint rectangular subdomains that are
assigned to separate processors.  Adjoined to the boundary of each subdomain is a
buffer zone of width four or more computational grid blocks.  The buffer zone is
sufficiently wide so that every cell in the subdomain has it domain of dependence
within the union of the subdomain and its buffer zone.  This allows an explicit
numerical method to make a full time step without communicating with its
neighboring processors.  At the end of the time step the buffer zone information is
discarded and replace by communicated data from the neighbor.  The main extra
step in front tracking is the need to clip the interface to the subdomain,
communicate the interface information from the edges of the subdomain to its
neighbor, and then then reassemble the interface.   This method has the advantage
that it minimizes parallel communication,  which is a dominate cost in runs with
large numbers of processors.
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Consider the inviscid Burger’s equation:

Write a one dimensional front tracking code to solve this problem.  Use the Lax-Wendroff
method for the interior solver.  Develop a version of the method of characteristics suitable to
use to track a discontinuity for this equation.  Compare the results you obtain using front
tracking with the results of a straightforward captured shock for the initial value problem:

Note that the exact solution to this problem consists of a shock moving with speed one half.
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• J. W. Grove, The Interaction of Shock Waves with Fluid Interfaces, Adv. Appl. Math. 10,
pp. 201-227, 1989.

• J. Glimm and O. McBryan, A Computational Model for Interfaces, Adv. Appl. Math., 6,
pp. 422--435, 1985.

• The Front Tracking Home Page, http://www.ams.sunysb.edu/~shock/FTdoc/FTmain.html
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One major simplifying feature of one dimensional flows is that for many purposes
wave interactions can be interpreted as local binary interactions between nearly
constant flow regions.  This is to say the local structure of a flow is characterized
by Riemann problems and their solutions.  This was one of the key properties
exploited by Glimm in his proof of the convergence of the random choice method.
The situation in higher space dimensions is considerably more complicated.
Waves can exhibit complex behaviors in both space and time.  A simple example
is the steady state refraction of a shock wave through a material interface.  In one
dimension this is easily described by a Riemann problem and yields a solution that
consists of a transmitted shock and a reflection shock or rarefaction wave.
Momentum is transferred from the shock to the material interface,  which causes
the velocity of the interface to change after the refraction.  In contrast the two
dimensional refraction of a plane shock with a planar material interface exhibits a
variety of behaviors depending upon the orientation of the two interfaces with
respect to each other.  This can range from simple one dimensional behavior if the
fronts are parallel,  through a series of steady state configurations if the angle of
interaction is small,  to extremely complex unsteady interactions for other
configurations.
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The straightforward generalization of the Riemann problem to higher dimensional
flows exploits the scale invariance of the equations in the absence of source terms.
More precisely the Riemann problem is defined as an initial value problem with
scale invariant initial data,  that is data that is constant on rays centered at the
origin.  Then exactly as in the one dimensional case we can show that if the
solution to:

∂
∂

+∇• = = = ∀ >u f u u x u x u x u x
t

0 0 00 0 0, , , , ,where

is unique, then the solution satisfies:

u x w x w, ,t t= = ξξξξ
and that w is a solution to the conservation law:

∇ • − ⊗ + =ξξξξ ξξξξf w w wd 0,

where d is the spatial dimension of the flow.  It is immediately obvious that in one
space dimension,  this reduction reduces to the solution of a Riemann problem,
and that the above equation is just the formalized statement of this Riemann
problem.  In more that one space dimension the resulting equation is a
conservation law itself and will exhibit a complex behavior.
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For the Euler equations the self-similar flow equations can be simplified by
introducing the self-similar velocity w = u − x/t = u − ξξξξ.  It is left as an exercise to
show that the conservative scale invariant form of the Euler equations is:

∇ • + =

∇ • ⊗ +∇ + + =

∇ • • + + • + + • = = +

ξξξξ

ξξξξ ξξξξ

ξξξξ

0

1 0

01
2

1
2 , .

A major difficulty in analyzing 2 or 3 dimensional flows is the complex behavior
of scale invariant solutions.  This complex behavior makes it unlikely that a
generalization of the random choice method to higher dimensional flows is
possible.  Furthermore in many situations self-similar flows are unstable with
respect to non-scale invariant perturbations.  A classic example is Kelvin-
Helmholtz instability in which a planar shear wave is unstable with respect to
perturbations in the wave amplitude.  This fact has profound implications for
numerical solutions since the discretization will generally impose such a
perturbation with length scales given by the grid. Nevertheless,  scale invariant
solutions are extremely useful in understanding the structure of complex flows.
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The complexity of solutions to the scale invariant equations in higher space
dimensions greatly reduces their utility in the interpretation of flow behavior.
What we tend to see in such flows are sets of coherent  features that retain their
shapes for significant time intervals and move with recognizable velocities.  This
suggests the notion of an elementary wave,  which is a solution to the conservation
system that is both scale invariant and steady state in the sense that there is some
velocity v (unknown a priori) so that under the Galilean transformation y = x - vt,
the flow becomes steady.  For a scale invariant function u(x,t) = w(x/t), this means
that for some velocity v, w(ξξξξ) = g(ξξξξ====−−−−====v) and=

==

=g(ηηηη) is homogeneous of degree 0,
g( ηηηη) = g(ηηηη), ∀ =>=0.  The effect is to further reduce the differential system for
the solution to that of solving a conservation law on the unit sphere Sd-1. We will
not pursue this further in generality,  but will now specialize to the case of the
Euler equations.  A key property of the Euler equations is Galilean invariance.
Thus we see that all elementary wave solutions of the Euler equation are Galilean
transformations of scale invariant solutions to the steady state Euler equations. For
simplicity we restrict the discussion to two dimensional flows.
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In two space dimensions the steady state Euler equations are:
u v

u P uv

uv v P

u v h u u v h v

x y

x y

x y

x y

+ =

+ + =

+ + =

+ + + + + =

0

0

0

0

2

2

2 2 2 21
2

1
2 .

If we write u = qcos( ), v = qsin( ), x = rcos( ), y = rsin( ), we can rewrite the
system as:
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If a discontinuous wave front makes the angle  with respect to a flow,  then we
can show that the Hugoniot conditions for the wave are:

0 0 0 1 1 1

0 0 0 1 1 1

0 0 1 1

0
2

0 1
2

1
1
2

1
2

q q m
mq P mq P
mq mq

m q h m q h

sin sin
sin sin
cos cos

.

= =
+ = +
=

+ = +

If m = 0 we have a contact discontinuity where the pressure and normal
component of velocity are continuous across the wave.  If m ≠ 0 we introduce the
turning angle  through the wave so that β1 = β0 - , and we get the relations:

tan cot

, .

=
−

+ = + − = + −

∆
∆

P
q P

q h q h h h V V P P
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The variable m is the mass flux across the front as described previously.  If the
shock is stable in the sense of Lax,  and 0 denotes thermodynamically ahead state
of the shock, then 0c0 < m < 1c1 so that:

M m
c

M m
c0 0

0 0
1 1

1 1

1 1sin , sin ,= > = <and

where Mi = qi/ci is the shock Mach number.  It follows that Lax stability requires
that the flow ahead of the shock be supersonic,  while the flow behind the shock
may be either supersonic or subsonic.  Note that as the shock approaches a normal
shock,  the Mach number behind the shock must eventually be less than one.
For a perfect gas we can write the turning angle explicitly in terms of the flow
states:
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−
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+

∆
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For self-similar shocks the
Hugoniot conditions derived on
the previous slides suffice to
describe the flow state about  the
shock.  The relation between the
pressure and turning angle is
particularly useful.  This function
is called a shock polar.  For a fixed
ahead state it gives the flow angle
of the streamline behind the shock
as a function of the pressure jump
across the shock.  The plot to the
right shows a representative plot of
a shock polar for a perfect gas
equation of state.  The following
observations are important
properties of the shock polar.
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•The shock polar forms a bounded loop with the maximum pressure behind the
shock corresponding to a normal shock advancing into the ahead state region.

•The shock polar is divided into two symmetric branches depending on whether
the flow through the shock is turned in the counterclockwise (forward or positive
branch) or clockwise (backward or negative branch).

•Each branch is divided into two sub-branches according to whether the flow
behind the shock is supersonic (supersonic shock) or subsonic (transsonic
shock). Recall that the ahead state is always supersonic.

•The division points where the flow changes from supersonic to transonic are
called the sonic points.  A sonic transition occurs only once for a perfect gas
equation of state.

•The shock polars possess local extrema in the turning angle.  Again these occur
at a single pressure for a perfect gas equation of state.

• For a perfect gas equation of state,  the flow at the maximum turning angle is
always transsonic,  but this occurs at a pressure that is often close to the sonic
point pressure.
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In order to complete the discussion of steady-state self-similar flows we need to
examine possible smooth solutions to the self-similar flow equations.  Returning
to the polar version of the Euler equations in two space dimensions,  we can write
this system in smooth flow as:
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It is easy to check that the two differential operators in the above system of
equations correspond to derivatives in the direction of the flow and the direction
orthogonal to the flow:
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You can show that this steady flow system written in the form on the previous
slide is hyperbolic if and only if the flow is supersonic q > c. In this case we can
write the equations in a simplified characteristic form by introducing the Mach
angle A defined by sin(A) = c/q.  In this case the system can be written:
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The differential operators in the first two equations are just the derivatives in the
directions that make an angle A with the flow direction.
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Suppose now that we have a scale invariant flow, i.e. the flow variables are
independent of r.  Then we obtain the system:

We see immediately that the entropy and the quantity q2/2+h are constant in a self-
similar flow region.  If  and P are not constant,  them we can divide the first two
equations to obtain the relation: c2/q2 = sin2ϕ.  This shows both that the flow in
self-similar region must be supersonic,  and that in such a region,  the flow angle

, the direction angle , and the Mach angle A are related by the formula:
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Since a non-constant self similar flow must be supersonic we can rewrite the
equations in characteristic form:

∂
∂

= ± ∂
∂

cot .A
q

P
2

If we eliminate  we get a formula analogous to that obtained for the relation
between flow velocity and pressure in a one dimensional rarefaction wave:
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+

0 2
0 21

2

cot .
,

A
q

dP
P

P

S q h

For a perfect gas equation of state we can compute the integral on the right to
obtain:
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Finally given a single point in a self-similar flow region we can solve for the flow
in the entire region using the formulas:
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By solving this system in terms of the position angle φ we obtain the formula for
the flow in a fan region emanating from the origin.  Such a wave is called a
Prandtl-Meyer wave.  These waves play the same role in the solution of a
supersonic steady state Riemann problem (to be discussed next) as one
dimensional rarefaction waves.  Just as in one dimensional flow they can be joined
with the shock polars to produce a twice continuously differentiable wave curve
that describes the full set of states that can be connected to a given state by either a
steady state shock or a Prandtl-Meyer wave.
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The plot on the right show the full
wave curve combining both the shock
and rarefaction portions.
Intersections of these wave curves
will be used to compute the solutions
to wave interactions,  shock
refractions in particular.
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Consider a shock wave incident on an interface between two different materials as
indicated in the figure below.  This figure shows a Mach 10 shock in air incident
on a material interface with sulfur-
hexaflouride.  The shock is refracted by
the material interface into reflected and
transmitted shocks.  The material
interface is also deflected by the shock
wave.  The black arrows at the shock
fronts show the direction of propagation
of the shocks,  while the colored arrows
show the flow velocity relative to the
point of refraction.  The flow state
behind the incident shock together with
the unshocked flow in the SF6 serve as
initial data for a supersonic steady state
Riemann problem,  the solution of
which gives the reflected and
transmitted shock data.
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The shock polar diagram for the refraction shown on the previous slide is given
below.  Using the state on the opposite side of the material interface from the
incident shock and the state behind the
incident shock as Riemann problem
data,  the downstream flow states are
completely determined by the
intersection (provided it exists) of the
two corresponding shock polars.
Actually this diagram indicates that the
solution lies above the mechanical
equilibrium point (where all three shock
polars would intersect) so that we
would expect this wave configuration to
be unstable with respect to a
sufficiently large perturbation and the
single point refraction would bifurcate
into a more complex configuration.



Los Alamos National Laboratory
Hydrodynamic Methods Wave Interactions in Two Space Dimensions 18LA-UR 99-3985

As we have just seen,  one type of elementary wave is given by the refraction of a
shock through a material interface.  Basically all elementary waves in gas
dynamics can be divided into two types,  so called supersonic elementary waves
that corresponding to a binary interaction between two wave fronts, either shock
on shock or shock on material interface,  or transonic elementary waves that
correspond to a dynamic splitting of a wave.  The best know example of the latter
type is regular Mach reflection in which a shock incident on a wall must bifurcate
into a pair of shocks and a contact discontinuity so that the flow near the shock
can satisfy the wall boundary condition that the flow must be parallel to the wall.
It should be emphasized that elementary waves are only the building blocks out of
which more complex configurations are composed.   Furthermore exact
elementary waves will generally only occur as asymptotic flow states near a point
of interaction.  Also the occurrence of  subsonic flow regions near an interaction
can lead to a loss of local self-similarity,  and the flow becomes fully
multidimensional.  Nevertheless an understanding of such waves is extremely
useful in interpreting flow phenomena and are also useful in numerical algorithms
for tracking the interaction of wave fronts.
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1. Derive the conservation form of the scale invariant Euler equations.

2.  Show that for a perfect gas,  the steady state Riemann function for a Prandtl-Meyer wave
is:

3.  Show that for a given ahead state and a perfect gas equation of state the sonic point
pressure is unique.
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Front tracking provides a method of achieving enhanced resolution of selected
strong waves.  It eliminates numerical diffusion and provides a mechanism for
applying wave propagation algorithms in coordinate systems that are naturally
aligned with the fronts,  and has the ability to apply special physics to the fronts.
One of the prices for this ability is the need to detect, diagnose, and resolve
interactions between tracked fronts.  This lecture will discuss some of the
structural aspects of the front tracking method as implemented in the FronTier for
the resolution of wave interactions.  The figures on the next few slides illustrates
the type of complex wave bifurcations that are handled by FronTier.
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Rayleigh-Taylor Instability
Richtmyer-Meshkov Instability

(reflected shock case)
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Supernova Explosion Supersonic Missile Above Water
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The way FronTier handles wave interactions depends on the nature of the waves
involved in the interaction.  We define as a vector wave,  any wave belonging to a
characteristic family with a nontrivial light cone.  For gas dynamics such waves
are shock fronts and acoustic waves.  The latter most often are the tracked edges
of rarefaction regions.  A scalar wave is a wave belonging to a characteristic
family with a degenerate light cone.  Such waves are also said to be linearly
degenerate,  and in gas dynamics are slip lines, contact discontinuities,  material
interfaces, or in general a combination of all three.   Each scalar wave moves with
the local fluid velocity.   In addition we distinguish interactions between those that
produce a change in the tracked front topology and those that do not.   The latter
case corresponds to the pointwise interaction of wave fronts and is implemented in
terms of the node propagation algorithm for the node that represents the point of
interaction.   This class is subdivided into individual cases depending on whether
the wave interaction at the node is due to two shocks crossing,  one shock
overtaking another,  a shock refracting through a material interface,  a triple point
junction of contact discontinuities,  or a Mach triple point.  We will discuss the
shock refraction node propagation algorithm.  The other nodes are similar except
for the contact triple point,  which has a complex structure.  The waves that
change the interface topology are due to collisions of separate wave fronts,  and
are handled by special code that identifies the wave structure and reconstructs a
new interface topology to reflect the resolution of the wave interaction.
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The figure on the right shows the separate
steps in the propagation algorithm for a
regular shock refraction node.  Figure (a)
shows the configuration at the start of the
time step.  The first step is to propagate each
wave front separately,  ignoring the
interaction at the node.  For this purpose the
node is treated as six separate interior points,
one for each curve entering the node.  The
point propagation algorithm, using one sided
information at the node, determines separate
states and positions for hypothetical points
that lay in the interior of each curve and
resided at the node position.  This step leads
to the configuration in (b) in which the wave
fronts have become logically detached from
each other.
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Once we have propagated the individual
wave fronts at the node separately leading to
the configuration in (b),  we use the fact that
a regular refraction node is locally a
supersonic elementary wave  where
information flows from the upstream side
into the downstream region.  We identify the
upstream incident shock and material
interface through the use of integer labels
attached to the curves at the node indicating
whether that curve is an incident shock,  a
reflected shock or rarefaction edge,  a
transmitted shock,  an upstream contact,  or a
downstream contact.  Once the two upstream
curves are identified we compute the
intersection between their propagated
sections and use the displacement between
this point and the old node position to
approximate the node velocity.
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The node velocity gives the velocity
transformation between the unsteady frame
of the computation and the local steady
frame of the node.  We determine the
upstream states at the new node by linear
interpolation along the upstream propagated
segments.  This data when transformed into
the steady from of the node is used as data
for a steady state Riemann problem as
described in the previous lecture.  The
solution from this Riemann problem gives
the angles of the reflected and transmitted
waves,  the angle of the deflected contact,
and the state values at the node on either side
of these waves.  We next trim off the
sections of the upstream waves behind their
point of intersection and install wave
fragments corresponding to the scattered
wave information as given by the Riemann
problem solution.
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The lengths of the scattered wave segments
is determined by the velocity of a sound
wave in each section.  This sets an upper
bound on the distance that a wave can
propagate out from the node in a single time
step.  The result is a configuration like that
shown in figure (c).  Finally the inserted
sections are joined with their counterparts
behind the node and the propagation is
complete.
Note that this algorithm uses a local steady
state approximation,  but is repeated each
time step with new data.  This allows
upstream effects such as changing geometry
of the interacting waves to be propagated
downstream.  The effect is a fully dynamic
algorithm for the propagation of the node.
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The existence of a regular refraction node depends upon the existence of a solution
to the supersonic steady state Riemann problem corresponding to the local state of
the flow around the node.  In the event that this Riemann problem has no solution,
the flow state at the node can not stay self-similar and the node breaks up into a
complex configuration.  The two figures below show just two of the possible
irregular configurations that can be produced.
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Wave interactions that change the topology of the interface are divided into two
broad classes,  interactions between nodes, i.e. interactions that occur when two or
more nodes with a common curve collide,  and tangles,  where the discrete motion
of two curves leads to the production of intersection points in the interior of the
curves.  Tangles are further classified by whether they are scalar-scalar, scalar-
vector,  or vector-vector interactions,  according to whether two contacts become
tangled,  a contact tangles with a shock front,  or two shocks become tangled. Both
the node-node and curve-curve interactions use similar theory for their resolution,
they primarily differ in how they are detected.  In both cases the procedure follows
the same basic pattern:
•Detect that an interaction has occurred
•Apply a sorting routine to identify the type of interaction based on the number
and types of the waves involved.
•Use an interaction specific algorithm to compute the scattered waves from the
interaction and install a representation of the solution into the tracked data
structures.
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One method that can be used to treat an interaction is to turn off tracking of the
involved waves and use shock capturing to resolve the interaction.  This
necessarily results in the loss of resolution in the solution since the waves will
spread out over regions that are on the order of three to five mesh blocks wide.
However this provides a robust alternative for situations where the algorithm for a
specific interaction is not implemented or the geometry of the waves is too
complex for practical tracking.   There is one situation where we do not allow
tracking to be turned off.  This is for interfaces across which there is a change in
the material equation of state.  In the current implementation FronTier assumes
that no microscopic mixing occurs between separate fluid species, and each region
of pure material is surrounded by a tracked material interface.  This means that in
any attempt to resolve an interaction by turning off tracking,  we are free to
remove any vector (shock) waves,  but not to remove material interfaces.  This has
proven to be adequate for most purposes.  We are currently developing a coupling
of the tracking method with multi-material models of the flow field that will allow
us to replace a tracked material interface by a diffusion layer,  at the cost of
spreading the mixing zone five to seven mesh blocks or more.
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The figure below shows an example of a node-node interaction that occurs in the
simulation of Richtmyer-Meshkov instability.  A shock is refracting through a
material interface producing a pair of regular refraction nodes.  In this case the
scattered wave pattern at the nodes consist of a transmitted shock and a reflected
Prandtl-Meyer wave.  Near the time when the shock reaches the opposite end of
the material interface,  the velocities of the two nodes are directed towards each
other,  and are of sufficient magnitude to that in a single time step the nodes
propagate past each other.
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This interaction is detected during the node propagation phase for the two nodes.
The propagated segments of the upstream curves do not intersect as shown in the
middle picture below.  This failure signals a wave interaction.   By examining the
incoming waves we determine that they correspond to a pair of regular refraction
nodes and that the interaction consists of a collision of the two nodes followed by
a scattering of the interacting waves.   The model for the resolution of this
interaction is to connect the sets of reflected and transmitted waves,  and to
reconnect the material interface into a single curve. The actual physical interaction
would produce additional waves directed towards the material interface.  These
waves are captured on the interior grid.
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The figure on the left shows the sort of captured waves that can be produced by
the refraction node interaction. In this case the node-node interaction has occurred
across the periodic boundaries at the top
and bottom of the computational domain.
This interaction produces a shock front
that propagates towards the middle of the
computational domain. Where this wave
overtakes the reflected shock we would
have an overtake node if the
configuration were tracked.  Since the
only the leading edges of the reflected
and transmitted shocks are tracked,  this
overtake node is not an explicit tracked
feature,  but is instead a captured wave.
This mixing of tracked and captured
features is an important aspect of the
front tracking method.
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The simulation shown on the previous slide came from a FronTier simulation of
Richtmyer-Meshkov instability.  This is a fluid interface instability caused by the
acceleration of a material interface by a shock wave.  The initialization of such a
simulation consists of the installation of a shock at a positive distance from the
material interface.  During the first few time steps the two waves are separate and
do not interact.  At some point the shock reaches the material interface,  becomes
tangled with it, and leads to a scalar-vector untangle problem. The figure below
shows a schematic representation of the resolution of the untangle.
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The first step in resolving the scalar-vector
interaction is to identify the pair of interacting
crosses.  Recall that in two space dimensions the
intersections function returns a list of discrete
interface crossing.  A pair of crosses that
correspond to a wave interaction (called
companions) must be formed by the same two
waves.  Once we have identified an intersection
we sort through the set of crosses on the same
two curves and take as the potential companion
the cross that is closest.  In practice this has
proven to be sufficient to determine the
companion.  In cases of ambiguities the time step
will be repeated with a smaller ∆t  so that pairs of
separate interactions do not become confused.  It
is also required that the distance between the
companions be on the order of spatial grid
spacing.  If the companions are too far apart the
time step is repeated with a smaller ∆t.
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0 0 sin =

The next set in the resolution of the scalar-
vector tangle is to estimate the velocities of the
new nodes,  transform the upstream states to the
steady frames of the nodes,  and perform the
shock polar analysis to determined the scattered
wave configuration.  Since these are new nodes
we can not compute their velocities as in the
node propagate algorithm.  Instead we use the
relation between the incoming flow states and
the incident angle:

where q0 is the incoming flow speed in the
frame of the node, m is the mass flux across the
incident shock, and  is the incident angle. This
data is all available from the upstream geometry
and flow states.  The direction of the node
velocity is taken to be tangent to the contact.



Los Alamos National Laboratory
Hydrodynamic Methods Implementing Wave Interactions in Front Tracking 18LA-UR 99-3985

The shock polar analysis provides the angles
that the scattered waves make with respect to the
incoming waves together with the states at the
node.  We install curve fragments corresponding
to each of the scattered waves at each of two
nodes.  Note that unless the interaction is totally
symmetric with respect to the two nodes the
node velocities and incoming states at each node
will be different and thus the scattered wave
pattern will not be identical at the two nodes.
However we assume that the time step is
sufficiently small so that the scattered patterns
are similar.  In particular both waves must
produce the same reflected wave type (either
both shocks or both Prandtl-Meyer waves).
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The final step in the algorithm is to connect the
new curve segments and interpolate intermediate
states in the middle of the sections.  There are
two cases depending on whether the new
segments intersect or not.  In the former case a
point is inserted at the intersection point and the
curves are clipped to this point.  In the latter
case the two endpoints are joined.  The states at
the intermediate points are interpolated from the
states at the nodes.  The resulting configuration
is initially rather coarse,  but the scattering is
done on a length scale of about one spatial mesh
block.  After a few time steps the configuration
is smoothed out by the point and node
propagation algorithm and yields a resolved
wave pattern that is generally quite smooth and
well behaved.
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Show that to first order the turning angle  across a shock  is related to the incident angle 
by the formula:

where ∆u is the change in the normal component of velocity, 0 is the density ahead of the
shock and m is the mass flux across the shock.

= +0
2∆u

m
O
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