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METHODS FOR THE SOLUTION OF THE TWO-DIMENSIONAL

RADIATION TRANSFER EQUATION

by

Robert Weaver,l Dimitri Mihalas,2 Gordon Olson1

ABSTRACT

We use the variable Eddington factor
(VEF) approximation to solve the tinme-
dependent two~dimensional radiation trans-
fer equation. The transfer equation and
its moments are derlved for an 1iInertial
frame of reference 1in cylindrical geocme=-
try. Using the VEF tensor to close the
moment equations, we manipulate them 1into
a combined moment equation that results in
an energy equation, wnich 1s automatically
flux limited.

There are two separable facets In
this method of solution. First, given the
variable Eddiagton tensor, we discuss the
e‘ficient solution of the combined moment
matrix equation. The second facet of the
problem 18 the calculation of the variable
Eddington tensor. Several options for this
calculation, as well as  physical limi-
tations on the use of lcrally=-calculated
Kddington factors, are discussed.

Group X=7, Los Alamowr National Laboratory
X=Dtvislon Consultant, Los Alamos Natienani Laboratory



I. INTRODUCTION

In two spatial dimensions, the time-dependent radiation
transfer equation is at least a six-dimensional problem (r,z,t;
6,¢,v). Many classes of methods have been advanced to solve this
complex problem, including S, methods.l Feautrier mel.hods,2 &nd
moment equation expnnsions.3 to name a few. In this paper we
examine the moment expansion method.

Because angular projection factors appzar 1in the transfer
equation {teelf, thicr wmoment expansion technique always produces
a system containing more unknowns (moments) than equations to
determine them. Thus a closure relation is required. A particu-
larly attractive scheme 18 to 1introduce variable Eddington
factors to close the system of momant equations.“ In on2 spatial
dimeneion, a scalar Eddington factor is all tha: 1is required to
close the system. However, 1in tvo s8patial dimensions, the
closure requires three independent factors (an Eddington tensor)
because the second mnmoment has three 1independent components
(Prr' Pzz' and Prz).

The moment method of solving the transfer equation has two
separable facets. One nee¢ds to solve the system of momen:t equa-
tlons, given the closure information; and, given the solution of
the moment equatifions (hence the diegtribution of sources and
#inks), one needs to detarmine the VEF rtensor. In this paper, we
discuss briefly the various computstional techniques one can use
to handle each of thitse facets of the method.

An fimportant 1liwiting case for the wmoment equations 18
obtainud if one assumes a constant Eddington factor. 1In particu-
lar, deep within an vpaque radiating fluid (e.g., a stellar
Interior) the radiation field becomes nearly isotropic and steady
in time. In this regiumwe, tne flow of radiation energy can be
approximated very accurately by a diffusion equation. Also the
vector flux (s proportional to the gradieut of the eneryy
density; so radiation tends tv flow down the gradient from the

hotter Anide to the cooler sides. If one angsumes that the diffuston



approximation is valid everywhere, then the Eddington factor is
everywhere constant, and the solution of the transfer equation 1is
particularly simple. However, most interesting radiation transfer
problems (e.g., a pulsating star; a supernova) span the regime
from optically thick to optically thin. In the optically thin
regions, the assumption of a constant diffusion value for the
Eddington factor is no longer valid. In this case, the radiation
field becomes anisotropic (i.e., nonlocal), the time dependence
of the radiation field may become important and the direction of
the radiative flux may no longer be exactly along the gradient of
the energy density. Calculating the magnitude of these differ-
ences between diffusion and transpor:t is the essence of using
variable Eddington factors instead of a constant factore.
Moreover, given that efficient codes exist for the solution of
the diffusion equation,5 this variable E£ddington tensor method
can be formulated in such a way 8o as tvo be a natural extension
and improvement of existing diffusion codes.

This paper 1is organized as follows. In Sec, II, we derive
the inertlal-frame transfer equation in two-dimensional cylindri-
cal geometry. The moment equations are closed by 1introducing
variable Eddington factors. Exanj les of boundary conditions are
derived. In Sec. 11I, we couple the radiation moment equations
to the material energy equation and briefly review techniques for
the efficient solution of the combined moment wmatrix equation.
Finally, in $Sec. IV, we review methods for obtaining tihe variable
Eddington factors. In particular, we ehow results comparing
Eddington factors crelculated with simple formulae (e.g.,

] 7)

Minerbo's® or Levermore and Pomraning's to analytic Eddington

factors in simple 1D and 2D geometries.

I11. TRANSFER EQUATLON AND 1TS MOMENTS

A. Geumetry

We assume the material is contalined in a cylinder of finite

length with azimuthal eymmetry about the cylinder's axis. We



choose r,%,z as coordinates and assume that all material proper-
ties are functions of t,r, and z.

The radiation field in the medium 1s a function of both
position and direction, thus the specific intensity 1is I(t,r,z,e)

where n ls the unit vector

n = ll-ui cosd é + v’l-;I sin¢ é + % . (A. 1)

A

Here u = cocB, where © is the angle hetween n and z, and ¢ 1is the

azimuthal angle relative to the local radial directior r.

B. Transfer Equation

By following a photon path an elementary distance ds 1in the
coordinate system defined above, 1t 135 easy to show that the

transfer equation 1is

0|

aL 31 _ 131 T 31 , sing (3L _ 3I
at + 98 c dt + /1w [cos¢ or + T (30 d )]

©

ol
+u3‘z'-KB+S-xI . (Bul)
Here the total extinction coefficlent is Yy £ x + o0, the sum of

the absorption coefficient x and the Thomson scattering
coefflicient o, B 1s the Planck function, and S 1is the Thomson

scattering source term
S(u,9) = 35— ¢ I(n*) [1 + (aen®)? Jdu' . (B.2)

As unrual f denotes integration over all solid angles dw = dude¢, ¢

ranges from O to 2%, and u ranges from -1 to 1.



Because we assume strict szimuthal symmetry (31/3¢) = O, and

this term will be dropped henceforth,

Moments and Eddington Factors

Define the following momente of the radiation field:

zeroth moment, the radiation energy density:

E = %- $ I(n)dw ; (C.1)

first moments, the flux components:

F_ = § I(n)n_du = § I(n) /112 cos¢dw , (C.2)
F, = § Lmin o = § 1(n) /1-12 sin¢dw = 0 , (c.3)
F, = § I(n) ndo = § I(n)udw ; (C.4)
second moments, the pressure tensor components:
P =< ¢ I(n)an du = 14§ 1m) (1-#) cos?e du , (C. 5)
Py " % $ 1(n)n n do -;‘ ¢ I(n)(1-u2)sinecos¢ dw = 0 ,(C.6)
P, - % ¢ I(n)n n_dw = % ¢ 1(n) w/1-42 cos¢ duw , (C.7)
Pog = 2 ¢ 1()n n du 14 1=t e du , (C.8)



Py, = ¢ § L(minyn do = & § I()n /1= sing dw 50, (C.9)

oz ¢
and
P, =3 § I(ne n do = 2 § I(n)Pdu . (C.10)
Note that
trace (B) = Prr + P¢¢ +P = E . (Cc.11)

In order to close the system of moment equatious we intro-

duce the tensor variable Eddington factor

f = g/E . (C.12)

In solving the moment equations these pgeometric factors are

presuned to be given, either from an approximate formula such as

6

given by Minerbo,” or from a direct evaluation by a fo-mal solu-

tion (see Secs IV below). In the present calculation there are

only three 1independent components of f, namely frr ’ fzz' and
frz; f¢¢ follows from Eq. (C.1l1)
3 -] - f - f . (C.l:)

The 8scattering source term can be written in terms of the

moments defined above as

S(u,¢) = ?2: [E 4+ {1-u2)(co8? Prr + sin ¢ PQO)
4 2u(1-1w2 ) 2comy P + W2 P ] , (C.14)



which can he rewritten as

S(u,¢) = 32:’,1': {1 + (1-u?)sin?¢ + (1-u?)(1-2s1n?)f

r

+ 2u(1-u2)1/2cos¢frz + [uz - (l-uz)sinz¢szz} «(Cel5)

D, Moment Equations

Taking the zeroth moment of the transfer equation by inte-

grating Eq. (B.1) against dw we find

JE 1 3(rFp) oF,
3t + - 5T + g = x(4wB-cE) , (D. 1)
which 18 obviously the radiation energy equation. Here we made

use of the fact that Thomson scattering is conservative so that
$ [S(n) - oI(n)jdw = 0 . (D.2)

Next, taking the radial first moment by integrating

Eq. (B.1) against n dw and using Eq. (C.1ll) we find

aF aP 2P .. +P -E aP
1 r o, rr rrtizz + IZ o - X § , (b.3)
o2 ot ir r 9z c r

which is obviously the radial component of the radlatifon momentunm
equation. Here we made wuse of the fact that for Thomson

scattering

$ s(n)n dw = 0, (D.4)

which 1is evident on physical grounds, and can be verified by

direct calculation from Eq. (C.14) or (C.1l5).

~J



Finally, taking the axial first wmoment by integrating
Eq. (B.1l) against n,dw we find

o aP,, X
ar (rPrz) + 9z c Fz - (D.5)

1
2 at

Equations (D.3) and (D.5) rewritten in terms of Eddington

factors are

oF 9(f,E (2f . +f -1)E a(f E)
l_ r o, rrE) + It zz + rz - - X Fp . (D.6)
2 it or r 9z c T
and
1 9F;, 1 3(rfp,E)  3(f,,E) X
:; T or + oz “e 2o (D7)

E. Configuracion Factor

In order to eliminate the undifferentiated term in Eq. (D.6)

in a convenient way, define the configuration factor® q such rhat

3fnq _ 2fpptf,,-1

or tf o p ’ (E.1)
or
. 2f . 41, -]
tn iq(r)] = JF (—’:,f—”—-)dr' . (E.2)
(o] rr

Then Eq. (D.6) reduces to

1 3Fr 13 Aa(fyzE) X ‘e
Zat tgar B YTt T (E.3)

which is a more pleasant form {(nr the equation.



Note that q = gq{(r,z). Also, 1in the 1isotropic 1limit
frr = £2;, = % and q = 1, whereas in the radial streaming limit
frg =1, £, = 0, and q = (constant)*r. In the axial streaming
limit f,p = 0, f,, = 1 so q is undefined. To choose the correct
value 1n this case we go back to tne basic derivation of
Eq. (D.3), where we find that the (l/r) term 1is really
(Pey = Pyy)/re Thus 3%%3 = [1 - (f¢¢/frr)J/r. and in the axial
streaming limict 1if f,, = 1 - 2e¢, we may reasonably expect
frr = f¢¢ = €, hence q = l. In practice the value chosen should

not matter because 1f f .. = U, the %? terms vanish anyway.

F. Combined Moment Equation

We now use the two momentum equations to eliminate the flux
from the energy equation and thereby obtain a single second-ovrder
(parabolic) equation for the energy density. To 1llustrate the

approach we write the vector form of the equations:

%% b UeF = <(4mb - cE) (F.1)
and

1 aF

— —= 4+ 9+(fE) =~ - X F . (k.2)

2 ot -~ = c -

We now differcnce Eq. (F.2) in time, leaving the space
derivatives 1n continuous form; for stabfility we use a fully

fmpliclt (backwards Euler) scheme. Thus

n+l__n
F -F a+l
- - +1. +
o4 ge(gE™TY - o X (F.3)
2 - C ~
cc At
or
n+l -c . n+l N N
X a1 JTUEET ) ey B (F.4)
Y+X *+x



where y =

1/c4t. This equation provides a form of flux limiting.9

A finite difference representation of the energy equetion is

n+l

n+1(4“B -

- O[K

+ (1 - 8) {«"(4nB" - c57) -

n+l

cE

) - ¥

> (F.5)

where V+F is to be evaluated using Fq. (F.4). In particular, if
we use a fully implicit formula (6 = 1) we have
+ + +
(v + Kn+1)En 1 + % verD 1 éﬂ 0 1 Bn+1 + YEn , (F.6)
or substituting from Eq. (F.4),
n+) 1 ' 1 n+1 4 Kn+an+1
E atl oo arrs VCUEET D] e Py
Y+« (y+x ) Y+x
. (—7)
+ —_— - — . - . (F.7)
+ -
Y+Kn+1 c\y+rn 1) Y+xn+1
In the 1limit of high opacity and/or long timesteps, which
inplies (x/Y) = (cAt/Ap) > 1, Eq. (F.7) reduces to the Aiffusion
equation
on+l _ 47 n+l 1 ] Lo pentl
E — B + o [xn+l Ve(LET )| . (F.8)

In the limit of low opaclty and/or

x/y <« (F.7) reduces

equation:

1. Eq-

10

to

short timesteps, which 1implies

an approximation to the wave



En+l (cAt)z Y.[y.(gEn"'l)] En - i_Y V.Fn

= 2E" - E (F.9)
or
2 Ve[Ve(ge™)] = (™! - 28" 4 £"T)/ae2
m (d2E/dt2)" . (Folu)
In writlng the second equality in Eq. (F.9) we used Eq. (F.b) fur
k/y << 1.
Now <consider the <combined moment equation 1in conponent

form. Taking hackwards time-differences in Eqs.

we obtain

n+l
n+l Y .n c d(qfp E )
Fr ( n+l l'r n+l ar
Y+X (v+x )q
nt+l
_ c 3(f.,E 'l
]
(Y+x"+l) oz
and
n+l
n+l ( n c 1 a(rfrzL )
Fz ( n+l)Fz n+l. or
Y+X (v+x )
n+l
_ c a(fzzb )
+1 F) *
(y+x" ) z
Taking the backwards time difference of Eq.
tuting from Eq. (F.1ll) and (F.12) we have

(D.7) and (E.3),

(F.11)
(roll)
(De1) and substi-



+1 n+l

(y+xn )E

—
Icu
|
]
N
—

r or (Y+xn+l) 9z
n+l
1 l ! B(rfrzE )]
9z (Y+x"+l) or
n+l
] 1 a(fzzl-' ) 47 n+l n+l
T 3z l n+l 9z ] - < X B
(y+x )
n Y J r I-Ix“ Yy 9 Fz
+ yE - = 37 (:::;:T) -7 3z (;:*n+l) S(FLLY)
Let us define the optical-depth-Like varlables
+
dTr = (y + xn l)dr , (Felda)
dt' 2 q(y + xn+l) %—r (Falab)
and
+
dr? = (y + xn l)dz (Foldie)
Then Eq. (Fol3) cen be written
2 n+l
e he™ g @2 ey FArf LE)
(Y+x"+l) ? 31;2 rr r a'rzarl_



+ YE")/(y + x"h

Y ] ( r F: Y ] F: )
S SR Ly-2X ( . (F.15)
cr arr Y+xn+1 c arz Y+xn+1

As was true for the vector form of this equation,
[Eq. (F.7)], Eq. (F.'5) 1limits correctly to the diffusion c¢qua-
tion And to an approximation of the wave equatione. An important
rroperty of Eq. (F.l15) 1is that it 1is possible to obtaln seconi-
order accu.ate representations of all the derivative terns
operating on Entl, The term 32/31;2 and 32/312 of fer no parti-~
cular difficulties. The cross derivatives az/ar,arz and
32/BTzaTr can be evaluated wuniquely by assuming that the
variable (rfrZE"+1) can be represented by 4 product of
second~order Lagrange polynomials in Aty ond A7, on  the
nine-point stencll centered on the point of lnuerout.z Note that
because the derfvatives are to be evaluated along lines of

constant r and of constant z, the derivatives do not comnute,

G Boundary Conditions

We nov obtaln exemplary boundary conditionsy. Consider flrat
the axie r = 0. From symmetry conslderacions we know that Fp. = 0
and Pe, = 0 on the axis. Therefore from Eq. (E.3) we obtaln

the very simple boundary conditfon

—_— o (Gal)

Although Bge (Felb) applies at all tnterlor polnta (f.ee, not on

the axfa or adjacent to the edpgen), we cannot  apply ft fn

15



practice on the cylindrical shell next to the axis because we can
not compute a8 finite value for dry, as defined in Eq. (F.l4b),
from r = 0 to r = rj. To get around this diffliculty we can
rewrite Eq. (F.13) as follonws

( n+l
(Y + ‘n+l)En+l - 2_ l 1 a‘qfrrE )J
or +1 or
qCy+x" )
. .n+l
1 d(qfrrhn )
+
+1 F)
rq(y+,"" ) r
- {same termse as Iin renainder of (F.l])} . (G 2)
Then defining
“ o +1
dr’ 2 q(y + x""ydre
we have
2 n+l n+l
(Y+r"+ll g+l a A (al ¥ ) - 1 1£1£rrh )
(ﬁ+x“+l) 01;2 ( +'n+l) 31r
22 .n+l ) a+1
AR TR LT T
r R I r N
2 r r
+1
a2 (1 _k"TH . _
R 1 (41 JHL it YER )/ Cy + xnfl)
Vi [}
91
z
n n
r ¥ YF¥
: 1 F] , .
SR TN U el U
1 Y Hx z  Yhkx

14



This equation applies at all interior points, and may, in fart,
be preferable to Eq. {(F.l1l5). (Note that the first derivative
term can be calculated to second order.) Alternatively, it may
be best to use Eq. (G.3) just in the radial zones next to the
axis, and use Eq. (F.15) elsewhere.

Let us now formulate the surface boundary conditions. For
brevity we consider only the cases of s8apecular and diffuse
reflection. The imposed incident fleld case is treated in detall
in another report.lo

Suppose wve have specular reflection at some boundary. Then
from ray-by-ray eyametry we know that F.(R) = 0, F,(0) = 0,
and Fyz(Z) & 0 on any of the boundaries where the reflection
condition applies. Further, at these boundaries f,., = 0. Thus

for boundary conditions we would have

a(qf __E)
:' 0 (G.4)

.at r = R from Eq. ‘E.3), and

a(fllg) - .
—T u o ((v. ))

from Eq. (D.7) at = = 0 and/or z = Z.

For diffuse reflection, the phyiical requirement that the
total energy across the boundarv s returned (imotrupically)
ugaln implies F.(R) = 0, Fy(U) = 0, and Fg(Z) = 0 on the
boundaries wherea the reflection condition applies. But {n thin
case we no longar necessarily have ray-by-ray cancellatlon, and

in general f., * 0. Therefore from Eq. (De7) wo have

1 3 a(flzz)
< 3 (rfrlg) + — z 0 (Gab)



at z = 0 or Z, and from Eq. (E.3) we have

9(f__E)

9 re -
3 UpB) Y —p— =0 (c.7

0 |

at r = R.

III. ENERCY BALANCE

The transfer and moment equations written above apply either
to the integrated quantities (energy densities, fluxes, etc.) {f
the material is grey, or monochromatically 1if it is nongrey, with
a separate set of equations for each frequency. In any case,
both the opacities and the thermal source terms depend on the
material temperatura.

The temperature structure 1s determined by an energy balance

equation, which is of the form

DE

o lﬁ?ﬂ +p

D I - .
n DE (B)J - ‘{ Kv(cbv - lHlHU)d\) .

where all material properties are functions of temperature and
density. 7The term on the right~hand aide {a the net energy input
to the material from the radiation fleld. This equation shows
that all the transfer equations are coupled together because the
temperature atructure that determines any monochromatic radiation
fleld s, {in turn, determined by the collective action of all
thewe fleldn.

In pracrtice the radiative termr (In the energy bilance
equation may dominate both the hydrodynamic work term and input
fron other wsources. Thus, to obtain & mnmutually consistent
temperature structure and radiation fleld for nongrey material,
we muAatl In principle nrolve the eneargy equation siuvultaneoualy

with all the frequency-dependent transfer equations; while thins

10



is feasible in 1D, it 18 computaticnally prohibitive in 2D, and
we must develop & less costly approach. There are several
options one needs to consider in order to obtain a consistent
description of the interaction of the radiation field with the
material. In this section, we shall merely give an overview of
the most obvious methods. It should be noted that the following
discussion 1s purely theoretical; the final proof of the feasi-
bility of any of these methods will be {in how computationally
efficient they can be made. We have some cxperience 1in this

respect with regard to the 1D equation;11

however, to date our
experience in 2D is limited.

From the work that has been done in one spatial
dimension,lz’“ we think there are two main categories of
methods: the mvltifrequency/grey technique and the full

multigroup method.

He Energy Balance - The Multifrequency/grey Technigue

The basic idea of the multifrequency/grey technique
2. yn the late 1960's.

Here we review the extension of this method te two spatial

originated at System, Sclence and Software

dimensions. The heart of the technique I8 to try to write
frequency~-integrated moment e~quations that average correctly over
the non=-grey opacity. Thus, we use spectral profiles generated
in n separcte sat of monochromatic calculations, and assume that
these distcributions will be relatively 1insensitive to changes
made 1{in the {Jteration process required to solve the coupled
transfer and energy equations.

To obtain the appropriate equations {(ntegrate Eqe. (D.1),

(be?7), and (E.3) over frequency. Let

3
ui

E,/ [ Edv = E /E (H. 1)

=2
[+

B,/ B dv =B /b , (H.2)

17



and define the usual Planck mean

k = [ « b dv .
) vov

Further, let

f oo 2] £ (V) e dv

., =/ f . (v) e dv

For F / Era(V) edv

i = f chvdv

X, = ] x FL.(v)dv/[ F (v)dv
X, =] x,F, (VIUv/[ F (v)dv .

Then the frequency-integrated moment equations are

. a(rt ) ok

a9l 1 r 7 .
T + T T + P knxpﬂ cKEh
l - .a_i'_l:. .l. _"__ (qf |.') + 3(_i‘r i h) - EL K
o2t q 9 ! ) 9z ¢ r
1 an 1 d(rrrzh) a([zzh) xz .
—— a—— = e —_- ———m = — F

2 9Ot r or iz ¢ z

The confipguration factor g in agailn defined by Eq. (E.2),
uking the frequency-averaged Edoington factors Egqs. (H.4)
(H. ).

14

(H.2)

(H.4)

(H.5)

(H.6)

(He7)

(H.8)

(H.9)

(n.10)

(H.11)

(H.12)

but now

through



The frequency-integrated energy equation can now be written

DEm D 1
P [B?_ + Pn DE (;)] - CKEE - QHKPB . (H.13)
The basic assumption we are making in this approach is that, like
the Eddington factors, the ratios ey, F.(v)/F,, and F,(v)/F, can
be determined from a frequency-dependent formal solution and then
held fixed in the solution of the coupled woment and en rgy-
balance equations.

To obtain a combined moment equation we proceed as before,
replacing time derivatives with backward time differences.
However, since we wish to present here only a brief discussion of
applyiag this technique {in two dimensions, the combined moment
equations for the multifrequency/grey technique will not be
derived.

It 1s worth listing the advantuges and disadvantages of the
multigroup/grey method. The most {important single advantage of
the method is that it reduces the number of variables used in the
energy—-balance part of the calculation to an ahsolute minimumn,
namely one (the energy density) per meshpoint. This makes the
computation of E(r,z) as cheap as possible, and minimizes the
cost of iterating the temperature distribution to counsistency.

The principal disadvantages of the approach are: (1) We are
forced to assume the invariance of the spectral profile functions

e Fr(v)/rr, and Fz(v)/Fz in the temperature-iteration. In

’
r:ality the spectral) distributions implifed by the new temperature
distribution at the end of a timestep could be quite different
from the initial estimaten. The place whaere this {8 must serlous
is in the calculation of «xg, which determines the total rate of
absorption of energy fror the radiation field by ‘he material.
(2) The Zormation of flux-weighted mean-free-paths as In
Eqe. (H.8) and (H.Y) 1s worrisome, because the directional and
frequency distributfon of the flux could be such that | xvvvdv

has the opposite sign from f dev {or {8 zero), which would fmply

19




infinite or negative mean-free-pathe in the flux calculation.

Both would be unphysical.

I. Energy Balence: The Multigroup Approach

In the direct wmultigroup approach we assume that at each
meshpoint we are going to try to solve simultaneously for the
radiation energy density for G groups, plus the temperature. The

energy equation tu be solved 1is

DE
D (Il :
°l3?2 + P To (;;] - é wg:g(cEg - 4By . (1.1)

Here wg 1s the quadrature weight for group g and all material
properties are functions of {(p,T); that is, Ep = E,(p,1)},
Pm ™ PpleP,T), Kq = Ks(p,T), Bg = Bg(T). Thus we have a nonlinear
system (coupled with the transfer equations) to solve. In writing
a difference appruximation we use fully 1impllicit differencing and
evaluate the right-hand side at t"*! for stabilicy.

To solve the system we assume that at each meshpolint we have
an estimate T% c¢f the temperature and write TNYl = T* + &T, and
then linearize &11 equatlons for 6T, For the present, we will
take the simplest possible approach awnd linearize only E; and
B; we can add otl.er terms if needed later. But in any eveunt the

structure of the system {5 unchanged. We then have

E_(T#*)+C,(T*)8T=E (T) AE_(T*) AE_(Tw) b 1
o= i eyt e (TR ()]
, ag_(T") n+1l
- —lﬁﬂlwgta\l*)——%T———JGT + 1ugxx(rt)lchg - bﬂBg(P*)] . (1.2)

4

We can solve this equation for 6T aud write

+
a 6T+ ) p e 4y (1.3)
i B R
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where

a s pc;’ir*) + 4 %ugxg('r*) B—Bg-:—i*—i (1.4)

B, = cw k (T*) (1.5)
and

- 4u)ugxg(r*)sg(r*) . (1.6)

To couple the energy balance into the transfer equation we

linearize the source terms in the latter, writing for cach group

n+l n+l

y+x*, n+l 32(qfrrE ) 1 Bz(rfrzE )
STl ) I at_ 21
X r? a'-';.z z r
2 n+i 2 . “+l
1 3 (rfrzh ) ) 2 (lzzE )
r arratz 3 12
z
* I
(iﬂ x OB 8T AT cn pwsyE®
- [ a1 + c
(y+x*) (Y+x*)
n n
rF ¥
-yl 9 (_r_ 9 z
[ lr aTr (Y‘- "f) + a-rz (Y+x*).] . (1-)

Here ™ on any quantity means that quantity 18 evaluated at
T = T*, Again {t should be noted that we have linearized only
the Planck function. It we are willing to do the :ork, we could

also llnearize x, x, and the differential operators.



Equations (I1.3) and (I.7) provide a linear system for Eg,
(g=1,...,G) and 8T at all meshpoints. The tirst problenm
(addressed below), 1s how we solve this big system. Given that
we have, we apply 6T everywhere, update the material properties,
and do the solution over again, 1iterating to consistency. The
teration may be slower than a full-scale linearization, but it
is much simpler, and avoids problems with noisy derivatives.

Let us 17 map out the form of the grand matrix for the
system to be solved. In labeling the energy densities we write
Eijg for E(ri,zj,vg). From our 1D experience,11 ve
expect that the best way to organize the variables and hence the
structure of the resulting matrix is to put all frequency p2roups
and the temperature perturbation together at each wmesh point.
The form of the grand matrix 1is shown on Fig. 1. Here, at each
gridpoint we have an "arrow matrix”, which describes the coupling
of 8T to the local values of Eijg for all groups, and the 1local
response of the radiation fields tc 4T, These matrices are
bordered by a blcck tridiagonal pattern of diagonal matrices that
give the coupling of a given woshpoint to 1ts two adjacent
neighbors at the B8ame z-level, and this pattern is 1n tuzn
bordered by two more tridiagonal blocks of diagonal matrices
glving the coupling to meshpoints at the z-levels above and below
the current one.

Conceptually, one cen view this scheme as emphasizing the
frequency coupling at a given spatial point to the local
temperature, while handling the spatial coupling to adjacent
meshpoints In the outer structure. Thie s8cheme 18 thus well
adapted to the optically thick limit because as «k+~, the diagonal
matrices bordering the arrow matrices and the diagonal matrices
in bordering squares of the checkerboard all vanish. We realize
thia advantage only 1f we actually solve the arrow matrix
directly. Happily the decomposition and solution of the matrix

is simple:ll



Consider the matrix

Take uiiil fOI' 1-1.-.-.1- rhen litFait for i‘l.--.{‘l and

UiI-ail/aii for i=)l,...,I-1. Further, le-an for j=l,..,I-1 and
I-1 I-1

111 -a; - jzl lljujl ar; - le aljuJI . (I.8)

So in short, we can form the decompouition trivially by scaling

each element of the last column by (1/311) to get u ., and

accumulating - PPLTD into arr to form III' This 1s inexpensive,
being proportional to I. To solve Ay = 4 we then proceed as
follows: Consider L x = R. Then for i=1,...,I-1, xl-R!/lil and
fcr i=1,
1-1
x, = (R 521 zijxj)/zII

Ncxt consider Uy = x.



The solution is

YI = Xy and ii =Xy T U g%y for 1i=]l,...,I-1 .
NOuE: These d2compositions and s8olutions could be vectorized
over all N N, gridpoints. Thus the 8solution of the overall

system, including direct solutions of the arrow matrices down the
diagonal, scales as (number of 1terations)‘NerNg.

Having solved the system, then, as before, we know E and 6T
at all gridpoints. We can then update T* + T* + §T and iterate
to convergence. Te wounly assumption built 1into multigroup

approach 1is that Eddington factors remain constant.

J. Energy Balance: lroposed Solution of rne Matrix Equation

Consider now the problem of solving the 2D grand matrix
equation to obtain Ej4, and 6Tyj. We treat he:r the grand
matrix corresponding to the full multigroup method as developed
in Sec. 1 [t.e., Eqs. (I1.3) and (1.7)]; however, the general
procedures can be applied to any large, aparse system derived
from the transfer equatione.

Although a direct solution of the¢ grand matrix equatiorn may
be possible, it is computationally much more efficient to use an

iterative scheme.ll

In the overall solution, these 1iterations
are the inner {terations to find the value of the teomperature
correction for each meshpoint. The outer 1iterations 1nvolve
applying this temperature correction to make the radiation field
consistent with the temperature structure at the advanced time
level.

Let us write symbolically the metrix for each r-level
represented in Tig. 1 as Ty. Then, we can write the matrix equa-

tion corresponding to Eqs. (I.7) and (I.3) as

= R (J.1)



where the vector W3 = (Eijga GTij; g=l,¢¢.,G; 3=1,...,J) and Ry
is the resulting right hand side (RHS). The simplest 1teration
procedure that can be used to solve Eq. (J.1) is to move all the
the elements of Ty to the RHS except the arrow matrices down the
maln block diagonal (see Fig. 1). The resulting matrix blocks
can be decomposed directly and the {teration scheme would be very
efficient far cells that are optically thick.li For optically
thin cells, the number of {iterations may become excessive for
such a simple scheme. The convergence can be accelerated by
retaining more information of the left hand side (LHS) of the
aquation. One method, that 1n our opinion seems to be very
tantaliziug, 1is the so-called diffusion synthetlc acceleration
(DSA) method.13 This acceleration method was origiral'y derived
for the iterations of the static neutron tranrsport squation.
Here, we briefly indicate how this method can be arpited to the
combined energy and transfer equations of a rad::stiag fluid.

The essence of a diffusion accelerated li<v.tioa 18 to
replace the messy spatial transport operator (Y°E) in the com-
bined moment equation [Eq. (1.7)] by the corregcponding diftusion
equation operator [YZ(E/3)J. By so doing, the difference between

the diffusion and the transport operator can be moved to the RHS
of the equation. The result 1is to have a simpler matrix equation
to solve (the multigroup diffusion equation), while {iterating on
the difference between difrusion and transport. In opaque
regions, where the diffusion solutfon {8 accurate, the transport
correction term on the RHS {8 very small and the {terations
converge rapidly. For tranfparent reglions, this type of
prescription merely dictatcs those terms in transport solution on
which we should {terate.

In order to use this type of acceleration scheme, we replace

Eq. (J.1) witn

FENCE . 2)



and Dy 1is the diffusion matrix operator correspcnding to Tgy. The
grand matrix for the multigroup diffusion equations 1is shown in
Fig. 2. The only difference in form between Dy and Tj is that the
diagonal matrix blocks corresponding to the cross derivative
terms (e.g., aZ/artarz) are absent in Dy. Note that since the
temperature correction is in both Dy and Ty, this term stays on
the LHS. Also, the term added in the definition of Bi invulves
only the spatial transport operator Y-g. Indeed, since diffusion
18 really only a special case of the VEF type of solution, this
added term is simply

In this method, we are {terating on the *tzrms in the radiation
pressure tensor that corrcspond to the anisotropy of the
radiation field; just as one would expect a8 the difference
between diffusion aund tranaport.

The solution of Eq. (J.2) 18 s8till nontrivial. The main
difficulty comes from the fact that we are solving for the
temperture simultaneously with the energy densitiems. Perhaps the
best approach 18 to extend to 2D the eplit wmatrix {teration

scheme outlined by Axelrod and Dubois.l“

Essentially, the split
matrix scheme breaks up Dy into two matrices, each of whici can
be solved directly, and alternately moves one part of Dy to the
RHS. For brevity, we sahall not comment further about this
m thod, other than to say that since the 8o ution of simplified
equation, Py Yi - B{. may require {teration, the {teratfon on the
difference between transport ond diffusion 18 Iin @eome mense a
secondary f{teration and thus may slow the convergence to the

transport solution. Trial and error will be neresrary to decide

which fteration scheme will work benst.
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IV. CALCULATIONS OF THE VEF TENSOR

In solving the material energy equation for the temperature
distribution and the moment equations for the radiation energy
density and flux, we assume that the Eddington factore are
given. These quantities can be evaluated if we know the full
angle-dependence of the radiation field I(r,z,t,9,¢), which must
be determined from an angle-by-angle formal solution of the
transier equation for a given distribution of thermal and
scattering sources.

We plan to provide several options for calculating the VEF
tensor. When examining a particular parameter space, onc¢ may
choose to use a simpler approximation to a transport type of VEF
tensor, leaving the moivu expensive angle dependent calculations
for the final model or for bench—-mark problems. These options
will span the range from as inexpensive as multligroup (or grey)
diffusion to as costly (or hopefully less) as Monte Carlo methods
as far ar computar time is concerned. In order of computer time

expense, these options for the VEF tensor are as follows.

(1) fljs % Gij (f.e., multigroup diffusion).

(2) £1d {1 - ryyr2)8td 4 (3R - )s2)klE
whrere Rz = Ry (F/cE) 1u prescribed by a particular theory (e.g.,

Hinerboﬁ): F1 1a the 1th component of the flux vector and F (s
its magnitude. We shall discuss this option In more doetail
below.

(3) An aexplicit S, type calculation of the #Hpecific In-
tensity to form [ by angle quadratures. One can une a traditional
Sp, type formulation here (e.gs, TWOTRAN) for a wnapshot type
Eddington factor. Alternatively, other ray tracing schemen can
be developod.15

Ray tracing schemes have the advantage of befing cheapoer
than Feautrier type aolutions. The maln dinadvantages of theue

anchencon aret: (a) they do not account for retardation elfoctn, an

it im unfeasible tu store retarded {nformatifon along the entire



length of a ray, because the total retardation from one 2nd of
the ray to another may s»an several timesteps in the solution. To
atrtempt to handle retardation in this class of schemes would lead
to a difficult interpolation problem and a very difficult data
management problem. (b) These methods suffer from ray effects.
Either the rays may miss an important source volume (long charac-
teristics) or strong local sources may be diffused over the grid
by successive interpolations (short characteristics). (c) Because
one is computing unidirectionual 1intensities with these methods,
it may be difficult to obtain accurate fluxes (which require sub-
traction of intensitlies in opposing directions) 1in opaque
regions. This problem 18 most damaging In the multigroup/grey
approach becausde in elther the grey or direct multigroup cases we
can evaluate fluxes directly from the moment equations them-
selves. We shall not discuss these schemes further here.

(4) Finally, one could go to a Feautrier type solutlon,
Here, we choose a set of planes that slice through the cylinder;
e.g., cach one tangent to one of the radial =zones. From the
axial symmetry of the problem, it f€follows that 1{f we know the
rndiation field on the set of all planes passing through a
partlicular radial zone, then we have all the information necded
to determine the azimuthai variation of the radiation fleld (n
that zone. On each plane the RrRolution would proceed by forming
angle dopendent asymmetric and antiWwymmetrlce averages of the
upeclific {intendity,and then effecting a 2D pl.nar solution.?
Again, further discusation of thinm method will be given

1
clnewhoere.

A. Locally Calculated VEF Tensor

Let un examine option 2 more (-lunely.l6 Thae purpose of
uning a locally calculated (fee., nontranaport) Eddington faclor
prencription (e to provide a calculatfonal ability thet {(n more
accurate than diffuston, yet nearly an inexpennive.

The prescription given above for [ depends on two quanti-

tlew: E and Fo In fact, given A& scalar and a veector, the
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formula uniquely specifies the form of the tensor that is derived
from them. Following Hinerbo.6 we write the ratio R; £ IEI/CE,
so that R, = Ry(R;). In one dimension, R, 1is the Eddington
factor, i.e., the ratio of the second to the zeroth angular
noment of the radiation field. In two or mora dimensions, Ry 1[4
the same ratio, however, the angles are measured relative to the
local flux direction. The prescription given above for the
tensor f{ then merely maps back to a general coordinate system.
Physically, Ry snould be a smnoth curve ruanging from Ry (0) = 1/3
for isotropic radiation to Rp(l) = 1 for streaming radiation.
(Although there are physical situations for which f ¢ 1/3; e.g.,

a thin plane source of radiation"

or two concentric opaque shells
saeparataed by a vacuunm with the outer shell being hotter than the
inner one.) The exact form of the curve will be different for
each physical situation. However, in using a formula 8uch as
Minerbo's® for this vrelation, one i8 hoping that a variation of
the Eddington factor, which has the correct limiting values, will
provide a more accurate solution than diffusion.

The main result of Minerbo's paper {s tha calculation of
this relatlonship betwean R; and R). This rewult {8 shown In
Fig. 3. Three other curvesn are also shown. The constant value
of Rp = 1/3 corresponds to a diffusfon calculation. Using o
linear expanaion of the axponentlial distributlon In his theory,
Minerbo almo daerived a linear approximation for R, (KR,;), reforred
to as !inear in Fig. 3. The final curve Iin Fig. 3 I8 the corren-
pouding relationship delurmined from Levermore and Pumrnnlnan’
flux-limited diffusior theory, The three variable Eddington
fauctor curvem in Fig. 3 wspan the mame general reglon of thiw
figura betwean the two limiting values. We have run nwsoeveral
{dealized teat caned to compure these approximute, tocal formalne
for £ to ansalytically calculated values. Here we ahall prewent
two uxumples of thia type of comparimon, one Iin 1D and one in I!bh,

1t Ja critical to note that since the Fddington factor tan «
function of both the evorgy denuity and the (lux, these quant |-

clen pust he calculated wolf-consintently, Furthermore, since {1



is really Y-[(Y-(‘E)] and F that enter the dynamical equations
for a radiating fluid, the solution of the radiation energy
equation (required for self-consistency) depends not only on the
value of f, but also on the first and secoud derivatives of f.
Thus, it is not only the value of f predicted by these formulae
that is important, but also the shape of the curve.

B. One-Dimensional Teat Case

Our first example comparing local prescriptions for
Eddington facturs 18 the calculation of the radiation field
inaide an 1isothermal sphere. For the case of a constant source
function (isothermal, no mscattering), it is mimple tuo write down
the specific intensity, from which the angular integrals can be

generated by numerical qundrnture.15

For this exanple, we use an
optically thin sphere with a radial optical depth of 1 = 1/2. The
eaasienst comparison to make I8 to use the analytically cealculated
values of E and F to form R, and hence obtain f (i.e., not a
self=consistont value of f)« This comparison ims whown in Fig. 4.
In this case, the Fddington factor calculated from Minaerbo's
statfintical formula {8 actually qquite close to the real solution.
A ponoral trend we have found is alro evident here: the valuew
predicted by Levermore's theory und diffusion theory typlically
bracket tho correct values, with a similar dispersfon on eolther
Nldoeo

In order to have o wdelf-consiastent wolution, we nsnolve the
combined moment equatfon for the radiation energy dennity (for
more Iinformatfon, see Ref.o 10). Hore we first make a guens for
"he energy and flux in a e¢oll, then calculate an Kddington factor
from one of the varfoun prescriptionnm. Thin Eddington factor s
then unand {n the corbined momen aquations to calculate a new

onergy, with which we update the flux and hence Eddington factor

and fterFate to consintoency. Note that the resulting welf-
ronatatent nolutfon will not necennarily reproduce the
analytically caleulated moments of the radiatlion fleld. It 1w

precimely this difference In the resulting enorgy density that we
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are trying to find. The results of this calculation for this
isothermal sphere are shown in Figs. 5-7. Figure 5 shows the
Eddington factors calculated with self-consistent energies and
fluxes., This operation moves both the Minerbo and Levernore
Eddington factors closer to the analytic solution compared to
using only the analytic R);. However, the linear approximation of
Minerbo actually gets worse, with f being a conastant 1/3 every-
where. The reason for this behavlior is that the linear approxi-
mation has a discontinuous second derivative, which results in a
numerical feedback problem. It 18 much better Lo use a rational
polynonial approximation, which has a continuous second deriva-
tive, in place of th: linear curve.

Figure 6 shows the flux as a function of radius for the
ARelf-consistent smolution. Minerbo's linear and statlstical
theoriesn are both wvery close to the analytic wsolution, with
Levernore's and diffusfon spanning each side of the true
solution. The energy density and flux calculated from diffusion
theory are not {n error nearly as much (in most regimes) as the
Eddington factor itself; which 14 annther way of stating the well

known result that diffusion theory typlceally works better than it

should. Finnlly, Fige. 7 wshows the run of energy density with
radius for this test canse. Thewe results again sAhow that
Minerbo'y statistical formulation 18 the best chotice. Diffusfion

{n the wornt comparison for thin probleom (slnce {t I8 optliceally
thin), with Levermore's formulation being nearly aw bad on the
other side of the analytic nolutlon. Other LI test canes are

reported {n a forthcoming pnpur.l'

Ce TwoiQLmontlonnl Toent Canre

The two=dimensfonal test cane we present here is that of an
an Iwothermal finfte vyllndvr.l“ We c¢hoose the radiuw of the
cylinder to be equal to its helfght and une an opacity ol
Ro= 0.5 cm'l. We have not yet calculated a delf=consintent model

#o woe nhall show bhere only the prelfminary remultn for the

Sl



Eddington tensor calculated both analytically and with an analy-
tic R} used in Minerbo's statistical theory.

There are three 1independent components of the Eddington

tensor frr' fzz and the off diagonal component frz' As was the
case for the i{sothermal sphere, the specific intensity 1is an ana-
15

lytic function. The Eddington tensor can be generated by angle
quadratures. The analytic Eddington factore are shown in Fig. 8.
Since the source function 18 everywhere constant, this problem 1is
symmetric about the midplane (z = 1/2) as well as &around the
z axis. The radiation field 1s nearly 1isotropic in the ceuter
of the cylinder (fii = 1/3, fij = 0). frr has a different struc-
ture than fzz since the optical distance from the center cf the
cylinder to a boundary 1is larger in the r-=direction than the
z-direction. The largest dagree of anisotropy of the radiation
fleld (i.e., frr t fzz and frz > 0) 13 in the <corners of the
cylinder where polnts can nore easily sece both boundaries.

In Fig. 9 we show these same quantities as calculated from
Minerbo's statistical arguments. We use the flux and energy
density from the analytic solution to form R and thus f. The
results in Fig. Y are glven as the differenc: between MincilLu's
and tue analytlc values. The maximum values of this difference
are 0.055 for frr' 0.04 for [rz' and 0.1l for fzz. These maxima
occur near the corners and outer boundary of the cylinder, Jjust
where you would cexpect o non=Lransport solutfon to break down.
However, enpeclially in 21, the <calculation of the variable
Eddington tensor dtill represents a dignificant improvement over
diffusion. Allowing the main diagonal of the radiation pressure
tensor to have noa=-e¢equal components and allowing for non~-zero off
diagonal elements at leawt makes [t feanible to describe an
arimotroplc radlation fl{eld to swome degree of accuracy ({f only
locally). Thene resultw are very preliminary as we have not done
a self-conaisntent caleunlatfon n 20, However, we hope, as wanr
true for ID, that in generating the wself-consintent ARolution

a) the molutfon conve,gew, and b) the Edlington factors will

approach the analyttc valuen.
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Figure 1. A schematic daagram of the form of the grand
matrix to be solved in the full multigroup,
2D combined moment and material energy eguation.
The matrix shown is for I « J « 4, The main
block diagonal is composed of arrow masricces,
which have a simple decompc:ition.
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Figure 3.

‘Winerbe

Figure 4,

Functional foras for the wroment relatjonship R ”‘1)
for various theories. Here, m, I [ pr1(u,v, 3 2s

the ith moment of the radiation specific intensity.
In 1D, Rz = f, the Eddington factor.
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Figure 5. The calculated Eddington factors from a self consistent

solution ot the combined moment equation for the problem
described in Fig. 4.
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Figure 6. The calculated fluxes fron . self consistent solution
of the combined momant equation for the problem described
in Fay. 4.
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Figure 7. The calculated energy densities f{rom a self consistent

Energy Density

solution of the combined moment equation for the
problem described in Fig. 4.
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Pigure 8. A contour plot of the analytic Eddington factors F...
f22, and f, for an isothermal cylinder with a radius
equal to its height. The opacity inside the cylinder
i 5= 0.5 ',
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rigure 9. The difference between the Minerbo theory and the
analytic Eddingtan factors for the isothermal
Ccylinder described in Fig. 8. An aralytaic R, ¢
used 1n Minerbo’s theor:; thus, these results arec
not self consistent.

FRR (P)NER2] -DxATT) S-0.5 F221 minERe) -0xACT) 5-0.°

4 .
(1] "0 9 0 ar

FRZ (MINERBD -LxACT)  5-D.€

-7
-
a4
~g 0.000 0.000 C GO0 =y
_____________ 0.0 -y,
-9 e ‘-” / U.No\
- ..'_.u' °\° .._'.-"'""'"".‘

40



