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METHODS FOR THE SOLUTION OF THE TWO-DIMENSIONAL

RADIATION TRANSFER EQUATION

by

2 Gordon OlsonlRobert Weaver, * I)imitri Mihalas,

ABSTRACT

We u~e the variable Eddington factor
(VEF) approximation to solve the tirle-
dependent two-dimensional radiatton tranta-
fer equation. The transfer equation and
it~ moments are derived for an inertial
frame 3f reference in cylindrical geome-

try. Using the VEF tensor to close the
moment equations, we manipulate them into
a combined moment equation that reault~ in
an energy equation, which is automatically
flllx limited.

There are two separable facets in

tills method of solution. First, given the
vuriahle Eddington tensor, we di~cu~a the

c~flcient nolutlon of the combined moment
matrix equation. The Hecond facet of the

problem in the ctilculatton of the v~rtnhlc
Eddington t.en~or. Several options for tl]is
cnlculntlono JIH w(’11 a~ phyaicnl limi-
ttition~ on tllu IIHC of lGcally-cA lculllte(l
Kdriington fnctl)r~, tire discua~ed.



I. INTRODUCTION

In two epatiel dimeneione, the time-dependent radiation

tran~fer equation is at least a six-dimensional problem (r,z,t;

EJ,*,V). Many classes of methods have been advanced to solve this

complex problem, including Sn methods,
1

Feautrier me~hods,2 hnd

equation
3

moment expansions, to name a few. In this paper we

examine the moment expansion method.

BecauBe angular projection factors appear in the transfer

equation Iteelf, thic moment ●xpansion technique always produces

a system containing ❑ ore unknown6 (moments) than equations to

determine them. Thus a cloeure relation is required. A particu-

larly attractive scheme is to introduce variable Eddington

factors to close the system of rnownt equations.” In one spatial

dimen~ion, a scalar Eddington factor in all thaz IS required to

close the system. However, in

closure requires three independent

because the eecond moment ham

(Prr, Paz, and Prz).

The moment method of solving

two epatial dimaneians, che

factore (an Eddington tensor)

three independent components

the tranafer equation hne two

separable facets. One needc to eolva tha system of ❑ oment equa-

tlon9, given the cloeure information; and, given the solution of

tile moment equationa (hence the distribution of eources nnd

tiinkg), one needs to detarmine th~ VEF ?aneor. In this paper, we

disc’~aa briefl~ the varlouo computational technique- one can U8U

to handle each of thtee facets of the method.

An important limiting case for thp ❑ oment equattons is

obtninud If one aeebmee a con8tmnt Eddington factor. In particu-

lar, deep within an dpaque radiatlna fluld (e.g., a ntellur

interior) the

in time. In

npproxlmatad

vector flux

denalty; so radiation tanda to flow down th~~ gradient from the

hotter mide to the cooler ●ids. If one aoeumoa that th~ dlffuaton

radiation field bmcomea naarly iaotroptc and etendy

this re8imeP tile flow of radiation ●nersy can he

very ●ccurately by a diffumion equation. Aleo the

10 proportional to tho ~radiellt of the energy



approximation IS valid everywhere, then the Eddington factor la

everywhere conetant, and the solution of the tranBfer equation la

particularly simple. However, moat interesting radiation transfer

problems (e.g., a pulsating star; a supernova) span the regime

from opt!.tally thick to optically thin. In the optically thin

regions, the assumption of a constant diffusion value for the

Eddington factor i9 no longer valid. In this case, the radiation

field becomeo anisotropic (i.e., nonlocal), the time dependence

of the radiation field may become important and the direction of

the radiative flux may no longer be exactly along the gradient of

the energy density. Calculating the ❑agnitude of these differ-

ences between diffueion and transport is the eaeence of using

variable Eddingtnn factore Instead of a constant factor.

Moreover, given that eff~cient codes exist for the solution of

the diffusion equation,
5 this variable Zddington tensor method

cun be formulated in such a way eo ae to be a natural extension

and improvement of existing diffusion codes.

This paper ie organized ae followe. In Sec. II, we derive

the inertial-frame tranefer equation in two-dimensional cylindri-

cal geometry. The moment equations are closed by introducing

variable Eddington factorB= Examjles of boundary conditions are

derived. In Sec. 111, we couple the radiatio? moment equationa

to the material energy equation and briefly review techniques for

the efficient solution of the combined moment matrix equation.

Finally, in Sec. IV, we review ❑ethods for obtaining the variable

Eddington factors. In particultir, we chow results comparing

Eddington fllctorl!l calculated with simple Zormulae (e.g.,

7, to analyticMinerbn@eb or Levermore and Pomranin8’a , Eddin~ton

factoru in simple lD and 2D geometries.

11. TRANSFER E~UATION AND ITS MOMENTS

A. Ceumetry

wc nHHume the material ia contained in a cylinder of finite

lenRth with nzirnuthal symmetry ●bout the cylinder ’~ axis. we



choose r,~, z as coordinates and as~ume that all material proper-

ties are functions of t,r, and z.

The radiation field in the ❑edium is a function of both

po6ition and direction,, thus the specific intensity is I(t,r,z,n).

where n 1s the unit vector.

Here D = CO.FeD where 0 is the an~le between n and ~, and @ is the. A
azimuthal angle relative to the local radial directiov r..

B. Transfer Equation

By following a photon path an elementary distance ds in the

coordinate system defined above, it 10 ea6y to show that the

transfer equation is

al
+~fi = KB+ S - xx . (B.1)

Here the total extinction coefficient la x G K + a, the ~um of

the nbeorption coefficient c and the Ihomaon scattering

coefficient a, B is the Planck function, and S lR the Thomson

scnttertng eourc~ term

30 f I(n’) [1 + (n*n’)2]du’ .S(u, $) -~ . -. (0.2)

A9 unual ~ denotan integration over all solid nngles du - dud$, $

ran~es frum O to Zwo and u ranges from -1 to 1.



.
Because we assume strict azimuthal syrnmccry (aI/a4) s O, and

this term will be dropped henceforth.

c. Moments and Eddington Factor@

Define the following moments of the radiation field:

zeroth moment, the radiation energy dcneity:

first moments, the flux component:

(Col)

(C.2)

(C.3)

(C.4)

second moments, the pressure teneor comPonent~:

P =L~I(n)nndu_~ ~ I(n) (l-L?) Cosz$ du , (C.5)
rr T. . rr c

(C.7)

(C.8)

s



and

P
Zz

= ~ # I(n)n n do - ~ # I(n)v’du .
c . Zz c .

Note that

trace (~) _ P
rr ‘P O$+PZZ=E”

(C.lo)

(C. 11)

In order to close the nyatem of ❑oment equatio~ls we intro-

duce the teneor variable Eddington factor

In solving the moment equations these geometric factore are

presamed to be given, either from an approximate formula such aa

given by Minerbo,6 or from a direct evaluation by a fo-mal solu-

tion (see Sec. IV below). In the present calculation there are

only three independent components of ~, namely frr , fzz, and

f
; ‘4%

fol,lown from Eq. (C.11)
l-z

‘$$-l-frr-fzz “
(C. 13)

The scattering source term can be written in terms of the

rnomente defined above ae

+ 211(1-lJ2)l@cos$ Prz + lJ2 Pzz] , (C.14)



which can be rewritten as

S(ll,$) - * {1 + (1-p2)sin2# + (1-v2)(l-2sin2jf
rr

+ 21J(1-IJ2)
1/2

Cos$frz + [IJ2 - (1-u2)sin2$Jfzz} .( C. 15)

D. Moment Equations

Taking the zeroth moment of the transfer equation by inte-

grating Eq. (B.1) againat du we find

(D.1)

wh:ch ie obviously the rad[ation energy equation. Here we made

use of the fact that Thomson scattering is conservative so that

# [S(n) - oI(n)jdu E O . (D.2)
. .

Next, taking the radial fir~t moment by lncegrtiting

Eq. (B.1) againat nrdw and using Eq. (C.11) we find

1 ~Fr ~Prr 2Pr:+Pzz-E ilPrz
.— +— —- 1~

ar +
+ —m - (D.3)

C2 at r az cr’

which IS obviou~ly the radial component of the radiation momentum

equation. Here we made uae of the fact that for Thomson

6icattering

# S(n)n du = U , (1).4)
.-

which 1s evident on physical grounds, and can hP vcrifled hy

direct calculation From liq. (C.14) or (C.15).



Finally, taking the axial first moment by integrating

Eq. (B.1) against nzdw we find

1 aFz +la ap
.—

;#rprz)+ +”-
~F

C2 at
Cz”

(D.5)

Equations (D.3) and (D.5) rewritten in terms of Eddington

factors are

1 aFr a(frrE) + (2frr+fzz-l)E + a(frzE)
.— ~F

C2 at + ar
az = ‘C r ‘

(D.6)
r

and

aFz 1 a(rfrzE) + ?(fzzE)
—— XF

:Zat ‘; ar
az = ‘C z “

(D.7)

E. Configuration Factor

In order to eliminate the undifferentiated term in Eq. (D.6)

in a co,,venient way, define the configuration factora q such that

* . 2frr+fzz-1 ,
rfrr

Then Eq. (1’).6) reduces to

1 aFr +la a(frzti)
—

z-
-- G{qfrr E)+ az =-:Fr ,

C2

(El)

(E.2)

which is a ❑ ore pleasant form fnr tllc rquat ion.

8



Note that q = q(r, z). Alsop In the isotropic limit

f rr =fzz”; and q-1, whereas in the radial streaming limit

f rr - 1, fzz = o, and q = (constant)~r. In the axial streaming

limit frr = 0, fz~ = 1 so q is undefined. To choose the correct

value in this case we go back to tne basic derivation of

Eq. (D03], where we find that the (l/r) term is really

(Prr - P$~)/r. Thus ~ x [l . (fOO/frr)]/r, and in the axial

streaming limit if fzz - 1 - 2c, we may reasonably expect

f rr - f$~ = E, hence q =- 1. In practice the value chosen should

not matter because if frr S 0, the & terms vanish anyway.

F. Combined Moment Equation

We now use the two mornentur,l equations to eliminate the flux

from the energy equation and thereby obtain a s!ngle second-order

(parabolic) equation for the energy den~ity. To illustrate the

approach we write the vector form of the equations:

(F.1)

and

1 aF
= + 7c(:E) = - ~ F . (k.2)

~at- c-

We now difference Eq. (FO~) in time, lenvin~ the 8pace

derivatives iil continuous form; for stability we use a fully

impllclt (b~ckwards Euler) sckcme. Thus

F
n+l-Fn

. . n+l. ~n+’ Fn+l
—— + 7.(LE ) “ - c - B-

C2 At

or

(F.3)

(F.4)

9



where y : l/cht. This equation provides a form of flux limit ing. g

A finite difference representation of the energy equation is
.

E
n+! .. En
At

- e[Kn+l (4n Bn+1 - cEn+l) - g.~n+l]

+(1- 6) [Kn(4mBn - CEn) - V=Fn] , (F.5)-.

where VDF iS to be evaluated using Eq. (F.4). In particular, if-.
we use a fully implicit formula (6 = 1) we have

(y + Kn+l)En+l+ : - ‘+1 = : Kn+lBn+lV.F + yEn ,

or substituting from Eq. (F.4),

n+lBn+l
E
n+], - 1

v-[
1 411 K

V.(yn+l)] m ~

y+K ‘+1 - (y+~n+l) - y+K
11+1

yEn
Fn

+ Y—- .
n+l

V=( - ) .

Y+K
n+l - -

C\y+K ) y+x
n+l

(F.6)

(F.7)

In the limit of high opacity and/or long timcsteps, which

implies (x/y) - (cAt/Ap) >> 1, Eq. (F.7) reduces to

equation

n+l - 4r
E ~B

n+l
+

* !“1+ ?“@’+l)J “
K x

In the limit of low opacity and/or sl?ort ttmesteps,

X/Y << 1, Eq. (F.7) rkduce~ to an approximation

equation:

the diffusion

(F.8)

which lUIrJlie6

to che wave



~n+l
- (cAt)2 !SIVO(~En+l)] m En - ~CT V=Fn. -.

- 2En - En-l (t-.9)

or

C2 VOIV*(&E ‘+1)] = (En+l - 2En + En-1)/At2--

~ (d2E/dt2 )n . (F. 11))

In writing the second equality in Eq. (~.g) we u~ed Eq. (F.b) f[,r

K/y << 1.

NOW consider the combined moment equation i r) Cor,l;lonent

form. Taking backwards time-differences in Eqs. (D.”J) and (E.3),

we obtain

n+l

F:+1- (+) ~; - ---&+~ a(qf:;EJ
y+)( )q

;1+1
a(frz E -1 ,c

(y+xr’+l) a=
(F.]])

and

,n+l

F
n+l

z m ( ‘n+, )F: - cn+~ + a(rf::’ J
y+x (y+~ )

a(fzzEn+’)
c——.

● (F.1.!)
(y+xn+l)

a2

Taking the btickwardti time difference of liq. (D.]) ,Itl,l*{]hst,l-

tuting from Eq. (F.11) and (F.12) we huve

II



a(qfrrE~+j
(y+Kn+l)En+l - : ~ \ r n+~ ar 1

q(Y+x )

.n+l

-la -—
r ar [ ‘“+1 a(rf::k ‘]

(y+x )

la
a(rfrz E’’+l)

–1 1‘Faz 1
(y+x’’+l)

ar

- ; [___A___
a(f En+l)

Zz
1 -$ ’”+ ’’n+’

(y+xn+’)
az

n
rF

+yE’’-Ll(
cr ar r )-:+(–F&) •~’*1’)n+l

y+~ y+x

dlr ; (y + Xn+’)dr ,

.1 11(!

dl = (y + )(”+l)(IZ
z-

TIIrII Eq. (F.1”1) CI.11hu wrltt~’n

(F.14;I)

(F.lib)

(1’.1.’,,.)

11+1

(y+K’l+*)~ll+l ~ az
a2(rfrzE )

11+,1
—— . - —- (qtrrlt ) - + —.-— -- -—

(y+x’’+’) r7 alti! alzal
. r

r



n+l
1

a2(rfrz E ) az(f En+l)
Zz-—

r aTr~T -
z aT:

“ (+ Kn+lBn+l+ W“MY + x“+’)

-Ya
r F:

=x (—–) -: & (-) 9 (F. 15)

r y+)(
n+l

z y+x

AH was true for the vector form of this equiit ion,

[Eqo (F.7)], Eq. (F. ‘5) limits correctly to the diffusion equa-

tion and to an approximation of the wave equation. An important

property of Eq. (F. 15) is that it is possible to obtain secolld-

order flccuLf+t~ representations of all the derivative terms

operating on E[l+*. The term a2/aT~2 and a2/aT~ offer no ptlrLl-

culi-ir difficulties. The cro.aa derivative~ a2/aTraTz ii11(I

~2/aTzaTr can be evaluated uniquely by llsHlllning that .~lit>

vuriahle (r frz F;n+l) can be represented by u product 1)f

aecnnd-order L~grange polynomials in ATr .’llLr ATZ on tII(I

nir~e-potnt Htencil centered on the point of ill!:erCH~.
2 Notu tl]nt

b~’:~\\lH~ tIIL’ dcrivuttvc~ ure L () be eviilu~lted ;1l,ollg lill L2H f) f

COI)FJLIIIIKr nnd of c(ll19tnnt z, the drrivntivus dfj I)OL Cf)ImnIII t-.

:)(qlJo
.——..—.

>r I (1
1“-()

((; .1)

I .5



practice on the cylindrical shell next to the axis because we can

not compute a finite value for dl~, as defined in Eq. (F.14b),

from r = O to r = r]. To get around this difficulty we can

rewrite Eq. (F.13) as follows

n+l
WfrrE )

{Y+K ‘+l)En+l - ~ 1 1 1
q(y+~n+l) ar

n+l
1 a(qfrrE )

+ —.
n+l i)r

rq(y+~ )

!
,same terms as in remainder of (F.11)] . (G.2)

Then deftnlng

d~; : q(Y + x ‘+l)dr ,

11+1
(y+.’’+’) ~n+l - ~ az((~f~~k: )

11+1
1

3(flfrrE )
——. . ——. ——. - — — .. ..

(’,+J’+’) 2 11+1 al;a:”
r r(}+j )

1
~7 (rf

rzk;’’+’) - ~ “7(rfrzi’+’)--— . —. ..-__ ,...=..
r 31 T; r?, r atrat

x

11+1
a2 (fzrF. )
——.. - — . (: J“}’I J”+’ “+ Y“W(Y + x“”}’)

a 12
z



This equation ●pplies ●t all interior points, and may, in fact,

be preferable to Eq. [F. 15). (Note that the first derivative

term can be calculated to second order.) Alternatively, it may

be best to u~e Eq. (G.3) juet in che radial zonea next to the

●xle, ●nd uee Eq. (F.15) ●lsewhere.

Let ue now formulate the surface boundary conditions. For

brevity we conoider only the caeee of specular and diffu::e

reflection. The imposed incident field eaae iu treated in detail

in another report. 10

Suppose we have specular reflection at some boundary. Then

from ray-by-ray symmetry we know that Fr(R) ~ O, FZ(0) : 0,

and FZ(Z) z O on any of the boundaries where the reflection

condition applies. Further, at these boundaries frz = 0. TIIUH

for boundary coaditione we would have

a(qf
rrE) , ~

ar

●t r - R from Eq. (E.3), and

a(f E)

+=0

(G04)

((;.’i)

frou Eq. (D.7) ●t z - 0 and/or z = it.

For diffuse reflection, tho phy%ical requirement LhML till!

total energy ●cro8m the boundfirv la returflcd (Lnotruplc#~lly)

mgfiln implies Fr(R) = O, FZ(U) E U, and II’z(Z) : 0 011 LIIO

boundarlea whera the raflaction condition Mppllem. But ill tlll!l

casm we no lnngar nacesemrily hava r~y-by-rny canc~lll~tlou, IIIILI

in fianeral fr~ ~ 0. Tharafore from Kq. (L~.7) wa hnvo

((;.())

I!1



at z =Oor Z, and from Eq. (E.3) we have

(G.7)

atr=R.

111. ENERGY BALANCE

The transfer and moment equations written above apply either

to the integrated quantitiet3 (energy denBitie8B fluxes, etc.) if

the material is grey, or monochromatically if it IB nongrey, with

a scparnte Bet of equatione for each frequency. In any casu,

both the opacities and the thermal source terms depend on the

materinl temperature.

The temperature structure is determined by an energy balance

(?qllntton, which la of the form

l)Em

P [-u~+ Pm ~ ($] - j= KV(CEV - 4nHv)dv ,
(1

of temperature and

thr net energy input

Thin equation shown

together bec~uee thm

wl}urc n 11, matartal propertlen are functionli

(It!llkltyo The term on the right-hnnd nfd(’ IR

to thc~ m~tarial from the radin:ion field.

Lhnt mll the transfar ●quationo nre couplad

toml)uratllra mtructure that det~rrntncn Nny monochrom~tlc radiation

fll~lll in, in turn, determined by thr collective action of ●ll

LIII-He fieldn.

1II practlca the

@(lllnt1011 may dominate

frt]in othmr Mourcam.

tomp~rnture ctructura

WP mllnl In princlpla

wllh nll thm frequency-dsp,ndant lr~nmfer equnt!onc; whtle this

radlativm termn in the enargy bt lfincm

both the hydrodynnmlc work term and input

Thus, to obtain n mutually conmlntmnt

●nd radiation flald for nonurey mat~rial,

nolva the ennrHy oquat ion ●iuultanaoualy

1(1



is feasible in lD, it is computationally prohibitive in 2D, and

we must develop a less costly approach. The re are several

options one needs to consider in order to obtain a consistent

description of the Interaction of the radiation field with the

material. In this section, we shall merely give an overview of

the most obvious methods. It should be noted that the following

discussion is purely theoretical; the final proof of the feasi-

bility of any of theee methods will be in how computationally

efficient they can be made. We have some experience in this

respect with regard to the lD equation; ll however, to date our

experience in 2D is limited.

From the work that has been done in one spatial

djmension,
12,4 we

think there are two main categories J!?

methods : the multifrequencylgrey technique and the fulJ.

multigroup method.

}{, Energy Balance - The Multifreq~ency/grey Technique

The basic idea of the multifrequencylgrey technique

originated at System, Science and Software12 in the late 1960’s.

Here we review the extension of this method to two Spntial

dimensions. The heart of the technique is tu try to write

frequency-integrated ❑oment equations that nver~ge correctly over

the non-grey opacity. Thusp we uae epectral profiles gener~tecl

In Ii separr.te sat of ❑onochromatic calculations and asourne that

theNc distributions will be ralativcly ins~nsitive to change~

mnda in the iteration procees

t.rnnHfer and ener~y equations.

To obtain the appropriate

(1).7), ~nd (M.3) ovar frequancy.

required Lo Bolve the coupled

aquationn lntegrMte EqM. (D. 1),

Let

(}{.1)

(H.2)

17



and define the usual Planck ❑ean

Further, let

f rr = ~ f (v) evdv
rr

r E ~ f (v) evdv
rz rz

Xr = / ~ F (v)dv/j F (ti)dv
vr r

I
al” a(~ k;) Xr
~-=r. + ,:- ;; ( q f r r E)+–T:~ --— F

;J- C r

(H.2)

(H.4)

(H.5)

(H.6)

(H.7)

(11.8)

(H. Y)

(ll.lO)

(H. 11)

(H. 12)



The frequency-integrated energy equation can now be written

DEm

p [~+pm~ @] - CKEE - 4WKPB c (H. 13)

The basic assumption we are making In this approach is that, like

the Eddington fa?.tora, the ratios ev, Fr(~)/Fr, and Fz(v)/Fz can

be determined from a freauency-dependent formal solution and then

held fixed In the solution of the coupled l~ornent and en rgy-

balance equations.

To obtain a combined moment equation we proceed as before,

replacing time derivatives with backward time differences.

However, since we wish to present here only a brief discussion of

applying this technique in two dimen~i.ens, the combined moment

equation8 for the multifrequencyfgrc y technique will not be

derived.

It is worth listing the advanttiges and disadvantages of the

multigroup/grey method. ‘I’he roost important single advantage of

the rncthod 1s that il reduces the number of variables used in the

energy-balant:e part of the calculation to an a$sOlute minimum,

namely one (the energy density) per meshpoint. This makes the

computation of E(r,z) as cheap as poefiible, and mlnim~~es t}l(,

cost of iterating the temperature distributlol} to consi~tcncy.

The principal disadvantxgea of the appro~ch nre: (1) WC ~lrt~

torced to assume the invariance of the spectrnl profile f~lnrtton~

ev, Fr(v)/kr, and F#/F in the temper~ture-ite ratl on,
z

[ n

reality the epectral distributions implied by the new temper~~t(lrtt

(ii~tribution at the en~ of e timetitep could b{? qllit[? dlffer~~nt

from the initial estimates. The plnce whert) thin IN mutit ~rrioll~

itl in the cAIC!Ul@tiOll Of K~, which determlneh the tot~ll r~ltv {If

absorption of ●nergy from the radiation fltIlci by }le m~trr~,ll.

(2) Tho :ormtttlon of flux-weighted mettn-free-pnths IIs In

Eqri. (H.8) and (H.9) in worrisome, becauae thr directio:lial :ind

frequency distribution of the flux could h(? Ia\lrtlthnt J XVI’’”(IV

has the oppouite sign from j F~ldv (~>r is zuro), which WOII1(I lII)~)ly



infinite or negative mean-free-pathc in the flux calculation.

Both would be unphysical.

1. Energy Ralance6 The Multigroup Ap.— preach

In the direct ❑ultigroup approach we a8sume that at each

meahpoint we are going to try to solve simultaneously for the

radiation energy density far G groups, plus the temperature. The

energy equation tu be solved is

(1.1)

Here Wg Is the quadrature weight for group g and all. material

properties are Filnctiona of [P~T); that 1s, Em - EIn(p,T),

Pm - pm(P,T), Kg n Kg(P,T), B% m Bg(T). Thu~ we have a nonlinear

system (coupled with the transfer equations) to solve. In writing

a difference approximation we uue fully impllcit differencing and

evaluate the right-hand side at tn+l for st{lbtlity.

To solve t%e system we ~ss~me that at each me~hpoint we hake

an estimate T* cf the temperature tind write Tn+l = T* + 6T, and

then linearize Pli equutlons for 6T. For the present, we will

take the simplest poegible npproach fil>d ltnearize only Em and

B; we CmI ndd ~J~l.er terms if needed latf!r. Hut in nny event the

structure of the syetem i~ Ilnchtingcd. WtJ tllun h;~vu

Em(T*)+c”( T*)6T-Em(T) a~m(r*) alim(T*)

Pi ‘At
—-+V

ar
+V

a~
+ pm(T*)

r z &(-;)]

a~ (T”)
- -[4w)w K (Y*)%-]6T + }W K (T*) [.En+l - 4WtI (’r*)] . (1.2)

“mm “Xu
M

u u

We can Molvu tl~in equntton fur 6T aud write

a6T1), pK’’+l+y,

u
RR
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where

PCV(W ~B (T*)
aE—

at
+ 411 ~UJ K (T*) +—

~n3

B - CWgKg(T*)
13

and

(1.4)

(1..5)

Em(r*)-Em(’rn) ~Em(T*) ~Em(T*)
y.- P[ At

+V
ar

+v—
r -< az + Pm(’T*)&(:)]

4WlWgKg(T*)Bg(T*) . (1.6)

To CO Uple the energy balance into the transfer equation we

linearize the source terms in the latter, writing for each group

#(qfrrKn+b
n+l

-1
32(rfrzE )

(Y+ K*) En+l . !l_ —
‘)+X*

r2 a,rz
r 3Tz2Tr-t

11-tl

-i
~2(rfrz,E ) ‘dI%zzEi’+])

- ——
r ~TraT

i! a ~~

($ K* ~)d’r # K* B*+YEn

“ T+X*) + (y+x*)

]Ieru * ()n n ny qunnt lty mt’din~ that quantity is

T m Th- .A~nin it HIIOIIld he noted that w@ have Ii

(1..)

evtilunted at

nenrized only

t.l~e Pl~l]ck filllcLioll. 1! wc it~e willing to do tile :’ork, we could

JIIS[) Iir]eilrize K, x, ~lld tlIc differential operatoru.



Equations (1.3) and (1.7) provide a linear system for Eg,

(g=l,. ... G) and 6T at all meahpoints. The first problem

(addressed below), is how we solve this big system. Given that

we have, we apply 6T everywhere, update the material properties,

and do the solution over again, iterating to consistency. The

iteration may be slower than a full-scale linearization, but it

is much simpler, and avoids problems with noisy derivatives.

Let us ?b J map out the form of the grand matrix for the

system to be solved. In labeling the energy densities we write

Eijg for E(ri,zj~vg). From our lD experience, 11 we

expect that the best way to organize the variables and kience the

structure of the resulting matrix is to put all frequency ~roups

and the temperature perturbation together at each mesh point.

the form of the grand matrix is shown on Fig. 1. Here, at each

gridpoint we have an “arrow matrix*”, which describes the coupling

of 6T to the local values of Eljg for all groups, and the local

response of the radiation fields to 6T. These ruatrices are

bordered hy ~ block tridiagonal pattern of diagonal ❑atrices that

give the coupling of a given weshpoint to its two adjacent

neighbors at the same z-level, and thts pattern is in turn

bordered by two more tridlagona.1 blocks of diagonal matrices

giving the coupling to meshpoints at the z-levels above and below

the current one.

Conceptually, one can view this scheme as emphasizing the

frequency coupling at a given spatial point to the local

temperature, whil~ handling the spatial coupling to adjacent

meshpoints in the outer structure. This scheme is thus well

adapted to the optically thick limit because as K+m, the diagonal

matrices bordering the arrow matrices and the diagonal matrices

in bordering equarea of the checkerboard all vanish. We realize

thid advantage only if we tlCtUdllY solve the arrow matrix

directly. Happilv the decompoettton and solution of the matrix

is simple:ll



~onsider the matrix

‘E(_Ya’l)O
aIj ’11

Thiai ❑atrix can be decomposed

L.

Take
‘ii=l

for i-l v~=”D I.

u
ii-a iI /aii for i=l, .... l-l.

- y Iljll,l -
% - aII

j-1

So In short, we can form the

into A = Loll where

,,
and u- ‘“J1

‘II

“rhen
‘ii “it

for 1-1,.. .1-1

.

and

Further, 1 for j=l,.. ,I-l and
~j-aIj

1-1

’11 - 1 ‘~juj~ “
j-l

(1. ti)

decomposition trivially by ecaling

each element of the last column by (l/a ii) to get uil and

accumulating - mIidil into aI1 to form ~11* Thie is Inexpensive,

being proportional to I. To solve Ay = 4 we then proceed ae—.—

follows: Consider L x - R. Then for 1=1,... ,1-1, xi=R1/kli and

fcr 1-1,

Next consider lJY = x-



The solution is

‘I = ‘I
and

‘i - ‘i - ‘llX1

NO-A”E: These d~compositions and

over all NrNz gridpointe. Thus

aysitem, including direct solutions

for 1=1,...,1-1 .

aolutionn could be vectorized

the solution of the overall

of the arrow ❑atrices down the

diagonal, scales as (number of iterations) ’NrNzNg.

Having solved the system, then, as before, we know E and 6T

at all gr$dpoints. We can then update T* + T* + 6T and iterate

to convergence. T’*e only ast3umption built into mult.igroup

approach is that Eddington factors remain constant.

J. Energy Balance: l’reposed Solution of cne Matrix Equation

Consider now the problem of solving the 2D grand matrix

equation to obtain Eijg and 6Tij. We treat hcl the grand

metrix corre~ponding to the full multigroup method as developed

in Sec. I [i.e., Eqs. (1.3) and (1.7)]; however, the Ceneral

procedure can be applied to any large, sparse system derived

from the transfer equation.

Although a direct solution of the grand matrix equatiofi ❑ay

be possible, it is computationally much more efficient to use an

iterative scheme. ll In the overall solution, these iteration

are the inner iterations to flnci the value of the temperature

correction far each ❑eshpoint. The outer iterations involve

applying this temperature correction to make the radiation field

consistent with the temperature structure at the advanced time

level.

Let us write symbolically the metrix for esch r-lev~l

represented in ~ig. 1 as ~i. Then, we can write the matrix equa-

tion corresponding to Eqs. (1..7) and (1.3) as

(J.1)



where the vector ~i ~ (Eijg, 6Tij; g=l, ce. ,G; j-1, ....J) and Iti

is the resulting right hand side (RHS). The simplest iteration

procedure that can be used to solve Eq. (J.1) is to move all the

the elements of X1 to the RHS except the arrow matrices down the

main block diagonal (see Fig. 1). The resulting

can be decomposed directly and the iteration scheme

efficient fnr cells that are optically thf.ck.’i

thin cells, the number of iterations may become

matrix blocks

would be very

For optically

excessive for

such a simple scheme. The convergence can be accelerated by

retaining ❑ ore information of the left hand side (LHS) of the

equation. One method, that in our opinion seems to be very

tantalizing. is the so-called diffusion synthetic acceleration

(DSA) method. ~3 This acceleration method was orlgir.al:y derived

for the iterations of the static neutron trnvspol”t kquation.

Here, we briefly indicate how this method can be t~~pite~~ tu the

combined energy and transfer equations of a rad?.?ti.~g fluid.

The essence of a diffuzion acceleratel~ l.~:.~.[.!0(1 is to

replace the messy spatial transport operator (v*g) i[I :he com-

bined moment equation [Eq. (1.7)] by tl~e correc+porlding dift’usion

equation operator [~2(E/3)]. By so doing, the difference between—.

the diffusion and the transport operator can be moved ‘-o the RHS

of the equation. The result Is to have a sf.mpler matrix equation

to solve (the rnultigroup diffusion equation), while iterating on

the difference between difrusion and transport. In opaque

regions, where the diffuoion solution is accurate, the transport

correction term on the RHS is very small and the iterations

converge rapidly. For tran~pxrent regions, this type of

prescription merely dlctatcs those terms in transport solution on

which we should iterate.

In order to uee this type of acceleration scheme, we replace

Eq. (J.1) W~tfi

(J.2)



where

and ~1 is the diffusion matrix operator corre8pcfiding to ~i. ‘Ihe

grand matrix for the multigroup diffusion equatfl.ons is shown in

Fig. 2. The only difference in form between ii and ~i is that the

diagonal matrix blocks corresponding to the cross derivative

terms (e@g*, a2/87ralz) are absent in ~i. Note that since the

temperature correction is in both ii and ~i, this term stays on

the LHS. Also, the term added in the definition of R; Invulves

only the spatial transport operator VO~. Indeed, since diffusion.

is really only a special case of the VF:F type of solution, this

added term is simply

In this method, we are iterating on the +srms in the radiation

pressure tensor that corrc:upond to the ani80tropy of the

radiation field; just aa one would expect as the difference

between diffusion ii~d tranl~port.

The solution of Eq. (J.2) is still nontrivial. The main

difficulty comeH frt~m the fact that We are solving for th@

tempertllre simulttineously with the energy den~itlns. Purhapu tile

best approach la to extend to 2D the eplit matrix iter~tion

scheme outlined by Axelrod aad Dubois .1” Essentially, the split

matrix ~cheme breaka up ~i into two m~triceg, each of wh~ci, can

be eulved directly, and alternately move~ one part of pi to the

Rt{S. For brevity, we alllill nnt comment fbrthet- about this

m thod, other than to say that since the uo utton of Simplified

equation, ~~ ~i “ ~~, may require iteration, tile lt~rat ion on the

difference between transport and dlffuaion la In some aenar n

mecondary iteration .nnd thuc may Ulow tt\@ conversance to ttlo

traneport Oolution. Trisl and error will be necparary to decide

which iteration acllemr will work bent.

26



IV. CALCULATIONS OF THE VEF TENSOR

In solving the material energy equation for the temperature

distribution and the moment equations for the radiation energy

density and flux, we assume that the Eddlngton factor~ are

given. These qua,atitiee can be evaluated if we know the full

angle-dependence of the radiation field I(r,z,t, d,@), which must

be determined from an angle-by-angle formal solution of the

tranaler equation for a given distribution of thermal and

scattering aourceao

We plan co provide several options for calculating the VEF

tenaora When examining a particular parameter apace, one muy

choose to use a simpler approximation to a transport type of VKF

tensor, leaving the ❑ oi~ expenmive angle dependent calcul~tlons

for the final model or for bench-mark problems. These options

will span the range from au inexpensive aB multlgroup (or gruy)

diffusion to as costly (or hopefully lens) as Monte Carlo mcthod!i

as far a# computur time is concerned. In order of computur tlmu

expenee, theme options for the VEII’ tensor nre JiI.I followN.

(1) fi~= + 6i~ (i.e., multigroup diffu~iol]).

,..
.



length of a ray, becauee the total retardation from one End of

the ray to another ❑ay a~an several timeeteps in the solution. To

attempt to handle retardation in this claaa of echemea would lead

to u difficult interpolation problem and a very difficult data

management problem. (b) These ❑ethods suffer from ray effects.

Either the rays ❑ay miss an important source volume (long charac-

teristics) or strong local sources may be diffueed over the grid

by successive interpolations (ahor~ characteristics). (c) Becaue~

one :3 computing unidirectlon.tl Intensities with these methodu,

It may be difficult to obttiin accurate fluxes (which require ~ub-

traction of intenaltiee in opposing directions) in opaque

regions. This problem is most damaging in the multlgroup/grcy

ilpprlJLICh becau3e in aither the grcy or direct multigroup casea we

cnn cvnluate fluxes directly from the moment equations them-

Helvca. We shall not discuss these Hchemes further hete.

(4) Finally, one could go to a I“eautri@r type eolutlon.

Ilcre, we choo~e a Het of planeH tllut Hlice through the cylinder;

emu., Cndll one tangent to one of tht! radial zone~. From the

{lxlnl symmetry of tho problem, it fol~owcI that if WO know t!~(~

rudititlon field on thll uet of Ill], plnna~ paanin~ throu~h n

purtlcul~{r rodtnl zone, then Wa Ilnve all the information n’,~~d~d

to doturmino thu a~imuthni v~rlntion of thu rtidlntlon field 111

thnt Zon t!. On ench piano the nnlutton would proceed by forrnln~

nll~lo dopvndont nymmotrir II11d fintiuymmelrlc 41verllucH ()f LIltl

Np@clftr Intcnuity,and than affactinx n 21) pl..n~r Nolutton.z

AHnln, furtllar dtncunnlon () f Lllln method Will bc ~t vt~ll

(*l Nt,wllt~r,*. 10



formula uniquely specifies the form of the ten~ur that is derived

from them. Following !4inerbo,
6 we write the ratio I I/RIEF cE,.

● o that R2 - R2(R1). In one dimension, R2 is the EddinRton

factor, 190., the ratio of the eiecond to the zeroth angular

❑oment of the radiation field. In two or ❑ora dimension, R2 lW

the same ratio, however, the angles are measured relative to the

local flux direction. The prescription given above for the

teneior & then ❑erely ❑ape back to a general coordinate ay~tem.

Physically, R2 enould be a smooth curve ranging from R2 (0) = 1/3

for ieotropic radiation to R2(1) = 1 for streaming radiation.

(Although there are physical situations for which f < 1/3; e.g.,

a thin plane source of radiation
b

or two concentric opaque aht!ll%

separated by a vacuum with the outer shell b~’lng hotter thnn the

inner one.) The exact form of the curve will be different fljr

each phymical eituation. However, in using a formula such ils

Minerbo ’s6 for thiu relntiono one ia hoping that a variatiun of

the Eddington factor, which htia tha correct Limiting vuluc~l will

provlda a ❑ ore accurmte solutton than diffu~lon.

The main raault of Minerbo ’# pnper in tha cnlc[llnt ton of”

this relatlonnhip botwean R2 and RI. Thi~ roHult te shown III

pig. 3. Thrae otl~er curven are nl~o mh.~wn, Tha Collf IL/lnt vn lIltI

of R2 - 1/3 correepond# to n difrunlon cfilculntlonm UNlnfi II

linnnr axp~nniou of the mxponrntlal dtstrihut ton In I]lH chol~ry,

Minarho Alno durivad a llnv~lr approxlmntl.)n for Ri(N1), r~!f~lrr~’,l

to ma Ilnoar in Flu. 3. ‘1’I1oftn~l curve in FfH. ‘1 (M thr corruM-

pond~nR relationahlp dt!Lwrmlnod from Levarmora dnd l’omrnnln~~’

flux-limitad diffunlnr. rheory, Tha tllrer varlnhlo liddlll~ll)ll

fwrtur curvoo in Fig. 3 rnpnn th. nnmm gmn~rnl rr~lon () f [111/1

figura batwottn th~ two llmlt[n~ valuns. UO Iltivi! run Nvvurdl

tdoalizod teat cana~ to rl)ml~~{ro tharnn approxlmutv. lt)rnl f~)rmllll~~’

for g to an~ly tically CSalr IIlntod valuen= Ilorv we tJhnl I prIIMollf

two ox~mplec of thin typm 01 romp~rt non. one in 11) UIId ono III ;!l~.

lt )a critfra] Lo nt~to lhat nlnro th~ ttddfn~tt)u fnclor III :1

function of hot~! tttc evorxy dmnufty ●nd th - flIIx, thomr qIIII III 1-

Ll aa IPutit. II@ rdlruldtod m.~lf””l’ol lrtmtmtltly. Ftlrtlivrm,)rmo fOlltI’c) II



18 really vo[(V~(g E)] and :k that enter the dynamical equat iona
. .

for a radiating fluid, the solution of the radiation energy

equation (required for Belf-consistency) depends not only on the

value of f, but also on the first and secoud derivatives of f.

Thus , it is not only the value of f predicted by these formulae—.

that is important, but also the shape of the curve.



are tryi~g to find. The results of this calculation for this

isothermal sphere are shown in Figs. 5-7. Figure 5 shows the

Eddington factor~ calculated with eelf-consistent energiee anti

fluxes. This operation moves both the Minerbo and l.evermure

Eddington factors cloeer to the analytic solution compared to

using only the tinalytlc Ml. I!owever, the linear approximation of

Hinerbo actually gets worse, with f being a constant 1/3 every-

where. Thti renson for this hehavlor ie that the linear approxi-

mation hns a dtsconttnuoue second derlvattve, which result~ in a

numeric~l fecdbtick problem. It Ie much better Lo use a r~tinnal

polynomial approximation, which has a continuous second dcrivu-

tive, in pliice of th. linl!~r curve.

Figure () Hl)ows the flux AH a functton of radius for tllc

nelf-collslHtent Hnlutlono Mincrbol@ l~neHr and lltRtlHttCill

theorie~ tire both very close to the nnalytic nolution, with

Lcvcrm(,rv’H nnd diffusion npannlnu eACh nlde of the truv

13nlutl on. Thu energy dene~ty aIid flux c~lculnted from d~ffuHton

thc~ory ,~rc not fn error ncnrly nN much (in moHt rcNimeH) uM t11(’

H(ldil)};tl)ll fnc Lor itHelf; whl cl) lH n:ll~tllcrwtiy of HtHtlnM tllc well

knouu rv~~llt LhiIL dltfllHlnu th~ory typically wurku hettcr th~n It

Htlolll I1. Fin/llly, Fix. 7 MhovI~ thr run of cncr~y don Hlty wllh

r~ldlu~ fur r.lltu tent (“14HC0 ‘rhc~[h r~g~llt~ /l~A ill r.lllow Lll IIl

!llnvrlll~t~ HLdti!Iti(”nl formil},ll 1o11 !n thr huRL (“hot (’v. l)if(u Mloll

IN LI1o w~]r~( rompnrl~on for LIIIN Ilrohlum (M IIICC IL IN l)p Llclll l!’

Lh in), witlI l,rvurmor@’H ft)rmill.ltlou bctng neiirly MM hnd 1)1] t II(1

(} Ll)l~r RI (IV 1) f tht~ All#Il)ftlL’ FJ(llut loll. other 11; t~Ht (’AHCM II t-l-

rOp OrLOd In II ff}rlllcomln~ pupvr.
11)

.i I



Eddington te~aor calculated both analytically and with an analy-

tic RI used in Minerbo’s atatiatical theory.

There are three independent components of the Edd!ngton

ftensor Kr, fzz and the off diagonal component frz. Aa was the

case for the isothermal sphere, the epectfic intencity 18 an ana-

lytic function. ls The Eddington teneor cnn be generated by angle

quadraturea. The analytic Eddington factore are shown in Fig. 8.

Since the source function is everywhere constant, this problec in

symmetric about the midplane (z = 1/2) as well as uround the

z axia. The rddiation iield in nearly isotropic In the celtter

of the cylinder (fii ■ 1/3, f
i~

- o). frr haa a different etruc-

ture than fzz ~lnce the optical dl~tance from the center cf tha

cylinder to a bound~ry is larger iII the r-direction than tile

z-direction. The largeet degree of tinjsotropy of the radiation

flcld (i.e., frr * fzv and frz > 0) is in the corners of the

cylinder wh~rc polntM cnn more eusily sce both boundaries.

In Fig. 9 we HIIow YIICHC ~nme qunnltties aa calculat~d from

Minerbo’a ?ltlltiHtic411 i4rgumc!nt6i0 we Ulle the flux and energy

density from thu ,Illlllyttc solutlon to form RI and thus ~. The

reHulte in FIR. !4 are Riven MS the difference* between llinciiJu’M

nnd tllc an~~lytlc v.41111!e. Tile mtixtmurn vnlueH of this difference

nre 0.055 for frr, 0.04 for [rz, and 0.11 for fz7. These maxima

occur uanr tillc ci)rnvr H NIId nuLer buund{lry uf tll.ecylinder, just

wliere y(~II Wnlllil {Ixpt![!t il non-LrAnapurL N,)lutlon to bre~k down.

Ilowever, ●~pectally in 21), t Ill! cnlculnt ion of the variable

Hddlngton tcnHur ~ttll rcpr~hNcntN o Nlgnlffcmnl improvement over

diffuHion. AllowfIIg thr mhlri dlngnnnl of the r,l(llntion preneure

ten nor to Iluvu Il[~tl-uIlllItlc(jmpollontw mId nllowing f~~r non-zero ofl

dln~onal alemunLH IiL lenMt m~ke~ It fQ,,”iblo to deticrlbe nn

nl”tno~roplc r~dlntlt~u flcld to ~omt~ do~rrt’ of *ccurticy (if only

locally). TIICSHCSruHul LH nru very pr~’llm!nnry an wu lIave not done

a rnolf-connlutrn~ (’nlrllllilion 111 21). llow~~vvr, wc hope, aa wan

truQ for ID, LhnL in ~cncrntln~ t II t’ nulf-cont3trntant nolutton

●) the fiolIILf(~II (Sol lvvl gtJM, II n d b) LIIP Ed.!ingt(ln fnctoru wtll

npprf)nrll th~ nnnlytl~ v411uc14.
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Figure 1. A schematic d~aqram of the fom of tbe qrand
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metrix to be solved in the full multigroup,
2D combinedmoment ard ma:crlal ●nergy eqtition.
The matrix shown is for I - J - 4. The main
block diagonalis ccm~ose~of arrowma:r~cos,
which ?,ave a simple decompc:ition.
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Figuxe 2. Same ● s Fig. 1, exc@It for the full multigrou~
diffusion equat~on in I)la(e of the tranaport
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Piguxe 3. Functional foras for tho u.ment relationship RZ(A1)
for various theories. Here, mi E j ~ll(~,u,d~ is

the ith moment of the radiation specific intensity.
Zn ID, Rz - f, the IMdington factor.
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the wmlyt~c values of R ~ F/cL tor various thoorles.
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F&gura 5. The calculated Fddington
solution ot thecmnhnod
datmxibod m Fig. 4.

factorn frun a self consistent
m~nt ●quation for the problem
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Figure 6. TIIG calculated flu.ms frm . . ●lf consistent solutAon
of th~ comkuned ~nt ●quetim for the problem d.ncrlbed
An kAg. 4.

ISOTHERMAL ‘SPHfRE(U=O.5)
G.6 , I a ltlm~lrvrwl , 1 [’17v111arl,,l,IwlII Ir.vv,,,rr

0.5 SIWCONSISTCMT [NCaGY 2
&

d———— —.
#

—.—. —

/

‘ “,/’;---- -.
,“ ‘ ‘ 0’,’

0 /“ /

/
L-

/;:

0.2 I

Rod I u



Figura 7. Th. calculated energydensities
solutian of the cmbined mmnt
problem deecribed in Fig. 4.
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Figura e. A contour plot of the antlytic Eddinqta factors rrr.
fzz, Md f=z for ● n isothermal cylinder wit!! a radius
equal to its height. me opacity imslde the Cylmdtr

in s - 0.5 a-’.
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