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Abstract

This paper describes a new numerical scheme for calculating hydro-
dynamical flows with shocks. It is similar to a scheme promulgated
some years ago by von Neumann, see [91, and modified more recently
by him and R. Richtmyer, see [lil, inasmuch as it is a straightforward
numerical scheme which ignores the presence of discontinuities. It is
more closely related to the scheme described in [9] since no viscosity
term is used; what is new about the method is:

(2) The difference scheme used is based on the conservation
form of the hydrodynamic equations.

(b) The difference scheme is unsymmetric in time,

Description of the difference equations: Write the hydrodynamic

equations in the form of conservation laws (mass, momentum and energy);
in this form each term in the equation is a perfect x or t derivative.

Replace all x derivatives by centered difference quotients, all time

derivatives ft by a forward facing difference quotient of this sort:
n+l  n
]

At

where {2 is taken as the arithmetic mean of the values of f at all

nelghboring space points at time cycle n.
This scheme uses a staggered lattice,i.e.,at time cycle n we use
all latticevectors ,8 with, say, even components, at the next time

cycle we use odd lattice vectors.

z UNCLASSIFIED
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The conjecture is that if the meshsize tends to zero, and the
stability condition of Courant-Friedrichs-Lewy is satisfied, the ap-
proximate solutions computed by this method will tend to the exact
solution uniformly except in neighborhoods of discontinuity lines or
surfaces. |

The mathematical soundness of this proposition is discussed in de-
tail, using as an example the equation u, + un = 0. Test calculations
performed on this equation and on the hydrodynemic equations in one
dimension, both Euler and Lagrange form, show fairly conclusively that
the method works. Some of the numerical resulis are presented at the

end of the report.
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ON DISCONTINUQUS INITIAL VALUE PROBLEMS FOR NONLINEAR EQUATIONS AND

FINITE DIFFERENCE SCHEMES

Let Ut + AUx + B = O be a guasilinear hyperbolic system of first
order equations; U denotes a column vector of n unknown functions, A
a coefficient matrix, and B a vector. A and B are assumed to be
functions of x,t and U. The system is called hyperbolic if all eigen-
values of A are real and if A has n linearly independent eigenvectors.

The initial velue problem for such a system is to find a solution

with prescribed values on the x axis (or an interval of it),

U(x,0) = 9 (x). According to the theory of hyperbolic equations

this initial value problem has a (unique) solution if §(x) is differ-
entiable, or is at least Lipschitz continuous (in this latter case the
solution would not have continuous partial derivatives). The range of
t for which the solution exists is at least ss large as c(max l&fl)-l,
c being a constant depending on the coefficients A and B and their
first derivatives.

The example of the simple equation ug +uu = O shows that this
estimate cannot be improved in general. In this case, namely, the
solution of the initial value problem u(x,0) = 9(x) is given by the
implicit relation u - 47(x- ut) = 0. This relation defines u as a
(differentiable) function of x and t as long as the derivative of

the left hand side with respect to u, 1 + t@®, does not vanish. The

smallest value of t for which this quantity vanishes is

u UNCLASSIFIED
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t = (max -<y')-l; this shows that the width, of the domain of existence
in the % direction, does dependAon a bound for the magnitude of <?'
(although only on a one-sided bound). !

Suppose we wish to solve an initial value problem where the ini-
tial values no longer satisfy a Lipschitz condition; say they are
downright discontinuous, as in the Riemann shock tube problem. One
could attempt to solve this problem by approximating the given dif-
ferentiable initial values ii(x), construct the corresponding solution
Ui and take their limit - 1f it exists - in the sense of some norm or
topology. This method works for linear equations but does not in
general for quasi-linear equations; fof if the sequence ii approxi-
mates an initial vector that is not Lipschitz continuous, the first
derivatives of lﬁi are not uniformly bounded, and so the range of t
for which the solution of the ith problem, Ui,.exists shrinks to zero
as i tends to infinity. This shows that the theory of discontinuous
initial value-problems for nonlinear equations is not a mere appendix
to the theory of differentiable initial value-problems but has to be
developed independently.

There are several ways of developing such a theory. One is.to
generelize the concept of a function satisfying a differential equa-
tion. This leads to the notion of weak solutions and the initial
value problem is to ascertéin whether in the aggregate of all weak
solutions there exists one with the prescribed initial data.

Another way is to define the solution of a discontinuous initial
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value problem directly by a limiting process of some kind. This
limiting process would usually consist of approximating the equation
by a sequence of equations for which the initiasl value problem can be
solved. For the equations of ﬁydrodynamics this is usually done by
ineluding viscous forces; what is proposed here is to use a straight-
forward finite difference scheme; that such a method works is of in-
terest for the theory and for practical computations.

It would be desirable to develop an abstract theory which would
include these special methods. The appropriate class of abstract
equations may possibly be the ones of the form

Ut =ANu

where A is an unbounded linear, N a continuous nonlipear operation.

We shall describe now the three methods mentioned, illustrating

them on the equation u, +u u, = 0.

1. Generalizing the concept of a solution.

Let v be some test function which is zero on the boundary of some

region G of the x,t plane; G is supposed to lie within the domain of

definition of the solution u. Multiply the equation u,_ + u u = 0 by

t
v, integrate over G, and integrate by parts. The result is that the

jj‘ vu o+ -Jé' v, w? (1)

is zero for all G test functions v and solutions u. Conversely: if

integral

u is & function with continuous derivatives for which the integral (1)
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vanishes for all test functions, then u is a solution of the original
differential equation (this is easily seen by integrating (1) by parts
and applying the so-called fundamental lemma of the calculus of varia-
tions).

We define u to be a generalized or weak solution if the integral

(1) is zero for all test functions v. As stated before, a generalized
solution which is differentiable is a bona fide solution. But amongst
the class of non-differentiable functions we have a genuine extension
of the notion of solution.

Weak solutions, for linear equations, are dlscussed briefly in
Courant-Hilbert, vol., II, p. 4639-470. They play an important role in
Friedrich's work on differential operators; their theory was treated
systematically by Sobolev, and L. Schwﬁrtz. In the nonlinear case -
which' interests us most - the concept of weak solutions is discussed,
usually in connection with shock probléms of hydrodynemics (see also
E. Hopf, [7]).

Consider discontinuous solutions, l.e., functions u that suffer a

Jump discontinulity across a smooth arc C, on either side of which it
has continuous derivatives and satisfies the equation. Straight-
forward application of the definition shows that a discontinuous solu-
tion 1is a weak solution if and only if U, the slope of the disconti-
nulty line at any point on C is the arithmetic mean of the values of u
on the bﬁo sides at this point (analogue of the shock relations).

This example shows (a) that there are weak solutions of our equa-
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tion which are not genuine solutions

(b) that the class of weak solutions is as-
sociated not so much with an equation but with the form in which it
is written. For had we written our equation in the form
u—lu +u o= 0, the criterion for discontinuous solutions to be weak

t

solutions would have been U = (ul - u2)(log uy

fines an entirely different class of weak solutions. The form of the

- log u2)-l, which de-

equation to be used is dictated entirely by outside physical considera-
tion. E.G., the equations of hydrodynamics in mass coordinates can be
written as four different conservation laws; namely, conseyvation of
mass, momentum, energy, and entropy. For physical reasons we would
operate with the first three of these conservation laws.

The test of usefulness of the concept of weak solutions is
whether weak solutions with arbitrarily prescribed initial data of a
wide class (say, the class of all piecewise continuous or all bounded,
measursble functions) exist, and whether the initial values determine
the solutions uniquely (a weak solution having prescribed initial
data can be defined either in an almost everywhere sense or in a weak
sense). It turns out that the answer to the first query is affirma-
tive, to the second, negative.

That for the equation u, + u, = O weak solutions with arbi-

t
trarily prescribed initiasl data exist has been shown by E. Hopf in
[7 ]as a corollary to the theory developed there. That tue solution

is not in general unigue is well known; it can be seen from this
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example: Let the initial value be
u(x,0) =0 for x < O
=1 for x » 0.

The function

il

u(x,t) = 0 for t > 2x

1 for t € 2x
is a weak solution of our problem since it assumes the initial value

and satisfies the jump condition. Bubt so is the function

u(x,t) = 0 for x ¢ O
= % for x > t
=1 for x ¢ t.

In analogy with hydrodynamics we would exclude the first solu-
tion since it represents & rarefaction shock; whether the exclusion
of rarefaction shocks would leave only one weak solution of any ini-
tial value problem, is not knowm.

So the problem is to characterize the physically relevant weak

solutions in some systematic way, and to prove that the initial value
problem has & unigue physically relevant weak solution for a wide
clags of initial values. 1In connection with this problem it should
be remarked that whereas the class of regular solutions of our equa-

tion displays reversibility in time; i.e.,if u(x,t) is a regular solu-

tion, so is u(- x, - t), and the class of all weak solutions likewise,

the class of physically relevant weak solutions (i.e., the ones without
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rarefaction shocks) no longer share this property; e.g., the weak

solution

u(x,t) =1 for t > 2 x
=0 for t<€ 2 x
is physically relevent for it represents a compression shock, whereas
u(- x, -t) represents a rarefaction shock.
One systematic method of introducing physically relevant weak
solutions is to take those solutions which are limits of "viscous

flows". I.e.,consider the augmented equation

wt+uu = Auxx (2)

with some positive constant A , solve the initial value problem

uy (x,8) = u, and let A tend to zero, Equation (2), and the sbove

‘ limiting process, was ilntroduced into the literabure, by Burgers; an
especially elegant and rigorous treatment of it is due to E. Hopf [7].
This procedure was conceived as a simple analogue of the process of ob-
taining this discontinuous solution of the hydrodynamic equations as
limits of viscous flows, see Becker [1], L. H. Thomas, Gilbarg Euﬂ s
Grad [6], and Courant-Friedrichs Eﬂ, PP. 134-138.

Equation (2) is a semi-linear parabolic equation; the introduc-
tion of a new unknown @, related to u by u = - 2R fx/tf reduces it,
as E. Hopf has observed, to a linear parabolic equation ,ft = A <Pxx
whose solution can be written down explicitly. This in turn gives an
explicilt representation of any solution of (2) in terms of its initial

. values; this representation enabled Hopf to prove that for fixed ini-

10
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tial values u, the solution uy (x,t) tends to a limit as A tends to
zero, for almost all x and t. This limit can be called the generalized
solution of the initial value problem u(x,0) = u_ of the original

equation (1).

It is easy to show that these generalized solutions are wesak

solutions; Jjust multiply equation (2) by any ﬁwice differentiable

test function v and integrate by parts:

ffvt u+-]2;vx u2 = Af[vnu 3

u remains uniformly bounded for A , and so, v being held fixed, the
right side tends to zero with A.

This class of generalized solutions is irreversible in t; there
is nothing surprising in this, for the process whereby they were de-
fined is openly biased in favor of the positive t direction, i.e., the
initisl value problem for the parabolié equation (2) can be solved for
positive t but not for negative t. .

A different limiting procedure for constructing weak solutions
is by a straightforward finite difference scheme; the conjecture is
that this process furnishes the same class of physically relevant
weak solutions as the viscosity method. Several arguments will be
presented which meke the conjecture plausible, or at least possible;
the numerical evidence in favor of it is very strong but there is no
rigorous proof for it yet.

First the description of the scheme itself: Since the concept

11
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of weak solutions is linked not to the equation itself but the form
in which it is written, it 1s important that the difference scheme
should be linked to the distinguished form of the equation. Secondly,
the possibility of defining weak solutions rests on the fact that the
given equation is in divergence form, i.e.,each term is a pure x or t
derivative. This feature should be preserved as much as possible in
the difference scheme too. Both requirements are fulfilled by this
scheme: replace space derivatives by difference quotients:

n n
T - f,ll -1

2AX

f_ by

< » and t derivatives u, by & forward difference

quotient of this kind:

n n
u + u

un+l _ +1 -1
2 2 ‘

==

Here superscripts refer to time cycle, subscripts to position in
space,

This scheme, when applied to any hyperbolic system, is stable in
the sense of von Neumann if f%% satisfies the classical Courant-
Friedrichs -~ Lewy condition, see [5], of being greater than the slope
of the steepest characteristic. The equation u, + u u, = O has one
characteristic, with slope u, so the stebility condition is

-f%% » max |u|. Now if we choose {%% so that this inequality is

satisfied initially, the function generated by the difference scheme

will never exceed its largest value initially, and so the stability

12
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condition is satisfied for all future times.

Solutions constructed by the difference scheme are defined only
at the lattice points; imagine them extended to the whole relevant
portion of the x,t plane by defining u inside any lattice square to
have the same value as, say, at the upper left corner. Diminish the
size of the lattice and suppose that the corresponding solutions, thus
extended, converge in the Jfé sense to some 1limit function u. This
limit function u is a wesk solution of the original differential equa-
tion as may be easily proved by multiplying the difference equation at
each lattice point by the value of a test function v there, summing
over all lattice points and summing by parts. A passage to the limit
leads to an integral relation hetween u and v that characterizes u
as a weak solution. What is not at all clear is

(i) Whether the sequence of solutions of the difference equa-

tions converges in the OK sense.,

2

(11) Whether the sequence converges uniformly except in a neigh-
borhood of the discontinuity lines.

(iii) Whether the weak solutions obtained in this menner are the
physically relevant ones.

Experimental evidence, presented below, indicates that the answer
to all three questions is yes. Concerning (iil) it should be pointed
out that, just as in the case of the passage to the limit through

viscous flows, the class of weak solutions obtainable by this finite

difference method is not likely to be invariant under replacement of

13
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x by minus x and t by minus t, because the difference scheme dis-
tinguishes between the positive and negative t direction. I men-

. tion this as a possible guide to finding other adequate difference
schemes.

In case of regular solutions, i.e.,ones with continuous first
derivatives, the difference scheme described here furnishes a uni-
formly convergent sequence of approximations to the true solutions.
This has been proved, for arbitrary quasilinear hyperbolic systems,
by Keller and Lax in [Q] and for a slightly different scheme by
Courant, Isaacson and Rees [ﬁ].

. It should be pointed out that if the sequence of solutions of
the difference equations or a subsequence of them converges only

. weakly, the weak limit is not a weak solution. For in this case the
weak limit of uﬁ is not the square of the weak limit of u, and so
the procedure of multiplying the difference equations by v, summing
by parts and passing to the limit leads to an equation in which the
role of u” is taken by the weak limit of v .

Experimental calculations were performed using IBM Card Pro-
grammed Calculators; the problem was coded by Mr. Stewart Schlesinger.
The first case considered was the initial values u(x, 0) = 1 for
x< 0, =0 for x > 0, taking 11t/43x to be one. The initial values
were deliberately chosen to be homogeneous, so that carrying the
calculations further in time would have the effect of refining the

’ meshsize; the idea was to carry out the calculatlons until it became

1L

I ELLASE
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evident that the scheme was converging, diverging or oscillating. It
turned out that the scheme was converging, and with astonishing

repidity. After bl steps in time the calculated velues of u were

X u

17 1.00000
19 .59548
21 .76818
23 21061
25 .02343
27 .00018
29 .00018

The values of u not listed differ from one or zeroc by at most
10-5. The theoretical position of the discontinuity, propagating
with speed 1/2, is at x = 22; this is precisely the center of zone of
transition; the zone is, roughly speaking, spread over three intervals.

Four steps later, at t = 48, the calculated values of u were:

X u

19 1.00000
21 .99548
23 76817
25 ' 21061
27 02344
29 .00210
31 .00018

The theoretical position of the discontinuity line is at x = 24;

the figures show that relative to this discontinuity line the profile

15
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of the solution has changed by at most one figure in the last decimal;
this suggests that not only does the solution of the difference scheme
converge to the true discontinuous solution uniformly in every subset
not containing the line of disc;ontinuify, but that the shape of the
transition tends to a definite limit. This limiting shepe can be
characterized as the steady state solution of the difference equations.

The difference equation is

2
“2+l = (uEH + u?—l)/z * Ili (“;-1 - E+1) ;

here the superscript n refers to time cycle, J? to space position.

The equation satisfied by the steady state solution would be

2 2
f£(x~1) Z £(x+1) + £7(x-1 ; £7(x+1) - .f(x . _;_.) (3)
and the boundary conditions are:
£(-e0) =1, f(oo) =0 . (%)

More precisely, the state of affairs is probebly as follows: The

difference equation (3), subject to the boundary conditions (4), has

a continuous, monotonic solution as function of the real variable x;

this solution is unique except for an arbitrary phase shift. Further-

more, starting with any function g(x) defined over the odd integers,

repeated application of the transformation T g = g' defined by

;g(x - 1) -; glx + 1) . gg‘(x—i) i g'r—)(x+l) = g'(x + %)

leads to the steady state solution f(x). I.E., if we denote Tng by

16
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gn(x), then gn(x) tends uniformly to f(x + o), where f(x) is the
steady state solution*; the phase shift of depends only on the ini-
tial distribution g.

Observe thet the function gn(x) is defined only at points by
n/2. Thus the gn(x) are defined either at the integers of halfway
in between, and consequently we need the values of f(x + oL ) at these
points only. This is however an exceptional situation which arose
because At/ ax was chosen to be commensurable to the speed of the
propagation of the discontinuity.

The numerical evidence presented before for the verity of this
theorem is very strong. The calculations cited refer to the initial
values g(x) = 1 for x a negative odd integer, = O for x a positive odd
integer; as a further check the values: g(x) = 1 for x an odd integer
less than O minus one, g(- 1) = .9, g(x) = 0 for x a positive odd in-
teger were tried. The results were the same as with the original
choice of initial g(x); the tables below give the values of u at t =Lk

and 48; these differ by less than one figure in the fifth decimal.

*
‘Fixed, say, uniquely by picking £(0) to be 1/2.

17
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t = L4 t = 48
X u X u
17 1.00000 19 1.00000
19 .99195 21 .99195
21 .T1566 23 .T1566
23 L1749 25 17449
25 .01858 27 .01859
27 .00165 29 .00165
29 .0001% 31 .00014

Table I, appended to this paper, gives the values of gus(x),
gu6(x), gu7(x), gh8(x) corresponding to the first choice of go(x) over
those values of x where the deviation from the constant values O or 1
is significant; (for all subsequent values of n, gn(x) coincides in the
first five figures with one of the four listed). Table II contains the
same information referring to the second choice for initial g.

Graphs I and II show a plot of these values; they lie on
smooth curves, and these curves indeed appear to have the same shape.

Returning to the difference equation (3), it should be re-
marked that if the boundary values of f are switched, i.e. f(- o) = 0,
f(e) = 1 or, more generally, are replaced by values for which f(-eo)
is less than f(eo), then no solution would exist. This result, for
which I have no proof at present, expresses the fact that the finite
difference method furnishes solutions with compression shocks but not
with rarefaction shocks. Mathematically, it is an analogue of a well-
known result on steady viscous flows (see Il], [6], [ld], {lﬂ ), which

+uu. = Au

I shall present for the simplified equation uy X x'

18
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Let uo(x,’c) be a steady state solution of the equation
u +tuu = Au_, i.e. u_1is a function of x - ¢ t only, u =u(x - ct).
x XX o o
Then u( § ) satisfies the ordinary differential equation
cu'+uu'= Au .,
Integrate both sides with respect to § :
K+cu+%u2= Au,

80

a€ 2A (
= ) 5)
du 2 ocu+ 2K

We are interested in solutions which at f =-co and § =
have prescribed values u, (initial) and up (final). From equation (5)
it is clear that g will approach infinity only if u approaches one of
the roots of the quadratic function in the denomination of the right
hand side; these roots must be then just the initial and final values of
u, uy and Up) and c, the propagation speed, must be their arithmetic
mean. Furthermore, v.2 + 2 cu + 2K is negative between the two roots u

i

and Ups and so, A being positive, %é—- is negative, i.e., u is a de-

creasing function of g . So we conclude that an initial and final

state can be connected through a solution of (5) only if u > u, .

this inequality is fulfilled, then they can be connected and the ex-

If

plicit formula

gives the shape of the connecting curve.

19
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. Numerical calculations were carried out for the initial values
u(x,0) = 0 for x < 0, u(x,0) = 1 for x > 0, using the same difference
scheme as before; the results after 48 steps, are tabulated in Table
IIT and plotted in Graph III. The dashed line in Graph III refers to
the exact solution.

The seme problem was run with At/Ax = 1/2; the results after
steps in time, are tabulated in Teble IV, plotted in Graph IV.

So far, only the equation u +tuu = 0 has been discussed; the
question is, how much of what was said before can be generalized to

quasilinear systems. The first observation is that weak solutions are

defined only for systems in which all first order terms are perfect x
or t derivatives (or at most combinstions of such terms with coeffi-
cients which are functions of independent variables only); for such
systems I propose the same finite difference scheme, i.e. replace all
x derivatives by cen’cergd. diff%rence quotients, and replace all t deri-

v + vV
. n+l P+l -1
vatives v, by (VL - 5 /Aat.

This was tried on the hydrodynamic equations of one dimensional
time dependent flow; the equations were written in the form of con-

servation laws. They are, in Eulerian coordinates,

ey + (ue), =0, Cons. mass
(ue)t + (u2€)x +p =0, Cons. of momentum
’ u2 u3
' (pe + f§—)t tlpeu+ )x + (w)y =0, Cons. of energy.

20
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Here er WP and e denote density, velocity, pressure and energy
per unit mass. The equation of state expresses e as a function of p
and @ €8 for en ideal gas e =§-(§-—lf .

In the computations we will operate with the quantities
e, up=m and ep + u29/2 = E, the mass, momentum and total energy

per unit volume. In terms of these the equations are:

pt+mx=0
3—‘o’m2
m, + [ (s-1)8 + T;]x =0
E +‘.K%-ﬂm—3] = 0
t © 2 e2x

To these equations the differencé scheme described before was
applied. Several calculations were made, with different choice of the
initial values and ¥, end in 8ll cases cthe answer sgreed fairly well
with the theoretically calculated flow., The celculations were per-
formed ori the Los Alamos MANIAC. The flow diagrsm for the calculations
was prepsred by Stewart Schlesinger end the problem was cocded by Lois
Cook. |

In the first problem ¥ was chosen equal to 1.5, and

us= 2 for x < O,
= 0 for x » O
p =50 for x < O
0 for x > O
=5 - for x < O
= 10 for x > O.

21
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The two constant states chosen can be connected by a shock
(notice that compression is five-fold at the shock, the value corres-
ponding to Y= l.5):‘1t/¢3x was chosen to be .25.

The results after 49 time cycles are given in Table V. The
fourth column, VvV, gives the label of the lattice point in hexadecimal
notation; the Eulerian position x is related to the label ¥ by
x - 4(2vy - 52) (taking t to be one). There is a rapid transition
from one state to another around J = 41; this corresponds to x - 124,
and gives for the speed of propagation of the discontinuity l%% = 2.48;
this agrees pretty well with the theoretical value of the shock speed
which is 2.5.

The values of @, u end p after 99 time cycles are given in
Table V1; the position of the uth subdivision now is given by
X = h_(21l - 102). Again there is a rapid transition from one set of

values to the other, around JV = 82; so the speed of propagation is

248

§9— = 2,50.

. Notice that the width of the zonekof transition is approximately
the same in both calculations.
"The stability constant, i.e. the reciprocal of the ratio of
Ax/ At to the maximum of the true propagation speed is .863.
A second calculation started with the initial states u = 2,
p =50, @= 50 to the left, u=0, p= 0, @= 10 to the right of x = O,
At/Ax vas taken to be .25. These two constant states can be con-

. nected to each other through a rarefaction wave, a contact discontinuity,
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a constant state and a shock (going from left to right). According
to theory, the constant state behind the shock is u = 1.47, p = 27.1,
© = 50, and shock speed is U = 1.84,

The results after 49 time cycles are given in Table Vi, after
99 time cycles in Teble VIII. In Table VII there is a rapid transi-
tion around ¥ = 37 which corresponds to a shock speed of g% = 1,79,
vwhich is in fair asgreement with the calculated value. In Table VIII
the transition occurs around ¥ = T4 which gives for shockspeed
184/99 = 1.86, in even better agreement with the calculated value.

In Table VIII, u and p appear to be fairly constant for a while
behind the shock, the value of p being around 27 + .3, and of u
around (.184 + .001)8 = 1,47 + .01, These are in fair agreement with
the thecretically calculated values, in spite of the fact that the
value of @ is way off (only around 39 at the shock front, whereas
the correct value is 50).

A third calculation wes done for the case ¥ = 2, and initial
states u = 2, @= 50, p= 100 to the left of x =0, u=0, @= 10,
p = 0 to the right. f;% was chosen as .25 which turned out larger
than permissible by the Courant-Friedrichs-lLewy criterion. Conse-
quently, iﬁstability occurred near the‘shock front, but not enough
to make the calculations meaningless, as the listings in Table IX and
X show; these present the calculated values of the unknowns after 49,
resp. 99 steps.

The exact solution connects the two states through a rarefaction

23
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wave, a contact discontinuity, & constant state and a shock. The
theoretically calculated value of u, e and p behind the shock front
are: u = 2.26, p= 30, p = 76.5; these compare favorably with the
calculated values of u and p.
Two general features of these calculatlons are:
(1) The width of the transition shock in the shock
is narrowest if At/ a x is chosen as large as possible.
(1i) The values of u and p converge to the exact
value more rapidly than the value of p;
The method can be set up in Lagrange coordinates as well. De-
noting specific volume by V and by g unit mass along the x axis,

the conservation equations are:

Vt = u § Conservation of mass
ut =P g Conservation of momentum
(e + l/2u2) = - (up)g Conservation of energy

Introduce as unknowns V, u and E = e + 1/2 u2, mass, momentum

and energy per unit volume. In terms of these, the equations for a

perfect gas (e SL’YT) can be written as

VVt=u§
e
Et= {_((- 1) u_E_'_Vl@E ]

2h
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¢

Experimental calculations in this setup are being carried out by

Lester Baumhoff. Results so far are encouraging.
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X u X
-8 .99991 -9
-7 .99921 -8
-6 .99548 -7
-5 .98205 -6
-k 94713 -5
-3 BTT79 -4
-2 . 76816 -3
-1 .62581 -2

o} R (oyal -1

1 .32661 o]

2 .21061 1

3 .12798 2

. b .0T450 3
' 5 .0L216 b

6 .02344 5

7 .01291 6

8 00707 T

9 .00386 8
10 .00210 9
11 .0011%4 10
12 .000621 11

12
_TABLE I TABLE II
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.99998
.99978
.99836
.99195
97176
92476
.83976
.T1566
.56551
41203
OTTRT
17449
10407
.05982
.03359
.01859
.01021
.00558
.0030k
.00166
.00090
.000k9
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X u
b7 92695
hs .88187
43 .83994
iy .T99438
39 .7599
37 .7209
35 .6825
33 : Nynnn
31 6066
29 .5692
27 .5321
25 .hosh
23 4590
2L 229
19 .3873
17 .3523
15 3177
13 .2839
11 .2509
9 .2189
7 .1881
5 1587
3 .1310
1 .1055
-1 .0823
-3 .0619
-5 Loll7
-7 .0306
-9 .0198
-11 .0120
TABLE III
Rarefaction wave, t = 48, f%; =1
28
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60
56
52

Ly
36

28
ob
20
16
12

-b

-8

-12
-16
-20
-2k
-28
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.8553
.8170
7758
.T322
6869
6405
.5933
.5457
4980
. 1506
.4039
.3580
<3134
L2704
.2295
.1911
.1555
1234
L0949
.0706
.0505
.0345
.0225
.0139

TABLE IV

Rarefaction wave, t = 63, At 1/2

Ax
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