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ABSTRACT

A mothod is desofibed for solution of parabolis differentiel equations
by calculating routines involving stepwise integration in both wvariadbles, The

main features of the method arise from mahipulations introduced to avoid ine

stabilities that generally appear when partial differential eqdations are oone-
verted into difference equdtions.

T

i

f

S NATL LAB. LIB!

i

W

9338 00424 8

‘\i(

1l

AA#PRCNED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

. ‘ ‘-3." WIS W RILw WAL WK
- . .

ON THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS OF PARABOLIC -TYPE

I, THE EQUATION, The equation
(1) oF o QF‘) + G,

St FP oy q oy
where t and y are independent variables, F 18 tho dependent variadble and p,q,G are
glven, smooth functions 'df t,y and ¥, is in essence the heat flow equation for a
system in which only oﬁ-a space coordinate enters (e.g. by reason of symmetry), in
which the thermal conduof;ivity and the apecific heat capacity depend on time,
position and temperaturs, and with a distributed heat production at a rate also
dependent on time, position and temperatui‘e.

If pq >0 (which will be henceforth assumed), we have the well known stability
proporty of parabolic equations, namely that & solution free of sinularitiss at ome
time t 1s free of singulerities at all later times,

This report concerns numerical methods of solving (1) by integration procedures
which are stepwise in both indepondent variables, It is clear in principle that if
F is knom at time ¢t forr 81l y in a certai‘.n domain and suitable boundary conditions
are applied at the boundaries of the domin, equation (1) then permits determination
of F at a slightly later time t ¢ At and' thet this process cen be repeated, That the
establishment of satisfactory calculating routines for doing this is not a trivial

problem will be apparent from Section II below,

IY. THE EXPLICIT DIFFERENCE SYS'fEN. Let us choose & reotangular mesh of points
(gg,t“), where j: 0,1,2,00003 n = 0,1,.2.00.0. in the y«t plane, Without loss of
generality, we may assumo that ﬁho spat;ing of the poinvs is uniform in both direoctions,
because the varlables y,t can be subjJeot to transi‘bnmtiana without departing from the
assumed form of (1), The actual distribution of mesh points, before this transformae-
tion, may have been fixed by considerations ‘of desired acouraoy, rapidity of varia-
tion of p,q and G with y and t, end perhaps other caloulating routines in an overall

physical problem of which equation (1) is only a part, The spacings will be denoted by

At andAdy. The value of any function, say F(y,t),at mesh point (a,tn) will be de-
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noted by gg for brevity. Similarly ge 2 denotes the walue of q at a point midway
betwesen (% & ) and (Q&l’t )1 equivalently, to the degree of approximation we shall

use, is the mwan of % and 32*1.

Y |
A system of difference equations approximabing %o (1) is

%.1@;,1 19) 3 'yé_@n-ﬁ-g oy

l nél 1
@Rg it T

Tne conditions for stability of {;‘nis system has been discussed by one of us(l).

Although the differontisl equation is stable in the sense that small irregularities

introduced at one %ime beocoms roduced as:pima goes on, unless new irregularlties are
introduced by the "heat production" term G, the difference equations may be unstable;
that is, under some oiroumstgnoés irregularities may be amplified and grow withou#
1imit as time goes on; a solution of (2) does not in general approach a solution of
(1) as the mesh is made finer and finer unless a coertain restrioction (equation (3)
below) is applied to the relation between Ay and At at each stage of the limiting
DIOC235 e ', T R

The argument may be summarized as follows: For a sufficliently fine moesh we may
ireat p,.q and G as constant ;ver ﬁ fogion'thét is small but nevertheless contains
many mesh points, If F at a gi&en time t is sxpanded in a Fourietr series in y,
wa may regard F(y,t) as a superposition Sr functions, each depending on y through

18y

on/g) may be cmplex(‘z). The relation between oL and lgis found by substituting

t
a fachtor e R where,é? ig real, and on t through a factor ed" , whers ol (depending

sush a funotion into (&) and canco'llinf; out common factors, It is

[N

Leotures (unpublished) delivered by J. vonNeumamn at Los Alamos in February, 1947,

(2)

It is, of ocourse, the real part of such a funotisn that is of interest. It follows
that the boundedness of the function to be expanded, over the rangs of y involved,
for given t, allows us to restriot consideration to functions with A roal (Fourier
sorles or integral in y). The real and imaginary parts of O~ yield an exponential
growth or decay in timo and a time dependence of the phase of the einussiil in y,
respectively. Nelthor of these can be sxcluded on a priori grounds, so ot will in
general be complex,
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1 ot 1, _m [y, B0y
-5-%-9 :At&'-(——-mf[e 2‘}9

Ay)

” e UNCLASSIFIED

ed-At \ 42 -a—y [oos Sﬂéy) - 1] .
(As noted above, we are treating p and q ‘as constants.)
The ocondition for stabi.liity (oondi.‘bion that all disturbzmcés got smaller as & inoreases)
is clesarly that the real pari of o shoﬁld be nogati;e for all real /é, or that the

quantity eo"At (which is seen to be real from the above equation) should lie dbebtween
-1 and +1, From the abov»s equation it is seen that ed'At cannot excead #1, and the

requirstent that it be g‘re"a.terbthan ~1 for all r‘eal,gleads to the condition

(3) 2 pgq -?Zt-—qz <1 for stability, because the squars bracket in the above equation

y)
ranges from O to -2 as ‘ﬂ is wvariad,
Inequality (3) plac;s savere rostrictions on the cholce of & mesh for numeriecal
caloulations It is linear in A+t and quadratic in Ay, Therefore, if Ay is chosen

vory small in the interest of accuracy At must be chosen wery very small in the
yory sma.: , ’ Ty very

interest of stabilitye. It omn happen that a prohibitively large nwsber of steps
At would be required to complete the calculation by equation (2) ovar the desired

domain of values of €,

111, THE IMPLICIT DIFFSRENCE SYSTEM, One of us has shmm(s) that the above diffi-

oulty disappears if in place of (2) we write

' Lopgt) L gh (R - Pl
ntl _ 1 ) "-'g,'; %&}, (Fﬁu ) x3 (%2 J—l)
‘ (Ay)2

%& (han) "9 ( Fn'F}d)
(o y)

{3)

vonlNeumann, lectures at Los Alamos, February 1947,
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This set of equations is in fact unodnditiomlly stable: that is, irregularities
always deorease with in«'reasin{; tine %, for any choioos of A% and 4y, 1In this

case substitution of ei"gy & into (4) loads to

alé\t
dat . padt ° 1
o lz2ffgR | (Bay) g B
or | ; |
At
tanh 0"6*’ 1(3 2 [0.,5 %Ay) -1] , 28 the relation bLebween O(—and/f.

.
Tha left hand member o this equation is negative real, and its inverse hyperbolic
tangent is, theroafore xxegahive real pl-ustan intc;gral ‘mulbiple of mi, so that the
real part of © is always negative. 'I.'he‘px;ice one pays for this is thot if we
regard the F"EH (£=0,1,2,+9+++) as the unknowns, system (4) is a large number of
simaltaneous aquations, whereas sach eqt}lja..tion of the system (2) pives one of the
uminowns exoliecitly., 1% may be noted in \passing thet (4) is a somewhat better

approximation to (1) than is (2), Indeeci, if wo had written p/z&l ,2:%, ,2:]!;

instead of p,? . q}} R q} B in the first term of the square bracket and had written
© 2

1
Gﬁ"a instead of G, (4) would heve been correct to second order in At. Bub if this

had been done, tho system would have been st1ll more impliocit, (and non-linear) because

o nél

& .
the unkmowns, Ffé would have ogourred in the qunntibies % ete, Our oconcern here

is with stability rather than with accuraoy.

(4) is of interest primerily when Ay is smnller than the limit set by (3) for
a given At. We therofore first consider (formal) mothods of solwing (4) in the
limit Ay —>0, That 18, we retain the differential charmoter of the original

equation (1) with respest to the va.ria.ble._y, and write

(5) = Fly, b4 At) = =g Fly, &) # g-g-— q -53- [F(y.t) + F(y.tmt)_] L a

where it is understood that the variables entering implieitly through P,Q,G are taken
to Ye y, t, F(y,t)e For a glven valus of %, (5) {s essentially an ordinary differential
equation, with F(y,t¢At) and y the dependent and independent variables, and with p,q,G

known funotions of y. We therefore ocall

~APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

A= oonstant

(6) 32—=

(7) == Fly,6) 20 & p-a-- < é%z..l) = ¢y)

T ‘ .

(8) F(y,t ¢ Ot) = £ u £y)

and write

(s) Af:p% (q%‘;-) v

IV. THE SOLUTION OF EQUATION.(9). Tho general solution has two "constants of inte-

gration” to be fixed by the“boun'dar-y cofxdition#. For many physical problems the
boundary conditions are imﬁi&séd at two dit‘t‘eront points, yy end y,, 80 fhat a
direct stepwise numerisal integre.tion t;i"‘ (é) is not possible, unless & trial-and-ervor '
procedure be adopted, But suoh a8 procedure is very difficult in the present ocase
(1.8. with pg>0 and A, 4; large) because a solution which departs only slightly

from the desired solution at ono ve.luo o!‘ y departs theref‘rom in general more and
more as the integration prooeeda. The departure from the desired solution is roughly
exponential in character as y—ioithor $ S0 and grows at a rate which is greater, the
smaller At, It is proferablé to solve (9) by means of a Greene's funotion that can
bo constructed from pal'_i:i..oulur‘ solutions of the oorrespoudiﬁg homogensous equation
(Hilbert's "parsmatrix”) and which causes the boundary oonditions to be satisfied
automatioally. - . - ‘ | )

It is convenient %o transform (9) 4o the canonioal form of the Sturm=-Liouville

theory. Introduce the new dependent and independent variables g and %, and imown

funotions ‘{%o' es follows:
g 7k
‘)lv:f /;— o‘ ) | ,O:<p>
ez £ . V= pe

Iy

APPROVED FGR PUBLI C.RELEASE
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From these definitions there follows the identity

p% G%):% (—-2-’-- )((0@) ‘

for any funotion P (y). Then (9) becomes

(10) Ag (7 -o;)g Y,

where

;{f(_,zm-o) Q:F(y;f)) fzef

ay

Vpa

in whioh F(y,%) is to be regarded as a function of X through the relation xg‘f &y .
Let the boundary oomdition be g(¥y) = gy, 8(Z;) = 250
Let g;o('[.) be a solution of the corresponding homogeneous equation, vanishinz at
L=¥ye That is, g (%) satisfies “

2 o
(11) i’;g g, = (A+0) g, 8,(K,)

Define g, (%) by

(12) goo(¥) = so(t) r“-—z
so(z

By differentiating (12) twice and usit_fg (11), we see that goo(]é) is also a solution

of the homogeneous equation, That is,

a® _a |4, rz dz _1
A E BT L

\)

- ‘128 j‘ dg
= d_p?.ox [ (z)] 2 (ALvo) & ) .-[go(z)]z ’

or

2 ' .
(13) i‘;f gz (o) e goo(iz) -0

oo’

and furthernore

APPROVED . FOR ’PjUBLI C RELEASE
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(14) e (¥)$y soo(}‘) goo('ﬂ) “ go(ﬁ

Now define g(%) by ,
]

(15) g(¥) = goo()l)[f; go(z)v’(z)ds +dJ& go(ﬂ)j: goo(z)yf(z)dz 74

1
whers oL and & ars two constants.
By differsntiating (15) twice and using (11), (13), (14) we see that
2 . .
d
~—e= (Ao -V,
ar o |
or, in other words, that (15) is the general solution of (10)., That is;

ga%z-i;#_)f <z)2/<z>dz+d v g, g, (BYE)
e

1-2
dg,(¥)
v "g?r S g, ()Y (2 )m.(a - 2,(1) g, (WY

Led) | Proo) { dg,, (V)
a? a |y dx

d

‘&

g, (8 Y ()

g;o(z)ly(z)dz &o\aJ &

po

¥a -
g, (1) ag (1)
+ di; , Boo(2) ()2 48| - —=F— &, (DY)

r4
= (L+o) goo(i)[j;l go(z)lp(z)dz +ol ]

Y,

2
+ (A o) gom[i Boo ()Y (2)az »,6’] - P(z)

by (11), (13), (14)s The stated result then follows from det‘inition (15).

go(’\L) vanishes with positive :lope at = 7‘1 and 1noreasas roughly exponentially
as Z increases to %2. Comrersely, Boo vanishes with negative slops at X= Xs
and increases roughly exponentially as ﬂdecreases to 11. (See also second paragraph
bolow.) For numerioal appliogtipn of this sol;;\tion ﬁ; is, tﬁerefore, convenient to |

deal with quantities defined as follows:

APPROVED FOR PUBLI C RELEASE
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(160,8) ko) 5 S Koo 3 - 222 _
s g, (%) iz £oo(¥)

From (11) and (13) these qpantitiea are gseen to satisfy:

(178,0) 55 X, =1 -1 (Abor), “ar koo w1k (Ao,

(18a,b) X (%) = o, '  Xoo(%2) = 06

1]

Furthermors, the two terms on the right Hand side of (15) will be denoted by A(¥)
and B(%) respectively., These quantitios are seen bo satisfy, and be fixed by the

rolations -

a . ML) | Ko@) Xy (2 .
(108) 3 A(K) 2 = = + 5D *O;oo('@ ¥ (¥,

00

LA o B, Xl KeolA
(19) o 300 = - By 4 2y P ¥ o

(20301)) A(il) = 819 sz) = 820

Thet is, ")

dA (%) _ dgoo(-t) f
d¥ = 4 ﬂl

go(2)P(2) dz 4ab| + g (1) g (DY)

A(XL W
- - chi.‘g% } 8ol &, (A ()

but k k g
QO 00 - 00 Eo =g 2 by (14)’
ico *t ¥, z dg,0 dg, oo°0
°0 3% "~ Boo Tx

and from this (19a) follows, (19b) 4is similarly oﬁtained.

The procedure for numerical caloulation consists of the following steps: integrate
(17a) from%, to Z, starting with (18a) and integrate (17b) from ¥, to % starting
with (18b); then integrate (19a) from % to Zz and (19bv) from 242 to 7!1 starting with

(20a) and (20b) respectively; then the desired funotion is given by

(21) g(¥) = A(¥X) + B(L).

'APPROVED FOR PUBLI C RELEASE
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Note that in a routine involving punch céﬁds, the integrations of {17b) and (19b)
can be combined in a single pass through the card deck after the integration of (17a)
. T . L

has beon done. . . I | I

The functicns k and k,, have several advantages over g and goo for numerical work,
If({”(¢2-11)>71 (as is ueually the cass), the sizes of g, and gy, Vary by many powers
of 10 (because of their aforementioned rogghly exponential character) whereas k, and
koo stay nlcely in range. Furthermore, g§ aﬁd Boo gomerelly change by sizable frac-
tions of themselves in a single step of the integration in X, requiring the use of
high order integration formulas, whereas k, end k, , are usually nearly constant over
many steps of the integration. lestly, ko and k,, cen be obtained by Integrating first
order differential equatiions (17 a,b)s The second of these advanteges is somewhat
00

illusory, as we will have to develop elaborate integration formulas for the k,, k

2180,

V. DIFFERENCE EQUATTONS, AGATN, If equations(17e,b) and (19a,b) are rewritten as

difference equations, wo wlll have a system essentielly equivalent to (4), although
the nature of the approximation may have changed slightly by virtue of our detour
through differential equation theéfy. The adventege gained by the operations of
Section IV is, of coursa,‘that our new set of difference equations can be solved
directly, wherees the set (4) ocammot be, as it stands, except by inverting a matrix
of order equal to the numter of mesh points with given n,

Corresponding to the fixed interval size Oy in y, there will be a variable
intervel size

AXin Z, given by

(22) ax = Ay (pq)'é
so that oondition (3) for the validity of the explicit method is
(25) (ax)? »248  or VA ox>2

The impliéit methpd, on the other hand, is valid, no matter what the relatlive
sizes of (é3792 and ZAAtfmay be. Bub when (23) holds (in fact, under all conditions
excopt (A"l')z << 2A%), ono must use care in writing difference equations to approximate

(17a,t) and (19 a,b)e To illustrate, sonsider the special case of equation (17a) in
APPROVED FOR QUBLIC REL EASE
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\i . . ’ by @
- - .. o . A_
which (A $o~) is a constant and oonsider a solution lying close to (A20~) % 8o we
o
may write ko(£) = (A+0) ¥4 5k°(7°). If we had made (17a) into a difference equae

tion by writing B
(24) x (’%gn.) »k (1’2) ¥'[1 - (A+0) Ek (7%)} ] (72;1"%5)0

then dk,, would satisfy

(25) éko(@u) s éko(&) [1 -2/Ak0r (%), ~% )]

instead of the correct relation

derivable from the dif[‘erential oquati on. Cleerly (25) agrees with (26) if
/Ao (%,21-1 'fz) <<l but not othendse. Indeed, if m_- o ( ";6/5&1 )fe) > 1,
the c‘k (%) computed frrom (25) inoreases in magnitudo exponentially as 7% increases,
instead of decreasing uxponentia.lly as it should, Thus the implicit method acquires
a sort of instability under just those oonditions where the explioit method is ateble,
We avoid the 1nstab111ty (emd elso the inaccurscy)that would result fron use of
(26) as follows:s to ohtain a formula (a}tomative to (85)) for caloculating k°(7{e ¥1)
from ko(‘fle), we solve (17a) analytiocally in each intervel (%,., ‘){g 41 undor the
asgumption thet Ad o~ ig constent in thisl intervael, The genorel solution is

YApO (=)
CT/AVS () 5 “le
oVAR O~ (L= Zy) + Ay

where Ao 13 a oonstante

We give O its velue 0:4!‘% at the midpoint of the intervals we determine A, in terms
of the known ko('&) by setting Y= 'ée 3 agd then we set L= 758&1 in (27)¢ The result

is '
) o
(28),/A% 07 ) [1 HAG L k°(¢'e)] ° '[1 ’V/\*o,éi-é k(%) ]
vt kol Zpan) = ’
[1 + A&o* (’,‘Z] [1 -/A ;cr:“;_ ko(’{g)]
_ tanhw &‘/)\{- k (‘ﬁz)
1 + (tanhw) /,\4 g ko(&)
2

|
i
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where . . . I

The formula for koo(';b) is the same except for interchanpe of 2

>0 p! 241 and Zp in (28)

(but not in (29)).

Fquation (19a) for A(x) may be similarly treated by assuming ko (#) and k(1)
constant in an interval (% gAY ). It is advantageous not to assume that 2}/(1.)
‘s constant, for reasons that will appear later. The solution which reduces to the’

correct value A y_; at Zs 751 .1 is

-(z- //‘koo kokoo -z~ 7,‘5..1 )Acoo

(30) A(%) = A,f"l m e .
)/k '
-1’/ oo
7: Ylgag
/=1
or 'ﬂz
-~ ) X -Y
(31) A/Z 2 A/g_l ) «e z,["l AOO + ;9—;9‘%—— j e(g £)AO° ly(g)dg
o' %00 | o

Zp-t

-(tﬁ-z,f-l)/k"o e(g-’%ﬁ-l)/koolp(g)dg

Calling z = _’.‘E:S. , WO heve generally

+ oo ‘ o

y e(g"‘)/"oo(p(g)dg z &y, J’ Y- knoz)dz
f {‘W*- 3y e

1;OO XOO(“) .

where prines denote differentiation with respect to Z, and

4/”(74) - 000? de

(22) 00 = P =k P b2 P = 1S P (D) b eeeneinns

APPROVED FCR PUBLI C RELEASE
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!
i

Iten, calling L

-
o0
on

we rave, in place of (31),

- 2 -
(24) Agz A, 0 wo.,»&;:?%_ Loote) = ¢~ Vool 2y )
. o .

00

The integration formula for B(x) is Quibe similar. Calling

(38) Lo = Y@ 430" (D +: 29" @ 4 x 3P 4 e,
and e : _

¢1. y -",45

+1 .
x !

(36) w, =
o

the formula is
2
- . k -l

4 - 0 .—.—-—0_.9—‘.,-—- i - e o ¢
(37) Bg =B e Tdrix,, Lotxp) Aol %ga1)

For practiocasl caleulation, expressions (32) and (35) must of course be truncated,
In order to see how to do this in a reasocnable way, we regard the entire develorment
so far as amounting to an expansion of the solution of the original equation (1) in
powers of the small quantity At; or in inverse powers of the large gquantity A .
For example, since the error in (5) as written is at most of first order in, A4t,
wo may regard (9) as being correct as written, and add O(At) to the firet member

of (7)s Therefore we may regard (10) as being correct as written, and write for 4/:

(38) 4);(-:‘_;.5 + (\-o-) Qo?(y,t> + 200 &OG) .

Tho order of magnitude, in A s of k can be found as follows: (17a) and (18a) yield
formally, for given 1
ko(x) '
Ly,
1-(A o )¥* ;
In this integral, the symbol O stands for a funotion of k and A obtained by sub-

stituting for X in the funotion ©°(%) the inverse x%(k) of the funotion k(k)e

APPROVED FOR PUBLI C RELEASE
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But wo shall assume that o (¥) is bounded in the interval ¥ X & Zp so that in any

case O‘<</\ asymptotically, or

X (%) " | -_L/xko(x) ap_
[ 11 j le A k2 -w/x g l-pz
o : o

oryA Xy~ tanh VA (i-%i) as A-»oo,

80 [

o
(39) ¥o(x) 2 O(A ®) for fixed % .

By means of (38) and (39) we now write out explicitly the expression (32) for

Zoo(®)s retaining only terns down to order A2, The result is:
(40) XOO(JL) = ApFly,t)
koo AT (PF(y,8))
+ (14 1:-03,/\) :‘%2- ((oF(y.t)) - op F(y,6)  2pC

| . !
= ¥o0 35:2'[ 2 'O')((oF(y,t)) +2pc

ax”
o)

This equation has been so written that tl';e fir;b four lines ocontain terms in
A, )\%, 1, (\'%, reospectively,
The ccrresponding eoxpression for Zo(x) is the same except for replecement of k.,
by ~koe — ;
Equations (28), (29), (34), (37), (40) are the finel forrulas, It is understood

that in (40) the derivatives are to be replaced in the usual way by difference ratios,

Oogo,

Py s =Gy B
Lyl Lyl ’22 1?1 - ?1%‘4‘ (eF(y,t))

1" Y .
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5

VI. ASYMPTOTIC EQUIVAIENCE TO THE EXPLICIT METHOD. The explioit method (see

Section IX, espeocially equations (2), '(3):)_ is stable for A >4/(AX)2, and we shall
now show that the two me‘hhoc‘hs are in approximete agreement for suffioclently large
values of A 4 The reacer mﬁy tond to regard it es self'-svident that this shc;uld
be true, becauss both methods purport to solve the original equation (1) epproxi-
mately. But bscause actual convergence pfoofs are lacking for both metheds, it is
worthwhlle to show the equiﬁlence, espéoiially since the two methods appear to do
quite different things. The explicit method deals with local conditions: it gives

E:Eu in terms of the values F:E‘»l' 1;‘;, F?-l of F at neighboring mesh points, whereas

an'

the implicit method mekes B depend on F at all the mesh points of cyole n, and also

on distant boundary conditions.
Before demonstrating the equivalence, we first ocarry the argument leeding to the

estimate (39) a 1ittle farther, We seek a solution of the equation

) _2
(41) .‘l;‘.,.;."_’ =1 - (R40) [ko(x)J

in the form |
(42) x =27 [ao ba At s A e 2 J ,

where the ooefflcients a,, a,, &,,ees are functions of X, By substitution of (42)
into (41) and equating coefficiemts of the various powers of A, we find aoml,

8y 20, a5 = -0, 8y = 3 -g-% » 6t0s We note parenthetioally that the series so
obtained fails to satisfy the boundary oondition that ko(X-l) should vanish identiocally
in A, Apparently one must add to (42) a funotion of £ and A which vanishes, as A—» S,
more rapidly than any inverse power of A.- The presence of such terms was fore=
shadowed by the appearance of exponént.fnal‘s, as for example in the hyperbolic tangent

immedietely preceding equation (39)s But in any case we can write

(43) k°(1,) = ,\"%’ - %‘(7{\'3/2 b1 % }\-2 4"0()\..5,./9)

and similerly
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= LS L dor N2 o5/
Koo®) = A 20A * Iz A + O(X >”u%£ g{“

For sufficisntly large >\ Wy u ’ée‘ #j—/ N)\Q ('%l iil ) is > ‘zlﬂﬁi

00

-é) - W)
similerly @ >>1, so wo may replace © °° and e © by zero in (34) and (37),

b

Then S .

8(&):1 lgseF(JL.t*At) ko o0 [ oo)(oo"k XJ

2 (A yon) Y [_ o &,2:,]

or - g
2
g(i)zgli- < --%),:2A(>F(y.t) + 2(1 + Q- %))f;g ((OF(y.t))

- 20pF(y,t) & 4(:(;] .

or )

B 2
(44) PF‘(y,t &At)%xl[(lp?(y.t) $2 ;-d;-é- (PF(y,b)) - 20pF(y,t) + z(oc] .

This cen bo rewritten, using the identity preceding equation (10), and the definition

/\322-5- s 88

(a5) Eliefrdt) F(}ZE) b5 @-5—- F(y.t9

which leads immediately to. the explio;.t" equation (2), as was to be shown. Equation
(45) is to be contrasted with equation (5) which was our starting point,

As a final remark, it is noted that ngar Y boundary at Y= Xy, or ¥Xm X,, wo must
olther ochoose the mesh size so”"\hlat (a )L)? 4< ZAt or inswre that the boundary is in a
place where errors do not mtter. For if /_-A‘téis of order unity or greater, it is
soan from (17 a,b) and (13 a,b) that k, orwlhc o W11l vary by a large frastion in an
interval A¥ near the bounda.ry, contrary t;o the assunption underiying the derivation

of (30) et seq.. S Tor
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