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Abstract 
Coupled blast-structural computational simulations using supercomputer 
capabilities will significantly advance the understanding of how complex structures 
respond under dynamic loads caused by explosives and earthquakes, an 
understanding with application to the surety of both federal and nonfederal 
buildings. Simulation of the effects of explosives on structures is a challenge 
because the explosive response can best be simulated using Eulerian computational 
techniques and structural behavior is best modeled using Lagrangian methods. Due 
to the different methodologies of the two computational techniques and code 
architecture requirements, they are usually implemented in different computer 
programs. Explosive and structure modeling in two different codes make it difficult 
or next to impossible to do coupled explosive/structure interaction simulations. 

Sandia National Laboratories has developed two techniques for solving this problem. 
The first is called Smoothed Particle Hydrodynamics (SPH), a relatively new gridless 
method comparable to Eulerian, that is especially suited for treating liquids and 
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gases such as those produced byan explosive. The SPH capability has been fully 
implemented into the transient dynamics finite element (Lagrangian) codes 
PRONTO-2D and -3D. A PRONTO-31YSPH simulation of the effect of a blast on a 
protective-wall barrier is presented in this paper. 

The second technique employed at Sandia National Laboratories uses a relatively 
new code called ALEGRA which is an ALE (&-bitrary ~agrangian-lJulerian) wave 
code with specific emphais on large deformation and shock propagation. ALEGRA is 
capabile of solving many shock-wave physics problems but it is especially suited for 
modeling problems involving the interaction of decoupled explosives with structures. 
In this study, ALEGRA has been employed in modeling a decoupled explosive in a 
tunnel with the explosive and surrounding air treated with Eulerian computational 
techniques and the tunnel liner and surrounding soil treated with Lagrangian com- 
putational techniques. 
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1. Introduction 

The new and emerging threats to the infrastructure faced by today’s engineering 
design and facility management community demand solutions that are innovative 
and increasingly based on engineering science and risk management approaches. 
There is a growing awareness of public vulnerability in the wake of bombings at the 
World Trade Center, the Oklahoma City Federal Building, and the Khobar Towers 
military barracks in Saudi Arabia; global civil and ethnic unrest; criminal violence 
and political terrorism; recent devastating natural disasters; and other indicators of 
a rapidly transforming social world. This awareness leads to increased expectations 
by the public and more demanding responsibilities for the professional involved in 
design, engineering, and construction of public facilities. The destruction that 
follows such natural disasters as hurricanes, tornadoes, floods, fires, and 
earthquakes underscores the need for enhanced structural safety, security, and 
reliability to protect the public from potential injuries, death, and heavy property 
losses. 

A multidisciplinary Architectural Surety Program has been developed at Sandia 
National Laboratories to address the application of safety, security, and reliability 
concepts and technology products to the many critical national issues involved in 
the area of multihazard mitigation. One of these applicable technology products is 
the modeling and simulation of building performance exposed to abnormal and 
malevolent environments. Computer simulation capabilities are the necessary and 
appropriate technologies to evaluate the response of complex structures, such as 
multistory buildings, when subjected to the variety of dynamic loads resulting from 
blast effects of explosive attacks or ground motions from earthquakes. To provide 
an adequate model simulation capability, it is necessary to modifi as required, 
verify with actual data, and finally apply available coupled hydrocodes and 
structural dynamics codes to the analysis and design of federal buildings and 
facility systems that are or will be exposed to these abnormal and malevolent 
environments. 

Through internal resources within the Laboratory Directed Research and 
Development (LDRD) Program, an Architectural Surety development effort was 
initiated and pursued to couple existing hydrocodes with existing structural 
dynamics codes. This effort was planned to evaluate the predictive capability using 
generic structures and typical explosive loads. After validating the coupled codes 
using test data, this predictive capability will assist with improved designs of new 
complex structures, give support to vulnerability assessment studies, guide the 
evaluation of alternative retrofits, and assist in the selection of the most cost- 
effective mitigation measures (such as stand-off distance, barrier walls, or other 
defensive techniques). The work to date provides positive evidence that the 
coupled codes are operational in the supercomputer at Sandia National 
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Laboratories. The next step is to perform a series of validation procedures using 
actual multistory structural test configurations and blast response data from a well- 
planned instrumentation system. 

The U.S. Department of Energy has invested significant resources in the 
development of advanced computational mechanics codes and has performed 
research to understand phenomena and interactions between the transient dynamic 
response of structures and fluid-like materials. The Accelerated Strategic 
Computing Initiative (ASCI) program, with its emphasis on teraflops computers 
and parallel implementation of computer tools, has permitted the extension of this 
technology to high-fidelity, three-dimensional structural configurations. These new 
modeling and simulation techniques can provide a significant amount of 
information to make critical decisions about the impact of different threat levels, 
the effects of a variety of natural disasters, and the required enhancements to 
structures and facilities for life-safety concerns. The goal is to evaluate complex 
explosive interactions of catastrophic dynamic loads on structures. The work 
completed has addressed a significant portion of the previously recognized 
deficiencies. Completion and validation of the coupled code will provide a valuable 
tool to be used for architectural and infrastructure surety. 

Work on two different corporate LDRDs is documented in this report. The first, 
sponsored through Division 5000 titled Computational Methods for Predicting the 
Response of Critical As-Built Infrastructure to Dynamic Loads (Architectural 
Surety), the same title as this report. This LDRD sought to demonstrate the 
computational mechanics tools currently available at Sandia National Laboratories 
that can be adapted to modeling explosive/structure interaction. The second LDRD, 
sponsored through Division 9000 is titled Development of Explosive Event Scale 
Model Testing Capability at Sandia’s Large Scale Centrifuge Facility. This LDRD 
sought to bring experimental and computational mechanics personnel together to 
address an issue that would be of national interest Ilom an Architectural Surety 
perspective. A portion of that work is presented in this report because it is 
applicable to the scope of this LDRD. The latter LDRD is documented in much 
more detail in Blanchat et al. 1998. 

2. Solid Wall Blast Simulation Using Smoothed Particle Hydrodynamics 

Figure 1 illustrates a three-dimensional finite element model of a wall that will be 
subjected to an explosive loading. The wall is 1 ft thick and 13 ft high. The base is 
unattached to the ground beneath. Elastic concrete material properties are used for 
the wall and the ground with no allowance for damage or breakage in this calcula- 
tion. Smoothed Particle Hydrodynamics (SPH) elements, represented by spheres, 
are shown in Figure 2 with the inner block modeling the explosive and the outer 
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block serving as a bufferhmnsition zone between the explosive and the air. A JWL 
(Jones, Milkins, Lee) equation-of-state is employed to model the explosive which is 
assumed to be 15352 lb of ANFO, separated from the wall by a six-i% gap. The air is 
modeled as an ideal gas. Figure 3 illustrates the SPH elements used to model the air 
between the explosive and the wall. Detonation of the explosive is modeled with a 
controlled burn based on the detonation velocity and point of initiation. Figure 4 
shows the detonation of the explosive with its resulting pressure (psi) expansion and 
impact on the wall. Contact resolution between the SPH and finite elements results 
in a calculated explosive loading of the ground and wall. This loading results in the 
pressure (psi) pulse in the ground and wall as shown in Figure 5. The pressure 
applied to the wall causes the velocity (in./s) distribution illustrated in Figure 6. The 
pressure also produces a displacement (in.) of the wall at 3 ms, as displayed in Fig- 
ure 7. The displacement of the closest corner of the wall (Figure 7) from the top to 
the bottom is given in Figure 8 for a number of different times, up to 3 ms. It is obvi- 
ous from Figures 5 through 8 that the loading on this wall is concentrated on the 
lower right corner and that this corner will break off and move at high velocity. The 
remaining portion of the wall will move with significant velocity. 
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Figure 3. Explosive, buffer zone, and air SPH particles with wall and ground 
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Figure 4. Pressure (psi) in SPH elements along with expansion 
and contact with wall. Air SPH elements withheld from display. 
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Figure 7. Wall displacement (in.) at 3.0 ms induced by pressure on wall. 
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Figure 8. Displacement perpendicular to wall from the top to the bottom of the wall along 
the closest comer shown in Fig. 7. Lines representing increasing time, from O to 3 ms, 
starting on the left. 
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3. Block Wall Blast Simulation Using Smoothed Particle Hydrodynamics 

Many structures of interest in Architectural Surety have walls constructed of 
cement-block or brick. The ability to analyze structures with these elements is of 
great interest. A calculation similar to that discussed in Section 2 has been 
performed that models a block wall rather than a solid wall, as shown in Figure 9. In 
this model each block contains a number of three-dimensional finite elements and 
thus is deformable. The exterior surface of each block is also a contact surface that 
can interact with every other block in the model to maintain geometric integrity as 
block collisions occur. The interaction of the blocks in this calculation is limited to 
friction. Modeling of mortar between blocks either as a tensile strength between 
blocks or explicitly with finite elements is a capability available in PRONTO-3D but 
is not utilized in this model. Figure 10 illustrates the explosive and explosive/air 
transition zone adjacent to the block wall. Figure 11 shows the detonation and 
expansion of the SPH particles used to model the explosive gases and the interaction 
of those gases with the block wall. The explosive dimensions, mass, equation-of- 
state, and location relative to the wall are identical to those employed in the solid 
wall model discussed earlier. Figures 12 and 13 illustrate the calculated response of 
the blocks to the explosive loading at 5.8 ms. The calculation was terminated at this 
point due to an error in the SPH particle contact algorithm. This error has since been 
corrected. 
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Figure 10. Explosive and buffer zone SPH elements with block wall and ground. 
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Figure 13. Zoom in on deformed block wall shown in Figure 12, 
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4.0 Design of Centrifuge Explosive Experiment Using Computer Simulations 

4.1 LDRD Background 

The LDRD, as originally written, proposed to perform gravity scaling of an explosive 
event in a steady-state acceleration environment available through centrifuge test- 
ing. Many different types of explosive events amenable to gravity scaling were avail- 
able, including cratering; a scale model building with explosively induced; gravity 
driven progressive collapse; and tunnels in rock or soil subjected to decoupled explo- 
sive loading. After considerable discussion it was decided to focus on a decoupled ex- 
plosion in a tunnel in an engineered soil. The engineered soil had been used in a 
previous study (Tieszen and Attaway 1996). This configuration was chosen because 
length scales directly with gravity on underground structures with regards to stress 
and deformation. 

4.2 ALEGRA 

The computer code ALEGRA was used in this study to design the size and thickness 
of the aluminum tunnel liner and the decoupled explosive charge inside the tunnel. 
ALEGRA is an arbitrary ~agrangian-~ulerian (ALE) wave code with specific empha- 
sis on large distortion and shock propagation. (Budge et al. 1997a; Budge et al. 
1997b). 

4.3 Preliminary Calculations 

Preliminary calculations were performed using a pseudo-one-dimensional ALEGRA 
model. This model treats the explosive, air, tunnel liner and soil as depicted in Figure 
14. Computational cells or elements in this model are actually two-dimensional axi- 
symmetric but the boundary conditions on the model constrain it to one-dimensional 
behavior such as that observed when a shock wave is transmitted lengthwise through 
a metal rod. A gravitational acceleration of 100 g in the negative x direction is applied 
to this model. 

A JWL equation-of-state, with a programmed burn, was employed to model the PBX- 
9407 explosive detonation (Budge et al. 1997a). Parameters necessary to characterize 
the explosive behavior during detonation are given in Table 1. 

A soil/compressible-foam constitutive model was used to model the engineered soil 
compacted around the aluminum pipe. The parameters pertinent to this material 
model are presented in Tables 2 and 3. Table 2 contains the single-value parameters 
associated with this model, and Table 3 shows the pressure versus volumetric strain 
relationship necessary for the model. 
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Table 1. JWL equation-of-state parameters for PBX-9407 

Parameter Value units 

Y’ (reference density) 1.62 g/cm3 

A 5.73187E12 dyne/cm2 

B 1.4639E1 1 dyne/cm2 

c 1.2OE1O dynelcm2 

(1) 0.32 I 

RI 4.6 

R2 1.4 

CJ pressure 2,65E11 dyne/cm2 

D (detonation velocity) 7.91E5 Cmfs 

CJ temperature 4962.0 \ 0 Kelvin 

Table 2. Soil and Crushable Foam Constitutive Model 
Parameters for Engineered Soil 

Parameter Value Units 

Y (initial density) 1.393 glcm3 

K (bulk modulus) 2.0E8 dyne/crn2 

G (shear modulus) 640.0 dyne/cm2 

AO 5.51E5 

Al I 0.95 

A2 0.0 
Fracture Pressure I -1 .0E3 dyne/cm2 
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Table3. Pressure Versus Volumetric Strain for 
Engineered Soil 

Volumetric Strain (%) Pressure (dyne/cm2) 

0.006 239240.0 

0.02 478400.0 

0.064 957600.0 

0.114 I 1909800.0 

0.2231 3495600.0 

0.24 3826500.0 

0.26 5743300.0 

0.27 7653100.0 

1.0 148580000.0 

1.73 I 289506900.0 

An elastic-perfectly-plastic constitutive model was employed to model the aluminum 
tube that served as the tunnel liner after the emplacement of the soil around the tube. 
The constitutive model parameters selected for aluminum are given in Table 4. 

Table4. Elastic-Perfectly-PlasticConstitutive 
Parameters for Aluminum Tube 

Parameter Value Units 

E (Youngs Modulus) 6.89E11 dyne/cm2 

p (Poisson’s ratio) 0.334 

Yield stress 2.76E9 dyne/cm2 

Hardening modulus 1. O2E1O dynelcm2 

Beta I 1.0 I 
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The final material behavior model necessary for this simulation is for the air that de- 
couples the explosive from the tunnel liner. This was treated as an ideal gas with pa- 
rameters given in Table 5. 

Table 5: Ideal Gas Parameters for Air 

Parameter I Value I Units 

pO (Reference density) I 0.001225 I g/cm3 

r 1.4 

TO (Reference temperature) 288.2 0 Kelvin 

c, ] 0.7178E4 I 

Variables that could be adjusted in this model included explosive radius, tunnel radi- 
us, and tunnel liner thickness. A tunnel diameter of 1.5 in. was chosen based on the 
general physical dimensions of the existing centrifuge swing-arm that constrained 
the size of the container holding the tunnel experiment. The container was sized to be 
a cube 2 ft on each side. The 2 f% depth with the tunnel in the center dictated one foot 
of soil above and below the tunnel. Experience indicated that the tunnel diameter 
should be approximately one-tenth the length of the soil surrounding it to control the 
influence of the upper (free) surface and lower (freed) surface. The tunnel diameter 
was thus set at 1.5 in. The experimental configuration chosen is depicted in Figure 15 
which shows the explosive, tunnel liner, and soil as designed. 

A steady-state acceleration environment of 100 g on the centrifuge produces the same 
stresses and deformations in the soil and tunnel as would be observed in a model with 
all lengths multiplied by 100. This model thus simulates a 150 in. (12.5 ft., 3.81 m) 
diameter tunnel buried 100 ft. (30.48 m) deep. 

With tunnel diameter and depth-of-burial already determined, the two variables that 
could be adjusted in the experiment were explosive diameter and tunnel liner thick- 
ness. Experience indicated that the diameter of the explosive would be the most im- 
portant explosive parameter influencing its’ effect on the tunnel liner. This was 
proven later by both the two-dimensional calculations and the experiment itself. 

It was decided that the criteria for controlling the combination of explosive diameter 
and tunnel liner thickness should be measurable plastic deformation of the tunnel lin- 
er resulting from explosive detonation inside the tunnel. The tunnel liner thickness 
and explosive diameter were both constrained by the commercially available sizes. A 
number of simulations were performed with several combinations of explosive diam- 
eter and tunnel thickness using ALEGRA and the pseudo one-dimensional model. 
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The best combination arrived at was a tunnel liner thickness of 0.083 in. (0.2108 cm) 
and an explosive diameter of 0.1875 in. of PBX-9407. The length of the explosive was 
set at 3.75 in. (9.525 cm), which resulted in a total explosive weight of 2.75 g. 

4.4 Detailed Two-Dimensional Simulations 

All design parameters discussed above were employed in a more detailed two-dimen- 
sional axisymmetric model of the tunnel experiment on the centrifuge. A close-up of 
the two-dimensional axisymmetric ALE model is shown in Figure 16. In this model 
the explosive, aluminum and soil are located just as in the one-dimensional model of 
Figure 14. The material models for the explosive, air, aluminum, and soil used in the 
two-dimensional model are exactly the same as those given above for the pseudo- one- 
dimensional model. Detonation of the explosive is designated to occur along the line 
on the bottom of the explosive. This model also has a gravitational acceleration of 100 
gin the negative x direction. 

Pressure caused by the detonation of the explosive and the deformation of the alumi- 
num liner fi-om times 0.0 to 245 ws is shown in Figures 17 through 19. In Figures 17 
and 18 the pressure corresponding to black has been set at 1.0E9 dynes/cm2. Pres- 
sures greater than this value are also plotted as black. A number of very interesting 
phenomena can be observed in this series of figures. In Figure 17 at 5 p,s the air is 
being pushed ahead of the explosive gas because of the large density difference be- 
tween the two. By 8 vs the air has been compressed by the explosive gas against the 
aluminum liner and begins to rebound as illustrated at 12 and 14 ps. At 19 ~s the 
air is reconverging in the center of the tube where the explosive was before detona- 
tion. Thus, the shock wave marking the separation between the air and explosive gas 
reverberates a number of times in the tube. The majority of the energy imparted to 
the tube resulting in plastic deformation is expended during the initial impact of the 
explosively induced shock wave on the aluminum tube. Plastic deformation of the 
tube can be seen starting as early as 8 vs. Transmission of the explosively induced 
shock wave through the tunnel liner and into the soil is observed in Figure 19 where 
the plotting pressure range has been significantly reduced to highlight lower pres- 
sures. The final predicted deformed shape of the tube is shown in Figure 20. The tube 
flare is the same length as the explosive and the outward displacement is constant 
indicating that the pseudo one-dimensional ALEGRA model used for the design of 
this experiment is an acceptable approach. The final outward displacement predicted 
by the one-dimensional model was 0.24 cm compared with 0.14 cm calculated from the 
two-dimensional model. A preliminary experiment was done wherein the explosive 
charge was detonated inside a bare tube wrapped with rubber. The outward displace- 
ment of the tube in this experiment was 0.15 cm. More details concerning this centri- 
fuge experiment and the numerical analyses can be found in Blanchat et al (1998). 
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5.0 Conclusions 

This work has demonstrated that a significant capability exists at Sandia National 
Laboratories for performing coupled explosive/structure interaction calculations. 
Smoothed Particle Hydrodynamics (SPH) coupled with three-dimensional finite 
elements provides one capability that was demonstrated by calculating the explosive 
loading on both a solid and a block explosive barrier wall. 

The ALE code ALEGRA has been demonstrated by simulating a decoupled explosive 
in a tunnel. This code was used to design a scaled centrifuge experiment and a 
detailed two-dimensional ALEGRA analysis was used to better understand the 
experiment and to validate numerical methods. 
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