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Mixing and
Chaotic Microstructure 

Mixing is a process in which
distinct fluids intermingle
in a complex way.  Chaotic

microstructure refers, more broadly,
to all small-scale stochastic or
chaotic behavior that affects dynam-
ics at large length scales.  Problems
that involve mixing and chaotic mi-
crostructure are of fundamental im-
portance in both basic science and
engineering:  They are the central
issue in turbulence, pipeline flow,
and the dynamics of supernovae.
The microstructure of porous rocks,
which is stochastic on all length
scales, is a dominant aspect of the
geology of aquifers and oil reser-
voirs.  Chaotic microstructure also
plays a key role in determining the
properties of common materials such
as metals and plastics.  Mixing is a
dominant phenomenon limiting the

performance of pellets in laser-fu-
sion experiments.

Without doubt the problem of
chaotic microstructure, in its many
ramifications, is the most fundamen-
tal in classical continuum physics.
Why is this?  First, because the
problem is pervasive, and second
because the only systematic solution
occurs at the engineering level
through the method of conservative
overdesign, or experimental trial and
error.  The classical methods of sci-
ence—theory, computation, and ex-
periment—have so far delivered
much less than is needed either for
engineering purposes or for scientif-
ic understanding.

These problems are difficult for
three reasons.  They possess an ex-
ceedingly large number of active
degrees of freedom, they are usually

nonlinear, and they typically do not
admit a small parameter for useful
expansions.  Together these features
lead to an extremely complex phe-
nomenology.

We propose here a systematic
program for addressing this class of
problems.  This program follows a
line of development that will be fa-
miliar to many-body theorists.  The
first step is the identification and
analysis of elementary modes, or co-
herent structures.  For example, in
turbulence the elementary modes are
vortices; in phase transitions, den-
drites; in Hele-Shaw cells, viscous
fingers; in solid materials, lattice
dislocations.  The second step is to
understand the pairwise interaction
of elementary modes.  This step is
followed, not by an analysis of
multi-mode interactions, but by the
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statistical analysis of an ensemble of
modes governed by pairwise interac-
tions.  From this analysis we want to
derive continuum-level constitutive
laws (such as equations of state),
which are then used (fifth step) in
macroscopically averaged flow
equations such as the Navier-Stokes
equation.  Thus we have a five-step
procedure relating microscopic dy-
namics to macroscopic observables.
Although each of the steps may
seem rather obvious, their integra-
tion is less commonly discussed.  A
large fraction of work in classical
physics is related to this program in
that it addresses one or another of
its steps.

In this paper we will illustrate this
program by discussing its implemen-
tation in examples drawn from our
work and that of our collaborators.
This work as well as collateral work
of others can be traced from the fur-
ther reading given at the end of the
article.

 

Rayleigh-Taylor Instability

Our first example concerns
Rayleigh-Taylor instability.  The oc-
currence of this instability can be
understood in the following simple
way.  Imagine the ceiling of a room
plastered uniformly with water to a
depth of 1 meter (Figure 1).  The
layer of water will fall.  However, it
is not through lack of support from
the air that the water falls.  The
pressure of the atmosphere is equiv-
alent to that of a layer of water 10
meters thick, quite sufficient to hold
the water against the ceiling.  But in
one respect the atmosphere fails as a
supporting medium.  It fails to con-
strain the air-water interface to flat-
ness.  No matter how carefully the
water layer was prepared, small ir-

regularities are inevitably present at
the interface.  Those portions of the
fluid at the interface that lie higher
than the average experience more
pressure than is necessary for their
support.  They begin to rise, pushing
aside water as they do so.  Neigh-
boring portions of the fluid, where
the surface hangs a little lower than
average, require more than average
pressure for their support.  They
begin to fall.  The air cannot supply
the specific variations in pressure
from place to place necessary to pre-
vent the interface irregularities from
growing.  The initial irregularities
therefore increase in magnitude, ex-
ponentially in time at the beginning.
The water falls to the floor.

The same layer of water lying on
the floor would have been perfectly
stable.  Irregularities die out.  Thus
we can infer a simple criterion for
the onset of Rayleigh-Taylor insta-
bility at the interface between two
fluids of different densities: If the
heavy fluid pushes the light fluid,
the interface is stable.  If the light
fluid pushes the heavy fluid, the in-
terface is unstable.

Rayleigh-Taylor instability occurs
in diverse situations.  Let us take a
quick look at one example from re-
search into inertial-confinement fu-
sion.  Figure 2 shows a highly
schematic picture of the implosion
of a deuterium-tritium (DT) pellet.
A spherical glass or metal tamper is
filled with DT gas.  The tamper is
irradiated with intense laser light,
which causes it to accelerate inward,
compressing the DT gas inside the
cavity in order to bring about nu-
clear fusion.  During irradiation the
outer surface of the tamper is the in-
terface between a heavy fluid (glass
or metal) and a light fluid (vapor-
ized glass or metal) and is unstable
during the initial phase of the implo-

sion, when the light fluid pushes the
heavy fluid.  As the pellet is com-
pressed to perhaps 1000 times its
normal density, the pressure in the
cavity increases until it is sufficient
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Figure 1.  An Example of Rayleigh-
Taylor Instability
(a)  The pressure of the air is quite suffi-
cient to support a perfectly uniform layer
of water 1 meter thick against the ceiling.
(b) But the air pressure cannot constrain
the air-water interface to flatness.  Rip-
ples or irregularites will inevitably be pre-
sent at the interface.  (c) The irregulari-
ties grow, forming “bubbles” and “spikes.”
The water falls to the floor.



to slow the inward motion of the
tamper.  This phase of the implosion
is also Rayleigh-Taylor unstable;
here the high-pressure light gas in
the cavity is pushing the tamper.
Although this picture of the implo-
sion of a DT pellet is oversimplified
in a number of ways, it nevertheless
suggests quite clearly that Rayleigh-
Taylor instability can have an im-
portant effect on the compression of
the pellet.

A closer look at the time evolu-
tion of a Rayleigh-Taylor unstable
interface reveals a complex phenom-
enology.  As the instabilities devel-
op, bubbles of light fluid and spikes
of heavy fluid form, each penetrat-
ing into the other phase.  Complex

interactions among bubbles and
spikes lead to the formation of a
chaotic mixing layer at the interface.
Understanding the growth rate and
structure of this mixing layer is the
central problem in the study of
Rayleigh-Taylor instability.

This question has been investigat-
ed experimentally by Read and
Youngs.  Their  important findings
bring the questions to be understood
into sharp focus and can be summa-
rized as follows.  The mixing layer
has three principal regions: the edge
where bubbles of light fluid are pen-
etrating into the heavy fluid (bubble
regime), the edge where spikes of
heavy fluid are penetrating into the
light fluid (spike regime), and the

connecting interior region (mixing
layer).  The bubble regime has been
the most carefully studied and has
the simplest properties.  It is found
in the Read and Youngs experi-
ments, as well as in numerical simu-
lations (Figure 3), that the edge of
the mixing layer in the bubble
regime is dominated by a collection
of bubbles.

The average height of the bubbles
relative to the mean position of the
interface, h(t), grows with time ac-
cording to the scaling law

h(t) = ÆAgt2,

where A, the Atwood number, is a
modification due to buoyancy of the
acceleration force (gravity) g and is
defined as A = ( Ω2 ° Ω1)/( Ω2 +
Ω1), in which Ω i represents the den-
sity of fluid i.  It is a remarkable ex-
perimental finding of Read and
Youngs that for incompressible flu-
ids the acceleration constant Æ in
this equation is an approximately
universal constant, in that it is near-
ly independent of initial conditions
and of fluid properties such as den-
sity, viscosity, and surface tension.
Finally, it is observed that the aver-
age number of bubbles at the inter-
face decreases with time, and that
their average radius increases.

The main objective of our work
has been to understand the physical
properties of the Rayleigh-Taylor
mixing layer.  The fluid in the mixing
layer is in a chaotic state, and it is
necessary to have a strategy to guide
one through the complexities of this
problem.  The fundamental challenge
in modeling fluid chaos is to provide
a simple macroscopic description of
a chaotic fluid state that expresses a
statistical average of information de-
scribing its chaotic microstructure.
For the case of chaotic microstruc-
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Figure 2.  Rayleigh-Taylor Instabilities in Laser Fusion
On the left appears an extremely simplified view of a laser-fusion pellet at an early
stage of a fusion experiment.  Laser irradiation of the solid tamper vaporizes the outer
layer of the tamper and pushes the tamper inward.  Because the light vapor is push-
ing the heavier solid, this stage of the process is Rayleigh-Taylor unstable.  On the
right is sketched the same experiment at a later stage.  Here the DT gas, now at high
pressure (P1), slows the inward motion of the tamper.  Since the DT gas is less dense
than the tamper, this stage of the process is also Rayleigh-Taylor unstable.



ture at the molecular level, the solu-
tion to this problem is highly devel-
oped and has given rise to the sub-
jects of thermodynamics and statisti-
cal physics to describe the macro-
and microphysics respectively.

Adapting the statistical-physics
viewpoint to the analysis of fluid
chaos,we proceed to study the one-
and two-body problems and follow
this with an analysis of a statistical
ensemble.  A renormalization-group
fixed point emerges as a simple de-
scription of this ensemble.

In molecular physics the elemen-
tary modes, or units of analysis, are
atoms or molecules.  We identify
bubbles as the fundamental modes
governing the microphysics at one
edge of the Rayleigh-Taylor mixing
zone.  The one-body problem con-
cerns the dynamics of a single bub-
ble.  A relatively complete theory of
the motion of a single bubble has
been developed, which is valid for
both compressible and incompress-
ible fluids and includes a formula
for the bubble velocity as a function
of mode amplitude.  This formula
contains a small number of parame-
ters, which have been fixed on the
basis of analytic formulae, numeri-
cal computations, and experiments
on periodic arrays of bubbles.

When more than one bubble is
present, the bubbles interact.  The
interactions have a pronounced ef-
fect on the behavior of bubbles.  The
first effect, observed in both experi-
ments and simulations, is that the
velocity of a single bubble in a
chaotic array of bubbles is typically
a factor of 2 greater than that pre-
dicted by the single-bubble theory.
This is a rather surprising result,
which can be understood as follows.
In a chaotic array of bubbles, a
given bubble has left and right
neighbors which generally differ in

height and radius.  We draw an en-
velope through the tips of adjacent
bubbles.  The envelope defines a
long-wavelength collective excita-
tion of the fluid and has the appear-
ance of a set of broader bubbles and
spikes.  These broader bubbles can
be viewed as additional elementary
modes, which themselves obey the
single-bubble theory.  Both experi-
ment and simulation led us to the as-
sumption that, although each funda-
mental bubble is in a deeply nonlin-
ear regime, the interaction of such a
bubble with the collective mode is
linear, so that the net velocity of a
bubble in a chaotic array is given by
a simple superposition:

v = vb + ve,

where vb is the velocity of a bubble
of the same amplitude as given by

the single-bubble theory, and ve is
the velocity of a bubble in the enve-
lope.  The resulting formula agrees
very well with experiment; note that
it contains no free parameters.

The superposition hypothesis cap-
tures only one aspect of bubble in-
teractions.  The other is bubble
merger.  Merger refers to the behav-
ior of a pair of neighboring bubbles:
a larger, advanced, faster-moving
bubble and a smaller, less advanced,
slower-moving bubble.  (Since larg-
er bubbles move faster, eventually
they are always more advanced than
smaller bubbles.)  It is observed that
the smaller bubble is rapidly washed
downstream, while the larger bubble
increases in size to occupy the por-
tion of the interface vacated by the
smaller bubble.  Thus, the dynamics
of the fundamental modes comprises
the dynamics of a single nonlinear
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Figure 3.  A Simulation of Rayleigh-Taylor Mixing
The figure shows the late-time behavior of Rayleigh-Taylor instability.  The dimension-
less compressibility M2 = 0.5.  The simulation was performed on a 32-node parallel
iPSC/860 computer.



mode (single bubble) plus an ap-
proximately linear mode-mode ve-
locity coupling plus a highly nonlin-
ear mode-merger process.

We next consider a statistical en-
semble of interacting modes (bub-
bles).  We suppose there is a proba-
bility distribution for an infinite col-
lection of bubbles, which defines the
single-particle distribution (the
probability of picking a bubble of
height h from the ensemble), the
pair correlations, and so forth.  The
bubble dynamics outlined above de-
fines an evolution in this statistical
ensemble of modes.  Although the
full statistical model could be solved
numerically, we instead introduce
simplifying assumptions to arrive at
a more tractable form of the model.
As when the Boltzmann equation is
derived in statistical mechanics, we
neglect pair correlations; then the
probability measure defining the sta-
tistical ensemble is determined by
the single-particle distributions.
Those distributions in turn are ap-
proximated in terms of just three
time-dependent parameters: the av-
erage height of the bubbles, h(t), the
variance in bubble height, æ (t), and
the bubble radius, r(t).  The bubble
dynamics leads to a set of ordinary
differential equations for these
quantities.

The bubble dynamics can be un-
derstood from the perspective of the
renomalization-group method.  This
method has two key steps: “coarse-
graining” and “rescaling.”  The bub-
ble-merger process accomplishes a
dynamical coarse-graining of the dy-
namics, because sets of smaller bub-
bles are replaced by larger bubbles,
without changing the physics.  The
differential equations for the bubble
dynamics thus reflect the coarse-
graining of the merger process, as
well as a dynamic increase in the

length scale of the instability.  The
next step is to introduce rescaled
variables, which subtract out these
changing length scales.  Once this is
done, the result is a renormalization-
group equation.

Analysis of this equation revealed
the existence of a non-trivial renor-
malization-group fixed point.  This
means that the equations have the
property that, no matter what the
initial values of the variables are,
they approach the same asymptotic
values, or fixed point.  At this fixed
point, the width of the mixing layer
grows at a constant acceleration, Æ.
The theory provides a zero-parame-
ter determination of Æ, which turns
out to be in remarkable agreement
with experiment.  Since Æ is deter-
mined by a fixed point, its insensi-
tivity to initial conditions is also ex-
plained.  Thus our analysis has
shown that the main properties of
the bubble-dominated part of the
chaotic mixing layer are direct con-
sequences of scaling and the exis-
tence of a renormalization-group
fixed point.

We emphasize that our program
has depended in an absolutely essen-
tial way on numerical simulation of
the solutions of the full two-dimen-
sional, two-fluid Euler equations.
These calculations were used in a
variety of ways.  Calculations of the
evolution of Rayleigh-Taylor insta-
bility at a random interface were
used as a model-independent way to
calculate the magnitude of Æ, as
well as to establish the insensitivity
of Æ to a wider range of initial con-
ditions than were explored experi-
mentally and in a way that was not
tied to possible idiosyncrasies of the
experimental apparatus.  Numerical
simulations were used to define pa-
rameters in our single-bubble model.
They were also used to establish the

approximate validity of the model-
ing assumptions employed to under-
stand bubble interactions and to
identify conditions where those as-
sumptions were not valid.

Our numerical simulations of
Rayleigh-Taylor mixing employed a
front-tracking method.  Front-track-
ing works by “hard-wiring” into the
code maximal information about the
analytically known behavior of the
solution near a discontinuity or front
(such as the jump in density at the
heavy/light interface in the
Rayleigh-Taylor problem or at a
shock front in gas-dynamics prob-
lems).  This approach leads to two
benefits as well as a cost.  The first
benefit is the scientific understand-
ing about the behavior of the solu-
tion near a discontinuity, generated
in the course of implementing the
method.  The second benefit is that
highly accurate solutions can be
achieved without recourse to very
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Figure 4.  Dependence of the
Mixing-Layer Growth Rate on
Compressibility
Plot of the growth rate Æ versus the
compressibility, M2.  The vertical bars in-
dicate the variance associated with the
choice of random-number seed.



fine computational grids.  In fact,
the front-tracking method typically
allows an increase in computational
resolution by a factor of about 3.5 in
each spatial dimension and in time,
that is, by a factor of about 40 in a
two-dimensional, time-dependent
problem and 150 in a three-dimen-
sional, time-dependent problem.
This dramatic increase in efficiency
allowed a corresponding increase in
the detail and scope of the computa-
tions attempted and was instrumen-
tal to the success of the program.
The cost is that code development
for front-tracking is more demand-
ing because more complex algo-
rithms are required to express the in-
formation about solution discontinu-
ities.  This is basically a
software-complexity issue, which
has been dealt with by the construc-
tion of highly modular code, the use
of more powerful programming lan-
guages, and other modern code-
development methods.

The Read-Youngs experiments
were carried out with nearly incom-
pressible fluids.  Both our simula-
tion methods and our model apply
also to more compressible fluids.  It
is thus possible to explore, and in-
deed for the first time to predict, the
properties of a chaotic mixing layer
in a parameter regime outside the
range of existing experiments.  Our
analysis shows that the mixing-layer
growth rate in a compressible fluid
can be a factor of 2 larger than in in-
compressible fluids (see Figure 4),
and that Æ develops a dependence
on initial conditions.  The impor-
tance of these results in various ap-
plications seems clear.

The final step in our program for
the study of high-dimensional chaos
is to study continuum-level constitu-
tive laws and equations.  Here the
flow is regarded as stochastic and

flow variables Ω = hΩi + ± Ω, v =
hvi + ±v, etc., are expressed as sums
of mean quantities hΩi , hvi , etc.,
and fluctuating quantities ± Ω, ±v,
etc.  An effort to write governing
equations directly for mean quanti-
ties such as hΩi fails due to the
nonlinearity of the governing equa-
tions and the fact that the average of
a product is not equal to the product
of the averages.  For this reason, the
averaged conservation laws contain
new quantities, such as the Reynolds

stress:
The continuum equations, even

after quantities such as Rij are intro-
duced as new unknowns with their
own dynamical equations, require
the introduction of further new
quantities (do not close).  This
means that further modeling as-
sumptions must be made in order to
arrive at a complete system of equa-
tions.  We view these modeling rela-
tions as an extension of thermody-
namics.  Our work in progress in the
area is to evaluate the correctness of
different modeling approaches.  One
step in this program is to understand
the structure of the fluctuating flow
moments, such as Rij, in a Rayleigh-
Taylor unstable flow.

Flow in Porous Media

In the example of Rayleigh-Taylor
instability discussed above, multiple-
length-scale chaos arises sponta-
neously in a nonlinear dynamical
problem.  We now turn to an exam-
ple in which chaos is forced, through
the influence of multiple-length-
scale data in the definition of the
problem.  This example concerns the
transport and dispersion of pollutants

(solutes) in groundwater.  There is a
nontrivial linear version of this prob-
lem, and in this sense it is simpler
than the Rayleigh-Taylor problem.
The fundamental methodology again
consists of the integration of field
observations, theory, and computa-
tion, but the linearity permits the
specialization of the full arsenal of
techniques described above and a
more complete analysis of the prob-
lem.  In particular, since the modes
in a linear problem do not interact
with each other, the study of mode-
mode interactions is unnecessary.

As Einstein recognized, the phe-
nomenon of dispersion (the spread
of one medium through another) is
the macroscopic consequence of ran-
dom microscopic events.  The clas-
sical theory of dispersion, based on
the assumption that the random
events occur on a much shorter scale
than the macroscopic observations,
leads to the familiar relation

l(t) = O(t1/2),

where l is the position of the disper-
sion front and t is time.  Field data
for transport of fluids through
porous media do not satisfy this sim-
ple relationship.  Porous media of
practical interest are heterogeneous
on all length scales owing to random
variations in the geology.  Thus the
scale on which the randomness oper-
ates is not small relative to the ob-
servations, and the assumptions un-
derlying the classical theory of dis-
persion are not valid.  This creates a
serious problem for practical engi-
neering in hydrology and in environ-
mental studies of contaminants dis-
persing in groundwater, for example.
In fact there is no known body of
knowledge to connect laboratory and
field-scale values of dispersivity.
Therefore in practice, dispersivity
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must be estimated conservatively
from carefully instrumented field
studies conducted at some other site
but at comparable length scales.

Flow through porous media is
controlled by unknown (and, at nec-
essary fine scales of detail, unknow-
able) features of the geological
medium such as its porosity.  In our
studies, we treat those features as
random fields, that is, random vari-
ables defined at every point of the
media.  The transmissibility ∏ is the
most important variable relating the
geology to flow properties.  In anal-

ogy to electrical conductivity, it is
an inverse resistivity for the flow in
the sense that the flow rate equals ∏
times the negative pressure gradient.
We make the common assumption
that ∏ = exp ª , where ª is a normal-
ly distributed, random field that de-
pends on the position x in space and
represents the random variations in
the structure of the porous medium.

Assuming stationary statistics for
simplicity and denoting the ensem-
ble average with angle brackets, we
note that hª (x)i is independent of x
and can be normalized to be zero, so

that the entire statistical variation of
the flow is determined by the two-
point correlation function
hª (x)ª (y)i , which is then a function
of the difference variable x°y; that
is, hª (x)ª (y)i = f(x°y).  Any choice
of f defines a model of the stochastic
structure of the rock.   A common
choice, f = b exp(° |x°y|/l), has a sin-
gle correlation length scale, l, and
thus does not represent variability
on all length scales.  The simplest
form of f that does allow variability
on all length scales is the scale-in-
variant function 

f = b|x°y|°Ø

with Ø >0.  Such a scale-invariant,
or self-similar, function is known as
a fractal.  Somewhat greater gener-
ality is obtained by allowing Ø to be
a slowly varying function of |x°y|.

Randomly varying porous struc-
ture (that is, the specification of a ª
field) introduces a statistical aspect
to the flow.  In Figure 5 we plot suc-
cessive positions of a tracer front
(an interface between one part of the
fluid, which has been marked with a
dye or in some other way, and the
rest of the fluid) in four simulations.
The simulations used the same ini-
tial configuration of the tracer front
but different realizations of the ª
field, each drawn from the same sta-
tistical ensemble of geologies.  The
statistical variation between the sim-
ulations arises, not from a lack of
determinism of the flow, but from
unpredictability of the flow due to
unknown details of the geology.  To
illustrate this idea, we consider the
simplest flow problem: transport of
a passive concentration sample of an
impurity by a background flow
through porous rock.  The flow un-
certainty would be observable partly
as an uncertainty of arrival times of
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Figure 5.  Simulation of Flow through a Porous Medium
Depicted are positions of a tracer front in a fluid flowing through a porous medium.
The front is shown at five times (t = 0, 2, 4, 6, 8) for each of four independent simula-
tions.  Each simulation uses a different realization of the ª field drawn from a statisti-
cal ensemble of geologies.



a concentration sample and partly in
the spreading of the concentration
gradient due to differing arrival
times of the individual particles that
compose it.  Apart from the rather
small effect of molecular mixing on
length scales typically of interest,
these two aspects of flow uncertain-
ty are identical because the structure
of the rock is heterogeneous on all
length scales and consequently af-
fects the flow on all scales.  The dis-
tinction between the two types of
uncertainty lies in the resolving
ability of the measuring instrument,
the size or volume of the initial con-
centration profile, its initial concen-
tration gradient, and the distance of
travel before measurement occurs.

We use dispersion to represent
both aspects of uncertainty de-
scribed above.  We can study this
dispersion mathematically in terms
of the expected values hc(x,t)i of a
concentration c.   The fluctuations,
±c = c°h ci , and higher moments
such as the covariance, h±c±ci , are
of interest as well.  Similarly, the
flow velocity v can be expressed as
the sum of its mean and its fluctuat-
ing parts: v = hvi + ±v.  At this
point, the flow problem is similar to
the transport of a concentration by a
turbulent velocity field, such as a
pollutant in the atmosphere.

The following methods are avail-
able for this class of problems: nu-
merical simulation of the transport
process, followed by an ensemble
average, to determine hci directly;
perturbative solutions of the trans-
port equations in powers of ±v, in-
cluding resummation methods such
as renormalized perturbation theory;
analysis of field data; and exact so-
lution of simplified model problems.
These methods lead to consistent re-
sults and show anomalous (that is,
nonclassical) dispersion.  This

means that the mixing length l(t)
associated with the concentration
profile hc(x,t)i grows in time more
rapidly than t1/2.  When the geology
is fractal, l(t) has a fractal behavior
as well in the limit of long time,
namely,

l(t) ª O(t∞ ),

and ∞ can be related to the fractal

exponent Ø of the geology:
for Ø >0.  However, l(t) at short and
intermediate times deviates from
this law and in fact at short times is
fractal with a different exponent.

In contrast to many problems of
turbulent mixing, the different meth-
ods give consistent results.  As Fig-
ure 6 shows, perturbative and nu-
merical solutions agree quantitative-
ly, simple soluble models agree
asymptotically at long times, and
each is consistent with geological
field data.  However, each of these
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Figure 6. Three Calculations of the Mixing Length in a Porous Medium
The figure is a log-log plot of mixing length, l, as a function of travel distance in a
medium having Ø = 0.5, where Ø is the fractal exponent characterizing the stochastic
structure of the rock.  Each triple of curves shows a comparison between pure fractal
theory, second-order transport perturbation theory including transients, and a numeri-
cal simulation.  Each triple of curves corresponds to a different value of the permeabil-
ity field coefficient variation, as labeled.
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methods is at variance with the re-
sults of classical diffusion theory,
with a fixed diffusion constant. 

Our conclusion is that for geology
with unknown fine-scale heterogene-
ity, dispersion of contaminants in
groundwater should depend on time
or travel distance, with transient cor-
rections to fractal asymptotics.  The
understanding of dispersivity and its
relation to multiscale geological het-
erogeneities is important because dis-
persivity is an essential input into
large-scale computational modeling
of groundwater-remediation projects.

Further Reading

Y. Chen, Y., Deng, J. Glimm, G. Li, D. H. Sharp,
and Q. Zhang.  A renormalization group scaling
analysis for compressible two-phase flow.  Uni-
versity at Stony Brook Preprint SUNYSB-AMS-
92-02.  Submitted to Physics of Fluids A

F. Furtado, J. Glimm, W. B. Lindquist, F. Pereira,
and Q. Zhang.  1992.  Time dependent anomalous
diffusion for flow in multi-fractal porous media.
In Proceedings of the Workshop on Numverical
Methods for the Simulation of Multiphase and
Complex Flow, edited by T. M. M. Verheggan.
New York: Springer Verlag.

J. Glimm, Q. Zhang, and D. H. Sharp.  1991.
The renormalization group dynamics of chaotic
mixing of unstable interfaces.  Physics of Fluids
A 3: 1333–1335.

Yuefan Deng (right) was admitted to Columbia
University after passing a China-U.S. joint exam-
ination and received a Ph. D. in theoretical
physics in 1989.  He is now an assistant professor
in the Department of Applied Mathematics and
Statistics at the University at Stony Brook.  His
main interests include parallel processing and its
application to large-scale scientific and engineer-
ing problems such as the modeling of multiphase
flows, electromagnetic scattering, lattice QCD,
and protein folding.  His “extra-curricular” activ-
ities include writing in Chinese and fixing broken
electronic devices.

James Glimm (center) is Chair of the Depart-
ment of Applied Mathematics and Statistics and
Director of the Center for Advanced Manufactur-
ing, both of the University at Stony Brook.  He
previously held faculty positions at New York
University, Rockefeller University, and the Mass-
achusetts Institute of Technology.  He is a mem-
ber of the National Academy of Sciences and re-
cently received the Steele prize of the American
Mathematical Society.  He has long been interest-
ed in DOE problems and visits the Laboratory pe-
riodically.  His research interests include compu-
tation and modeling for turbulent flows, the
mathematical theory of conservation laws, and
stochastic methods.  He enjoys listening to operas
and hiking in the mountains.

David H. Sharp (left) received an A.B. from
Princeton University in 1960 and a Ph.D. in theo-
retical physics from the California Institute of
Technology.  He joined Los Alamos National
Laboratory in 1974 and currently holds the posi-
tion of Laboratory Fellow.  Sharp’s current re-
search interests include the modeling of complex
fluid flows and the formulation and analysis of
models of gene regulation.  He is a Fellow of the
American Association for the Advancement of
Science and the American Physical Society. 

132 Los Alamos Science Number 21  1993

Mixing and Chaotic Microstructure


	Rayleigh-Taylor Instability
	Flow in Porous Media
	Further Reading

