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Crystals and Ultrasound
old-fashioned materials science

Albert Migliori and Zachary Fisk

Stone Age, Bronze Age, Iron Age,
the age of exploration and the
search for gold, the industrial rev-

olution and the steel that made it possi-
ble, and, of course, the present age of
electronics—totally dependent on tiny
chunks of ultrapure, single-crystal sili-
con—it seems that entire chapters in
human history are strongly connected
to certain special materials that enabled
massive bursts of what has come to be
called progress.

But the pursuit of human progress is
not the driving force behind physicists
studying new materials today.  We have
much simpler motivations, more akin to
the curiosity of the scientist who four
thousand years ago first noticed the
brilliant luster revealed by scratching
the surface of the glob of bronze pulled
from a state-of-the-art, charcoal-driven,
high-temperature, controlled-atmos-
phere furnace.  That scientist had, by
serendipity, produced some sort of very
imperfect alloy.  The appearance and
the properties of even that poor excuse

for bronze were so remarkable that
many, many others spent lifetimes ad-
vancing available technology to im-
prove that material to the point where
the fully developed and vastly im-
proved copper alloys were to the first
bronze nugget as that nugget was to the
stone it replaced.

Just as important as the production
of high-performance bronzes were the
parallel developments necessary to un-
derstand completely the properties of
such alloys.  And so goes the story for
many other materials.  The entire busi-
ness of materials science, from the first
discovery of a new substance to the full
development of its properties, is a
tremendously attractive intellectual
puzzle of sufficient complexity to inter-
est almost anyone.  Moreover, the in-
credible importance of new materials,
the qualitative changes in human life
that they produce, their intrinsic physi-
cal attractiveness, their appeal to the in-
tellect, and our total inability to foresee
how important their impact will be

make the study of new materials excit-
ing, risky, difficult, and what seems
best described as fun.

Essential to the richness of the field
is an understanding of the laws of
physics and chemistry that enable de-
tection and realization of new proper-
ties of matter.  But despite having its
roots in basic science, condensed-mat-
ter physics is viewed as a kind of ap-
plied science:  After all, we know all of
the fundamental physical laws that de-
scribe the individual atoms in solids.
The interesting fact, however, is that
the collective properties of many atoms
assembled together are too complex to
be predicted from first principles.  For
example, the sharp transition from non-
magnetic to magnetic behavior in iron
at 1043 kelvins cannot be predicted
from a calculation of the properties of
an assemblage of a few or even a few
hundred iron atoms.  Such calculations
indicate no abrupt transition to ferro-
magnetism but only a gradual change
from weakly magnetic to more strongly



magnetic.  Nobel laureate P. W. Ander-
son has most clearly laid out this idea in
his article “More is Different”:  He
makes the point that phenomena arising
as more and more particles interact are
not simple extrapolations of the behav-
ior of a few particles.  Further, we can-
not, nor do we want to, solve the most
basic equations for the many-atom sys-
tem because those equations are too
complex and provide too much informa-
tion.  No one cares where a particular
atom is at a particular time in the mag-
netic powder of a cassette tape.  What is
important is the overall magnetization
of millions of atoms.  Thus most of the
useful theoretical descriptions of solids
rely on statistical averages to predict
measurable quantities.  There is, then, a
theoretical gap between our knowledge
of the basic laws for each atom and our
ability to predict what large numbers of
interacting atoms do.

In the last few years some attempts
have been made to control macroscopic
material properties by constructing arti-
ficial materials through the deposition
of sequential layers of carefully con-
trolled composition and thickness.  At-
tempts are being made also to produce
nanostructures, materials assembled
atom by atom through such processes
as molecular-beam epitaxy and chemi-
cal or vapor deposition.  Both ap-
proaches produce very small, but not
quite microscopic, building blocks, or
repeated units.  Such designed materi-
als are applicable to the production of
practical devices as well as the study of
quantum physics, and they have proper-
ties that are roughly predictable from
theory.  Still, the theoretical tools need-
ed to predict their material properties
necessarily include statistics and
macroscopic approximations.

Recent work on “materials by de-
sign” contrasts strongly with the work
of what one could call “old-fashioned”
materials scientists, who work semi-

empirically and produce structures that
are largely only what nature allows;
that is, the materials are microscopical-
ly homogeneous and theoretically in-
tractable.  The payoff from this old-
fashioned work is the discovery of
completely new phenomena, which
often arise when the number of atoms
is large (on the order of 1018).

A particular innovation that arose
from the “large-number effect” coupled
with “old-fashioned” intuition was the
inadvertent discovery by K. Mueller in
1987 that certain cuprates (namely,
those copper-oxide compounds that are
doped with transition-metal and other
impurities) are high-temperature super-
conductors, that is, they become super-
conducting at temperatures well above
absolute zero (above 30 kelvins).
Mueller knew that those cuprates are
quite unusual solids.  He also knew that
in many materials, if a smaller atom is
deliberately substituted for a larger
atom at the center of each unit cell in
the crystal lattice, then when the solid
cools the smaller atom and its cloud of
electrons would not have a stable rest-
ing spot in the center of its symmetric
cage.  As a result it must move to some
other position in the unit cell and spon-
taneously break the crystal symmetry.
The effect (called a Jahn-Teller insta-
bility) is driven by large symmetric ar-
rays of atoms and is only poorly under-
stood in detail (“large numbers” + “in-
tuition” = “mysterious phenomena”).
Mueller’s brilliant conjecture was that,
in electrical conductors, the distortion
of the crystal lattice resulting from the
Jahn-Teller instability would produce
new material properties provided the
energy associated with the lattice dis-
tortion is comparable to one of the en-
ergy scales of the conduction electrons.
As it turned out, the marvelous super-
conducting properties of the cuprates
were not attributable to Mueller’s con-
jecture, but nevertheless his very cre-

ative idea led to their discovery.
The unpredictable effects found

when large numbers of various atoms
are assembled thus provide both moti-
vation and justification for the empiri-
cally based search for new physics and
chemistry through the study of new ma-
terials.  Fortunately, the production of
any single new material is often accom-
plished by a very few scientists work-
ing with a small budget and a limited
collection of inexpensive equipment.
The demonstration of superconductivi-
ty in heavy-fermion compounds by F.
Steglich at Universität zu Köln, and the
discovery of the high-temperature su-
perconductors by K. Müeller at IBM
Zurich are typical examples of small,
successful efforts.  However, underly-
ing all of the apparently small efforts is
a powerful information and technology
base easily accessible to those working
within the umbrella of a large research
laboratory or university.  That access is
crucial; without it small groups of sci-
entists, driven by whatever odd notions
motivate them, could not succeed.

 

The Remarkable Effects
of Impurities

Also important to success is a clear
focus on some particular set of material
properties.  Many groups today are fo-
cused on modifying the electronic and
magnetic properties of solids by doping
them with impurities and studying the ef-
fects of those impurities as the solids are
cooled to low temperatures.  Often the
presence of impurities causes the solids
to undergo a drastic change in some
physical property as they cool, from con-
ducting to superconducting, from non-
magnetic to magnetic, from paraelectric
to ferroelectric, and so on.  These drastic
changes are called phase transitions.

It is a curious finding that some
seemingly intrinsic properties of solids
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owe their existence to
small amounts of im-
purities.  For example,
off-the-shelf tungsten
metal is typically hard
and brittle.  When
pains are taken to re-
move the various trace
impurities dissolved in
nominally pure tung-
sten, it becomes quite
soft.  The change in
hardness is so pro-
nounced that the purity
of a tungsten sample
can be reliably esti-
mated with an ordinary
Dremel grinding tool.
The very pure metal is
softer than annealed
copper, and its x-ray
pattern becomes
blurred, no doubt be-
cause of the large de-
formations that easily
occur in its soft condi-
tion.  Perhaps a more
surprising case is that
of salt (NaCl).  Usual
NaCl contains a small
amount of hydroxl,
OH

 

−.  When great care
is taken to prepare
OH−-free NaCl, the re-
sulting solid can be spread like butter
on bread.

The most important example ever in
which the effects of impurities were un-
derstood and then exploited was in the
development of transistors.  In the early
decades of this century, work by
Thompson, Drude, Pauli, Fermi, Dirac,
and Sommerfeld led from the discovery
of the electron to an understanding of
the special quantum physics governing
conduction processes in pure and im-
pure (doped) semiconductors.

This revolution in understanding the
electronic properties of solids had, by

the late 1930s and early 1940s, germi-
nated into an idea in the minds of John
Bardeen, William Shockley, and Walter
Brattain at AT&T Bell Laboratories.
They realized that the intrinsic proper-
ties of very pure (but still doped) semi-
conductors would allow the electrical
conductivities of these materials to be
controlled and varied by externally ap-
plied voltage, just as the flow of elec-
trons is in a vacuum tube.  Therefore
such materials might serve as replace-
ments for the reed relays in telephone
switchboards.  In order to obtain this
effect, they knew they needed to pro-

duce single crystals
of germanium and
silicon with the im-
purity content kept
to the unprecedented
low level of 1 part
per million—and
they used every
piece of technology
available to reach
their goal.

Along the way,
when state-of-the-art
was inadequate,
their team developed
new methods of
growing and charac-
terizing crystals,
such as zone-refine-
ment, a simple
method for remov-
ing impurities while
a crystal is growing.
In the end they were
able to make the
first transistors.  In
the process of suc-
ceeding, they signif-
icantly advanced the
theory and methods
of solid-state
physics.  Not only
did they predict the
need for purity so

high as to seem unnecessary, unachiev-
able, and up until then unmeasurable,
they also developed methods to pro-
duce crystals of the desired purity, de-
veloped characterization schemes,
grew the crystals, and then produced
practical devices whose function was
totally reliant on the remaining and
carefully controlled impurities.  Their
odyssey from the purest of basic re-
search to the stupendous discovery of
one of the most important practical de-
vices ever was one of the greatest
achievements of twentieth century
physics.
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Figure 1.  Materials Science at Work
The production of new materials with exotic properties leads to the devel-
opment of new tools to study them, the use of those tools to advance the
understanding of the new materials and the application of the new materi-
als, the new tools, and the new science in the commercial sector.  Here we
elaborate on this paradigm with examples from our own work.
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Second-Order Phase Transitions
and the Measurement of

Elastic Properties

We have been interested in produc-
ing and understanding materials that
undergo second-order phase transitions.
In some metals the transition from the
normal conducting phase to the super-
conducting phase is second order, as
are many other structural, magnetic,
and electric phase transitions.  In this
type of phase transition, the symmetry
and material properties of the solid
change gradually rather than abruptly
(as in first-order phase transitions), but
the changes nevertheless begin at a
very distinct temperature called the
critical temperature, Tc.  The solid is in
a more symmetric phase above Tc than
below.

In a crudely parallel way the intro-
duction of various amounts of impuri-
ties can also break the symmetry of a
solid, at least locally.  The combination
of changes in temperature and control
of impurity levels can thus be used to
tune, in more or less continuous ways,
important physical properties in
metastable materials.  Therefore, the
study of such systems is widespread in
materials science.  It involves many
tools, requires science, intuition, and
luck, and it produces returns in both
fundamental physics and very practical
applications.

The tale we are about to tell con-
cerns the development of a very old
technique into a powerful and essential-
ly new one for determining the changes
in the elastic stiffness of crystals, par-
ticularly as they undergo second-order
phase transitions.  This now mature
technique, called resonant ultrasound
spectroscopy, has led to a simple proce-
dure for making what once was a very
difficult measurement.  Our work illus-
trates the synergism among the produc-
tion of new materials, the invention of

new tools to study them, the subsequent
use of those tools to advance the
physics of other materials, and the ap-
plication of the tools, the science, and
the materials to industrial applications.
In other words, our story illustrates a

paradigm of how materials science ac-
tually works (Figure 1).

Measuring the elastic stiffness, or
elasticity, of a solid as a function of
temperature has been a traditional and
very important technique for studying
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Discontinuities at Second-Order Phase Transitions

Three thermodynamic quantities, the specific heat CP , the thermal-expansion
coefficient fi, and the elastic-stiffness tensor cij, can be discontinuous at the
critical temperature Tc of a second-order phase transition. Each is proportional
to a second derivative of ¢ G , the change in the Gibbs free energy per unit
mass across the boundary separating two phases. Although ¢ G is always zero
in any phase transition, in a second-order phase transition the first derivatives
of ¢ G are always continuous and the first sign of any discontinuities occurs in
the second derivative of ¢ G .

The relationships between ¢ G and CP , fi, and cij are particularly simple
to write down for a liquid because the elastic-stiffness tensor has only one
component, namely, the bulk modulus, B .

In terms of temperature T , pressure P , and volume V , the thermodynamic
relations are

@2¢ G

@P 2
=

@¢ V

@P
= ¡

1

B
; B = bulk modulus

@2¢ G

@T2
= ¡

@¢ S

@T
= ¡

CP

T
; CP = specific heat

@2¢ G

@P @T
=

@¢ V

@T
= fi: fi = thermal-expansion

coefficient

¢ V is the change in volume per unit mass across the phase boundary and ¢ S
is the change in entropy per unit mass across the phase boundary. Although
¢ G , ¢ V , and ¢ S are zero and the phase transition is continuous, B , CP , and
fi can exhibit discontinuities at the critical temperature Tc.

The relationships for a solid are more complicated and are usually written in
terms of the stress tensor ij and the strain tensor †kl instead of P and V .
Further, the bulk modulus B becomes the elastic-stiffness tensor cijkl, which
relates the stress to the strain in terms of the fundamental relation

ij=
X

kl

cijkl†kl:



second-order phase transitions in mate-
rials doped with impurities.  Nature
helps us with the measurement because
the elasticity of a solid is discontinuous
at Tc; that is, it jumps to a different
value when that solid begins to undergo
a second-order phase transition.  The
jump is perhaps surprising because, as
we mentioned above, the solid exhibits
no obvious microscopic changes at the
critical temperature.  The atoms do not
suddenly change position, magnetism
and ferroelectricity do not suddenly ap-
pear, and a conductor is not suddenly
able to carry super-large currents.
However, three thermodynamic quanti-
ties—the elastic stiffness, the specific
heat, and the thermal-expansion coeffi-
cient—do exhibit discontinuities at Tc
and those abrupt changes can be mea-
sured.  The accompanying box defines
these three quantities in terms of varia-
tions with respect to temperature and
pressure of the change in the Gibbs free
energy per unit mass across the bound-
ary between the two phases.

Discontinuities are a boon to the ex-
perimentalist because they are often the
most unambiguous of measured quanti-
ties.  Of the three discontinuous quanti-
ties mentioned,  elastic stiffness is par-
ticularly informative because in a solid
this quantity is a fourth-rank tensor,
cijkl, with 81 components.  The elastic-
stiffness tensor relates the stresses
(forces) to the strains (displacements)
in the solid through the fundamental re-
lation

where σij is the stress tensor and εkl is
the strain tensor.  This relation between
stress and strain is simply the general-
ization of Hooke’s law, F = -kx, where
F is the force developed in a spring if it
is stretched a distance x.  Thus the elas-
tic-stiffness tensor cijkl, in analogy with
the spring constant k, describes the

stiffness of the bonds holding the solid
together.  Although cijkl has 81 compo-
nents (or moduli), in crystalline struc-
tures that do not produce external mag-
netic fields, the tensor has at most 21
independent components.  Consequent-
ly the elastic stiffness tensor is com-
monly written as cij, where i and j run
from 1 to 6, for pragmatic rather than
mathematical reasons.

It is also important to realize that the
stiffness of a metallic solid comes not
only from the chemical bonds that hold
the ions together but also from the de-
generacy pressure of the Fermi sea of
electrons. Thus a great deal of informa-
tion about the crystal is contained in a
complete description of its elasticity.
Because of this wealth of information,
if one knows the crystal structure and
can measure the changes in the elastic-
stiffness tensor as a function of temper-
ature through a phase transition, then it
is possible to infer the detailed changes
in the crystal lattice or in the electronic
structures that are driving the phase
transition.  Few other measurements
can reveal as much of the physics of
phase transitions.  Consequently we
would like to be able to make this mea-
surement in high-Tc superconductors,
heavy-fermion superconductors, and
other exotic materials exhibiting sec-
ond-order phase transitions.

The Need for a New
Measurement Technique

Unfortunately, nature, while permit-
ting us to produce single crystals of
high-temperature superconductors,
heavy-fermion superconductors, and
other materials in variously doped ver-
sions, has often restricted the dimen-
sions of the crystals that can be easily
grown to the millimeter range.  That
size is entirely adequate for many mea-
surements.  But for the crucial determi-

nation of elastic stiffness, a thermody-
namic measurement that provided the
first verification of the BCS theory of
ordinary low-temperature superconduc-
tivity, millimeter-sized crystals are a
disaster.

What we describe below is a solu-
tion to this measurement problem.  It
involves measuring the resonances (or
natural frequencies of vibration) of a
crystal and often makes measurement
of the elastic-stiffness tensor more triv-
ial than measurement of the resistivity
tensor.

Prior to development of this the new
resonance approach, elastic moduli
were determined mostly from measure-
ments of the speeds of longitudinal and
shear sound waves along different di-
rections in a sample.  Figures 2 shows
the simple relationships among these
sound speeds and the elastic moduli for
a cubic crystal.  For a large chunk of
isotropic material such as ordinary
glass, there are only two independent
sound speeds, one for longitudinal
waves in which the atoms vibrate along
the direction of the sound wave (these
are the waves we hear), and shear
waves, in which the atoms vibrate in a
direction perpendicular to the direction
of the sound waves.  A simple measure-
ment of the pulse-echo time of each
type of sound is easy to do and yields
sound speeds for glass accurately and
completely.  As shown in Figure 2, the
pulse-echo time is the time for a short
sound pulse to travel the distance from
one face of the sample to the opposite
face and back again.

In applying the pulse-echo technique
to single crystals of more exotic materi-
als, the first catch is that the speed of
sound in nearly every solid that inter-
ests us is a blazing 5 millimeters per
microsecond or so (Mach 15 in jet
fighter units).  The second catch is that
we need to use very-high-frequency ul-
trasound (several hundred megahertz or
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higher) to measure the sound speed in
samples whose largest dimension is
about a millimeter.  But often ultrason-
ic attenuation increases to prohibitive
levels at such frequencies.

Let’s say that we want to measure
the speed of sound in a 1-centimeter
cube (big!) of La2CuO4.  Above 530
kelvins this cuprate has a tetragonal

structure (all three crystal axes of the
unit cell are at right angles, two axes
are equal in length, and one is longer or
shorter).  La2CuO4 is an interesting
material because when doped with
strontium it becomes a high-tempera-
ture superconductor and its doped ver-
sions undergo a structural phase transi-
tion as they cool, from a tetragonal to

an orthorhombic structure (see Figure
3).  Therefore, we’re interested in the
variation in sound speed (or equivalent-
ly, elastic-stiffness tensor) as a function
of temperature through the structural
phase transition.  In our 1-centimeter
sample, a single cycle (wavelength) of
50-megahertz sound is 0.1 millimeter
long.  To obtain a good signal-to-noise
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(a)  Longitudinal and Shear Sound Waves

In longitudinal sound waves atoms vibrate 
along the direction of wave propagation.  In 
shear sound waves atoms vibrate perpen-
dicularly to the direction of wave propagation.

(b)  Sound Speeds and Elastic Moduli

The elastic-stiffness tensor of a cubic crystal 
has three indepedent elastic moduli (c11, c12, 
and c44) and therefore there are three sound 
speeds in a cubic crystal.  The elastic 
modulus c11 is determined from the speed vl 
of the longitudinal sound wave shown at 
right.  The two shear moduli c12 and c44 are 
determined from two speeds vs1 and vs2 of 
the two shear waves shown at right.

(c)  Pulse-Echo Measurements of Sound Speed

Conventional measurements of the elastic stiffness tensor cij are made by 
measuring the sound speeds of longitudinal and shear sound waves along 
various directions in a large crystal.  In the example shown here a short 
pulse of longitudinal sound is generated by a transducer on one crystal 
face;  the sound pulse travels as a narrow beam through the crystal and 
bounces back from the opposite face to produce an echo that is picked up 
by the transducer.  The measured time between the inititation of the pulse 
and the echo (called the pulse-echo time, τecho) is equal to 2L/vl, where L 
is the distance between the two crystal faces and vl is the longitudinal 
sound speed.  Thus the sound speed can be calculated directly from 
τecho.  Further, if the density of the crystal, ρ, is known, the measurement 
also provids a direct determination of c11, one component of the elastic-
stiffness tensor.  By placing the transducer at various locations on the 
cyrstal and using both longitudinal and shear sound waves, all the 
components of the elastic-stiffness tensor can be determined.
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Figure 2.  Sound Speeds, Elastic Moduli, and Pulse-Echo Measurements
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(a)  Tetragonal Structure of La2CuO4 above Tc

The unit cell of La2CuO4 above the critical 
temperature, Tc = 525 kelvins, is tetragonal; 
that is, the axes are at right angles, the x and y 
axes are of equal length, and the z axis is 
longer.  Note that the oxygen atoms form an 
octahedron.  Each oxygen atom at the apex of 
the octahedron sits in a double-well potential, 
V (shown here in red).  Thermal motions of the 
apical oxygen atoms are sufficiently large that 
the equilibrium position of each is at the center 
of its potential well.

(b)  Orthorhombic Structure of La2CuO4 below Tc

At temperatures below the critical temperature, 
each apical oxygen atom falls into one or the 
other minima of its double-well potential so 
that the octahedron of oxygen atoms in each 
unit cell has a static tilt.  Since octahedra in 
adjacent cells tilt in opposite directions, two of 
the old unit cells form the unit cell of the new 
structure.  Thus the crystal now has an 
orthorhombic structure (all three axes of the 
unit cell are unequal in length).

(c)  Top View of Phase Transition from
Tetragonal to Orthorhombic Structures of
La2CuO4 
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As the temperature decreases below 
Tc and oxygen octahedra develop 
permanent tilts, shear forces develop 
and change the square array of copper 
atoms to a rhombus.  Here the 
distortion is exaggerated for the 
purposes of illustration.  Theory 
predicts that the shear modulus c66, 
which characterizes shear forces in the 
x-y plane, will shift abruptly during the 
phase transition whereas the shear 
modulus c44, which characterizes 
shear forces in the z-y and z-x planes, 
will remain unaffected by the phase 
transition.

Figure 3.  Structural Phase Transition of La2CuO4
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ratio, we send in a pulse consisting of
many cycles of sound and bounce the
pulse from the inside walls of the crys-
tal.  Such a pulse might last, then, 0.2
microseconds and be 1 millimeter long,
10 percent of the width of the sample.

To determine the relative change in
sound speed to 1 part per million, a not
unreasonable goal, we would need to
time the pulse echo to an accuracy of 2
picoseconds, corresponding to about
1/1000 of a wavelength of sound.  All
of this is not wildly difficult to do for
the frequencies appropriate to big sam-
ples.  But for a 1-millimeter crystal we
must increase the frequency, and there-
fore the timing accuracy, by a factor of
10.  At 500 megahertz and 0.2-picosec-
ond timing accuracy, things get tough.
Even worse, the orthorhombic phase of
La2CuO4, whether pure or doped, has
nine independent elastic moduli and
therefore nine different sound speeds,
each requiring a separate measurement.
And each measurement requires that a
small transducer be glued to the sample
and that it not fall off as we cool the
sample from room temperature down to
a temperature well below the critical
temperature.  The pulse echo is an in-
termittent signal, and the signal can
easily become so greatly attenuated that
barely one echo can be detected.

The Development of Resonant
Ultrasound Spectroscopy

Direct measurement of the pulse-
echo time (or sound speed) to deter-
mine elastic stiffness would seem to be
nearly hopeless for small crystals.  But
usually, when nature makes the mea-
surement of time tough, the measure-
ment of frequency is much easier.  In
fact, if we apply continuous sound to a
solid sample, the solid will resonate, or
ring just like a bell, provided the ap-
plied sound frequency is one of the

solid’s natural vibrational frequencies.
(Application of this technique to long,
thin rods is perhaps hundreds of years
old!)  Because the resonant frequencies
are related to the pulse-echo times, we
can measure resonant frequencies in-
stead of pulse-echo times to determine
elastic-stiffness tensors.

We measure the frequency of a reso-
nance by driving the sample continu-
ously with ultrasound and slowly
changing the frequency of the sound
until the sample suddenly starts to res-
onate (1-millimeter samples resonate at

1 megahertz or so, a wonderfully low
frequency).  The resonating sample acts
like a natural amplifier, greatly increas-
ing the amplitude of the vibrations (a
factor of 10,000 is not uncommon).  We
now need only measure frequency.  We
can take as long as we like to do it, and
the naturally amplified signal is present
during the entire time we are doing the
measurement.  Therefore, a resonance
measurement can easily have a signal-
to-noise ratio that is a million times
higher than a measurement of the echo
time of short pulses of sound.
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Figure 4.  Distortions of a Cube-Shaped Sample on Resonance
Each figure above is an example of the distortions that a cubical object undergoes
when it is driven at a natural (resonant) vibrational frequency.  At each resonant fre-
quency the vibrational motion is dependent on complicated linear combinations of all
the elastic moduli as well as the exact shape of the object.  Because of this complexi-
ty, Rayleigh, Love, and others were unable to compute the resonances of such short,
fat objects from their elastic moduli.  With the advent of big computers and some
clever algorithms, such computations are now easily done.



You might, at this point, wonder
why anyone would have used echo-
times rather than resonant frequencies
to determine the components of the
elastic-stiffness tensor.  The catch is
that the resonant frequencies are hard
to interpret because they have a  some-
what complicated relationship to the
elastic moduli.

Over a hundred years ago John
William Strutt, Baron Rayleigh, at-
tempted to calculate the resonant fre-
quencies of cubes, short cylinders, and
other short fat objects from known
elastic moduli.  Unlike the correspond-
ing calculation for thin rods and plates,
this wonderfully tantalizing and seem-
ingly simple problem stymied the bril-
liant Rayleigh, who finally concluded
that “the problem . . . has for the most
part, resisted attack”.  Figure 4 illus-
trates the origin of the complexity:
When a cube resonates, it exhibits sig-
nificant distortion typically involving
all the elastic moduli in complicated
linear combinations.  A. E. H. Love,
Willis Lamb, and others were also
stymied by this problem.  But in the
1960s Orson Anderson of Columbia
University and his postdoc, Harold De-
marest, hit on a fast, accurate numerical
algorithm for obtaining the solution.
The algorithm requires computations
only at the surface of the object and
achieves an accuracy much greater than
the relatively crude “finite-element”
techniques, which compute throughout
the volume of a sample and are the only
alternate method.  With this fast, accu-
rate algorithm Anderson and his
coworkers were able to make the first
fully interpreted resonant ultrasound
measurements on large, high quality
mineral crystals.  That is, they were
able to match measured resonance fre-
quencies to predicted ones, but they
had big crystals, big signals, and almost
perfectly known answers for the elastic
moduli before they started.  In contrast,

our small and completely uncharacter-
ized samples could not be so easily at-
tacked, so we had to develop new hard-
ware and refined analysis procedures.

To measure the resonant frequencies
of a 1-millimeter object, we had better
(1) not disturb the sample’s resonances
with the measuring device and (2) not
generate resonances in the measuring
system that might confuse the issue.
To not change what we wish to measure
in the process of measuring it requires
that our transducers make extremely
weak contact with the sample.  So if
our sample is approximately cubical,
we lightly contact its corners with
transducers, using no glue or any other
coupling medium, and apply just a
gram or so of force (pardon the unit).

With that light contact we lose a fac-
tor of 1000 in our signal-to-noise ratio.
We must also drive the sample lightly
so as not to destroy it.  Fortunately, the
natural amplification at resonance re-
covers most of what is lost with a gen-
tle drive.  The resonances generated in
the measurement apparatus are another
matter.  We are not ourselves small
enough to make transducers much
smaller than 1 millimeter or so; there-
fore, most transducers would ring in
just the same frequency range as the
sample and spoil the signal.  The way
around this problem is to make the
transducers of a composite structure
consisting mostly of single-crystal dia-
mond.  Diamond, with a sound velocity
of 17 millimeters per microsecond
(Mach 50!) has such a high sound
speed that its resonance frequencies are
much higher than those of the crystals
of comparable size that we wish to
measure.

When we hooked all the pieces to-
gether and connected them to electron-
ics specially designed (with the help of
Thomas Bell) to maximize the signal-
to-noise ratio, John Sarrad, a student
working with us on his thesis research,

was able to measure all of the lower
fifty or so resonant frequencies of a
crystal with a largest dimension of 1
millimeter or so.  The entire experiment
fits on the top of a desk and costs less
than a car.  Figure 5 shows the mea-
surement apparatus and a typical reso-
nance spectrum.

Analysis of Resonant
Ultrasound Data

To our surprise, the algorithm to
compute resonant frequencies from elas-
tic moduli and our simple technique to
measure accurately the resonances of a
useful sample were not quite enough to
produce a robust technique for determin-
ing elastic moduli from measured reso-
nances.  (Note that this is the inverse of
the problem solved by Orson Anderson.)
In real life the measured resonant fre-
quencies have some errors relative to the
resonant frequencies of a perfect sam-
ple.  The errors arise from many sources
including anomalies in the geometry of
the sample (such as chips and rounded
edges) and transducer loading effects.
Typically, the resonances of the mathe-
matical model of the solid and those
measured for the real object differ in fre-
quency by 0.1 percent, more or less.
Further, one or two resonances out of
the thirty or forty that exist in a given
frequency range may be missing from
our data because some resonances, by
accident, may have no component of vi-
brational motion along the driving direc-
tion of the transducer.  The experimental
data are fed into a computer program
that tries to find a set of elastic moduli
consistent with the measured reso-
nances, the sample dimensions, and the
symmetry of the sample’s crystal lattice.
If one or two resonances are missing
from the measured resonance spectrum,
the computer will invent an answer that
is “not even wrong.”
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We have not yet developed a com-
puter program for guessing at the ab-
sence of a resonance; however, those
guesses can be made by looking at the
data and relying on the intuition that
comes from experience.  After several
iterations and applications of William
M. Visscher’s pioneering computer al-
gorithms, we usually do guess which
resonance is missing, and then the com-
puter instantly determines the elastic
moduli of the sample to an accuracy of
0.05 percent or better.  The algorithms
also determine the true dimensions of
the sample to an accuracy as high as
0.01 micron.  The results are the most
accurate and complete measurements to
date of the elastic-stiffness tensor, and
the many elastic moduli are obtained
simultaneously from a single measure-
ment of the resonance spectrum.

Our  ability to infer the existence of
missing resonances in our data was crit-
ically dependent on our being able to
produce some samples that were perfect
small single crystals and then using
their known perfection to refine our ex-
periment for less perfect crystals.  This
McLuhanesque bootstrapping of the de-
velopment of a measurement technique
by using known properties of near-per-
fect materials is not uncommon and is
often the only safe route.  Without the
collaboration among crystal growers,
instrument developers, and theorists, the
resonant ultrasound spectrometer could
not have been developed to its full po-
tential.  Without the instrument our per-
fect small single crystals would have re-
mained strangers to the ultrasound and
their elastic properties would still be a
mystery.  Although the project has in-
volved many types of expertise, the size
of the overall effort has remained small.
The required components of the effort,
however, were not predictable when we
began developing the instrument.  Thus
the work really needed to be done at a
national laboratory, which could serve

as a technology supermarket with a
large and available stock from which to
select just the right things.

Applications of the Resonant
Ultrasound Spectrometer

With our resonant ultrasound spec-
trometer and a wonderful collection of

crystals doped with various impurities,
we, our postdoc, and our students have
been able to make steady progress in
expanding our knowledge of second-
order phase transitions.  Our resonant
ultrasound measurements on pure and
doped La2CuO4 single crystals near
their structural phase transition from
tetragonal to orthorhombic are particu-
larly interesting.
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(b)  Resonance Spectum of La1.86Sr0.14CuO4 at T = 297.2 kelvins

(a)  Measurement Technique

The photograph shows a sample of 
La1.86Sr0.14CuO4 held between two trans-
ducers, one of which drives the sample 
over a continuous range of frequencies in 
the megahertz range.  The apparatus is 
placed in a cryostat, which can cool the 
sample to the desired temperatures.  
While the temperature is held fixed, the 
frequency of the driver is gradually and 
automatically changed by an electronic 
signal generator until the sample 
resonates and thereby amplifies the 
applied signal.  The amplified signal is 
picked up by the second transducer and 
recorded automatically by a specially 
designed electronic detector.  The 
frequency of the driver then continues to 
change again until another resonant 
frequency is reached.  All the resonant 
frequencies of the sample are thus 
recorded during a single experimental 
run.  The entire resonance spectrum is 
measured in several seconds.  To study a 
second-order phase transition in the 
sample, the experiment is repeated at 
various temperatures between room 
temperature and the critical temperature 
of the phase transition.

Figure 5.  Ultrasound Measurements of La1.86Sr0.14CuO4



When we started the measurement,
the structural phase transition was
thought to be well understood.  As
shown in Figure 3a, at high tempera-
tures each apical oxygen atom in the
unit cell sits in the center of a double-
well potential (a potential with two
minima).  More precisely, fast thermal
motions cause each oxygen atom to vi-
brate so that it appears to fill the avail-
able space symmetrically.  Near the
critical temperature of the structural
phase transition, the energy of thermal
vibrations is just about equal to the
height of the bump (local maximum) in
the center of the potential well.  Thus
the thermal motion is now too weak to
keep the atom buzzing in the center

(the atom can no longer make it over
the bump of the potential well).  As the
solid cools further, the atom gradually
drops into one of the two small wells at
the bottom of the potential.  Thus the
arrangement of atoms is altered; that is,
the solid experiences a structural phase
transition.

Figure 3b shows the rearrangement.
Each oxygen atom in the unit cell un-
dergoes a displacement such that the
octahedron formed by the oxygen
atoms develops a permanent tilt.  Be-
cause the octahedra in neighboring unit
cells develop tilts in alternate direc-
tions, the two neighboring unit cells are
no longer identical.  In fact, the unit
cell of the new structure is now com-

posed of two of the old unit cells and
has orthorhombic symmetry.

In Figure 3c, a projection of the
crystal lattice onto the x-y plane shows
that as the oxygen octahedra develop
alternating tilts during the phase transi-
tion, they pull apart the corners of the
unit cells and shear the square array of
atoms into a rhombus (or diamond
shape).  Thus, according to theory, the
shear modulus c66 should drop abruptly
as the temperature drops below the crit-
ical temperature, whereas the shear
modulus c44 should remain unaffected.
In fact, very general symmetry argu-
ments can be used to predict exactly
how each of the six independent elastic
moduli of the tetragonal structure
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Figure 6.  Surprising Results from Resonant Ultrasound Measurements
To study the transition of the superconducting cuprate La1.86Sr0.14CuO4 from a tetragonal structure to an orthorhombic structure,
we measured the elastic moduli of an approximately cubical, strontium-doped sample as a function of temperature using the reso-
nant ultrasound technique.  Resonance spectra were taken at various temperatures from room temperature down to the critical
temperature of the sample, 223 kelvins.  The values of the elastic moduli at the various temperatures were determined from the
resonance spectra by using a computer program discussed in the main text.  As explained in Figure 4 and the main text, theory
predicts that the shear modulus c44 should remain constant through the transition, whereas the shear modulus c66 should remain
constant but then undergo an abrupt change at (or slightly above) Tc.  Above are shown the results from the resonant ultrasound
measurements.  (a) shows that the value of c44 remains constant, as expected, and (b) shows that the value of c66 begins de-
creasing at a temperature roughly 80 kelvins above Tc and continues to decrease as the temperature decreases to Tc.  The depar-
ture from theoretical predictions (shown in red) indicates that this second-order phase transition is less well understood than was
thought.  The dotted and dashed lines of the cube inset in each graph indicate peak distortions at opposite ends of the vibrational
cycle for each resonance.



should change as a function of tempera-
ture near the critical temperature.

Much to our surprise, the behavior
of the elastic moduli as a function of
temperature determined from our reso-
nant ultrasound measurements differed
markedly from theoretical predictions.
Rather than changing abruptly at the
critical temperature, the shear modulus
c66 changes smoothly over a tempera-
ture drop of 80 kelvins or so (Figure 6).
Because our simultaneous measure-
ments of the six elastic moduli are ex-
tremely precise, there can be no doubt
as to the validity of our results.  What
we are left with is a clear indication
that this structural phase transition is
not as well understood theoretically as
was thought.  Moreover, measurements
on pure La2CuO4 as well as samples
doped with oxygen, barium, and stron-
tium showed similar results.  Whether
these results are related to the mysteries
of high-temperature cuprate supercon-
ductors remains to be seen.

Our results for the La2Cu04 system
are typical of the surprises we find with
resonant ultrasound measurements.
The surprises provide motivation for
improving our understanding of the
basic physics, which in turn enables us
to see the way to make new materials
that have desirable structural, magnetic,
or other properties.  Thus, the physics
we uncover has the promise that it will
eventually apply directly to the real en-
gineering aspects of materials.

A Breakthrough in
Nondestructive Testing

Because of our justifiable confi-
dence in the accuracy and precision of
resonant ultrasound measurements,
when the measured resonance spectrum
of a sample of known structure cannot
be made to fit the mathematical model
to within 1 percent or so, as happened

with a few brittle samples we attempted
to study, we were able to conclude that
the samples were not the perfect cube-
like chunks that the microscope re-
vealed but were, in fact, cracked.  The
cracks altered the resonance spectrum,
and therefore, the data could not be fit
to any object shaped like the sample.
From this simple effect, discovered ac-
cidentally during our research on sin-
gle-crystal samples, we developed new
nondestructive testing approaches that
subsequently received a 1991 RD100
award and a 1993 Federal Laboratory
Consortium Award for Excellence in
Technology Transfer. In particular, to-
gether with Raymond D. Dixon and

others we have shown how certain
anomalies in the resonance spectrum
can be used to detect cracks and other
flaws in small, precision objects includ-
ing aluminum plates, ball bearings,
high-strength permanent magnets for
lightweight motors, and more.

One test for cracks involves identi-
fying the presence of second harmonics
in the resonance spectrum under dry
conditions and the absence of those
second harmonics under wet condi-
tions.  We, together with George W.
Rhodes, discovered that a crack pro-
duces second harmonics when dry but
not when filled with fluid because the
fluid prevents the crack from banging
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Figure 7.  Fast, Accurate Detection of Flaws in Ball Bearings
The resonant ultrasound technique is accurate enough to detect tiny flaws in high-pre-
cision objects.  The figure compares two resonance lines, one from a perfect silicon
nitride ball bearing and the other from a similar ball bearing with a tiny surface
scratch.  The flaw causes the single line to split into two lines separated in frequency
by 824 parts per million.  The resonant ultrasound measurement can detect errors in
sphericity as small as 0.005 microns in seconds, whereas commonly used optical in-
spections typically require one hour.  The resonant ultrasound spectrometer is now
being readied to test these newly developed ceramic ball bearings, which can with-
stand very high temperatures and acidic environments and are compatible with dry lu-
bricants.  A resonant ultrasound spectrometer specifically designed to test ball bear-
ings is now available from Quatro Corporation as a result of a collaborative technolo-
gy-transfer effort between that company and Los Alamos National Laboratory (see
Figure 8).



shut when mechanically excited on res-
onance.  Ceramic (Si3N4) ball bearings,
which can withstand very high temper-
atures, are being developed for use in
naval and military aircraft operations.
Accurate resonance measurements of
these precision objects can reveal tiny
internal and surface flaws.  As shown

in Figure 7, these flaws shift and break
the symmetry of the resonances of the
ball bearings.  As a result, 0.005-mi-
cron errors in sphericity of a ball bear-
ing can be detected in seconds, instead
of the hour needed with present optical
studies.  These nondestructive testing
techniques, fathered by basic research

in materials science at the Laboratory,
have been transferred to private indus-
try (Figure 8).  Thus new jobs are now
being created in Albuquerque as a di-
rect result of the technology we devel-
oped here.

Further Reading
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Figure 8.  Resonant Ultrasound Spectrometers on the Market
The photograph shows a commercial resonant ultrasound spectrometer complete with
computer, receiver, transducers, and sample.  This system, produced by Quatro Cor-
poration, is designed to perform nondestructive testing of ball bearings and other
small objects.  After having devised applications of resonant ultrasound technology to
the detection of flaws in precision objects, we sought through a public advertisement
a commercial company that could develop the technology for a wide variety of appli-
cations.  Quatro came to us in 1991 and in 1992 obtained a license to develop, manu-
facture, and market systems for nondestructive testing based on our resonant ultra-
sound measurement techniques and computer software.  The systems under devel-
opment by Quatro will perform nondestructive inspections of metal, ceramic,
composite, and rigid plastic parts in a high-volume manufacturing environment.  Qua-
tro is presently working with numerous clients to design custom-engineered systems
that meet the particular needs of each application.  The Quatro system for testing ball
bearings is being adapted to handle thousands of ball bearings per hour and is sensi-
tive to geometry errors as small as 2 parts per million.  Another system tests the in-
tegrity of oxygen sensors.  The commercial production of research electronics, hard-
ware, and software by Quatro has, in turn, assisted us in expanding research efforts
and government applications of resonant ultrasound spectroscopy..
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