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ow can we determine the rel-
ative positions and motions
of atoms in a bulk sample of
solid or liquid? Somehow we jects separated by about a microme-

need to see inside the material with a t e r  ( 1 06 meter), which is more than a
suitable magnifying glass, But, seeing thousand times longer than the typical
with light in an everyday sense will not interatomic distance in a solid (about
suffice. First, we can only see inside the 10 -10 meter or so).
few materials that are Transparent, and X rays have wavelengths much shorter
second, there is no microscope that will
allow us to see individual atoms. These
are not merely technical hurdles, like
those of sending a man to the moon.
but intrinsic limitations. We cannot
make an opaque body transparent nor
can we see detail on a scale finer than
the wavelength of the radiation we are
using to observe it. For observations
with visible light this limits us to ob-

than those of visible light, so we might
try using them to find atomic positions.
For many crystalline materials this
technique works quite well.
x rays are diffracted by the
material, and one can work out
the relative atomic positions from the
pattern of’ spots the diffracted rays make
on a photographic plate. However, not
all atoms are equally "visible" to x rays:
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the light atoms in the soft tissue of our
jowls do not stop x rays as well as
the heavy mercury atoms in the dental
amalgam used to fill teeth. Although
this phenomenon is useful to the dental
profession, it is often an embarrassment
for scientists measuring atomic posi-
tions.

X rays are scattered by the electrons
surrounding the nucleus of an atom.
As a result, heavy atoms with many
electrons (such as mercury) scatter x
rays more efficiently than light atoms
(such as oxygen or, worse, hydrogen).
Thus, x rays pass right through light
materials without being greatly attenu-
ated or deflected. It is for this reason
that the structure of the much-heralded
high-temperature superconductors was
not determined by x-ray diffraction—
in spite of the fact that most university
physics departments worldwide have an
x-ray machine. One of the first high-
temperature superconductors discov-
ered contained yttrium and copper, both
of which are heavy and scatter a rel-
atively large percentage of the x rays
incident on a sample. Unfortunately,
the superconductors also contained oxy-
gen, whose feeble scattering of x rays
is swamped by that of its heavy neigh-
bors. It was impossible to determine the
positions of the oxygen atoms using x-
ray diffraction because the x rays passed
through the superconductor almost with-
out noticing the oxygen.

We might try to find atomic posi-
tions by “seeing” with electron beams.
After all, quantum mechanics tells us
that particles have wave properties,
and the wavelength of electrons can
easily be matched to interatomic dis-
tances by changing the electron en-
ergy. However, as anyone who has
ever rubbed a balloon on the family cat
knows, the interaction between electrical
charges is strong. Not surprisingly then,
a charged particle, such as an electron
or a positron, does not travel far through
solids or liquids before it is attracted or
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NEUTRON, ELECTRON, AND X-RAY PENETRATION DEPTHS

Fig. 1. The plot shows how deeply a beam of electrons, x rays, or thermal neutrons penetrates a
particular element in its solid or liquid form before the beam’s intensity has been reduced by a

having a wavelength of 1.4 angstroms (1.4 x 10-10 meter).

repelled by the electrons already in the
matter. This makes electrons unsuitable
for looking inside bulk materials: they
suffer from the same opacity problem
as light, and specially prepared, thin
samples are required for electron mi-
croscopy.

Neutron Scattering

What about neutrons? They have no
charge, and their electric dipole mo-
ment is either zero or too small to be
measured by the most sensitive of mod-
ern techniques. For these reasons, neu-
trons can penetrate matter far better than
charged particles. Furthermore, neutrons
interact with atoms via nuclear rather

than electrical forces, and nuclear forces
are very short range-of the order of
a few fermis (1 fermi = 10-15 meter).
Thus, as far as the neutron is concerned,
solid matter is not very dense because
the size of a scattering center (nucleus)
is typically 100,000 times smaller than
the distance between such centers. As a
consequence, neutrons can travel large
distances through most materials with-
out being scattered or absorbed (see the
opening illustration to “Putting Neu-
trons in Perspective”). The attenuation,
or decrease in intensity, of a beam of
low-energy neutrons by aluminum, for
example, is about 1 percent per millime-
ter compared with 99 percent or more
per millimeter for x rays. Figure 1 illus-
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Neutron

Neutron

X Ray

SCATTERING INTERACTIONS

Fig. 2. Beams of neutrons, x rays, and electrons interact with material by different mechanisms.
X rays (blue) and electron beams (yellow) both interact with electrons in the material; with x rays
the interaction is electromagnetic, whereas with an electron beam it is electrostatic. Both of
these interactions are strong, and neither type of beam penetrates matter very deeply. Neutrons
(red) interact with atomic nuclei via the very short-range strong nuclear force and thus penetrate
matter much more deeply than x rays or electrons. If there are unpaired electrons in the material,
neutrons may also interact by a second mechanism: a dipole-dipole interaction between the
magnetic moment of the neutron and the magnetic moment of the unpaired electron.

trates this point for other atoms and for
electrons as well as x rays and neutrons.

Like so many things in life, the neu-
tron’s penetrating power is a two-edged
sword. On the plus side, the neutron
can penetrate deep within a sample even
if it first has to pass through a container
(necessary, for example, if the sample
is a fluid or has to be kept at low tem-
peratures or high pressures). The corol-
lary is that neutrons are only weakly

scattered once they do penetrate. Also,
detection of a subatomic particle in-
volves the observation of that particle’s
interaction with some other particle, so
neutron detection requires a certain in-
genuity (in practice, detectors make use
of one of the few atoms, such as boron,
helium-3, or lithium, that absorb neu-
trons strongly to produce ionizing radia-
tion). To make matters worse. available
neutron beams inherently have low in-

tensities. X-ray instruments at synchro-
tron-radiation facilities can provide
fluxes of 1018 photons per second per
square millimeter compared with 104

neutrons per second per square millime-
ter in the same energy bandwidth for
powerful neutron-scattering instruments.

The combination of a weak interac-
tion and low fluxes makes neutron scat-
tering a signal-limited technique, which
is practiced only because it provides in-
formation on the structure of materials
that cannot be obtained by other means.
This constraint means that no generic
instrument can be designed to examine
all aspects of neutron scattering. In-
stead, a veritable zoo of instruments has
arisen with each species specializing in
a particular aspect of the scattering phe-
nomenon.

In spite of its unique advantages, neu-
tron scattering is only one of a battery
of techniques for probing the struc-
tures of materials. All of the techniques,
such as x-ray scattering and electron mi-
croscopy, are needed if scientists are to
understand the full range of structural
properties of matter. In most cases, the
different methods used to probe material
structure give complementary informa-
tion because the nature of the interaction
between the radiation and the sample
are different. For example, neutrons in-
teract with nuclei, whereas x rays and
electrons “see” only the electrons in
matter (Fig. 2). To a certain extent the
method of choice depends on the length
scale of the structure to be investigated
(Fig. 3). When two techniques address
the same scale. additional information,
such as the size and chemical composi-
tion of the sample, is required to choose
the optimal technique.

Scattering by a
Single Fixed Nucleus

The scattering of neutrons by nuclei
is a quantum-mechanical process. For-
mally, the process has to be described in

3
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Crystallography

Atomic Structures

Neutron Diffraction

X-Ray Diffraction

Electron
Diffraction

Microstructure Structure

Viruses

Neutron Small-Angle Scattering

X-Ray Small-Angle Scattering

Bacteria

Grain Structures

Optical Microscopy

Transmission Electron Microscopy
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STRUCTURE PROBES

used to probe structure, but one of the

resin determining factors in the choice of a

technique is the length scale of the structure

being examined. Techniques range from

neutron diffraction, which can be used to

study atomic structure with length scales of

10 -11 to 10-9 meter, to optical microscopy,

which can be used to study bacteria and

crystalline grain structures at much greater

length scales.

terms of the wave functions of the neu-
tron and the nucleus. The wave function
of the neutron, as its name suggests, has
the form of a wave—that is, a function
that oscillates sinusoidally in space and
time. The square of the amplitude of
this wave at any point gives the proba-
bility that the neutron will be found at
that point. It does not matter whether
we talk about the wave that represents
the neutron or the probability that a par-
ticle called the neutron is at a given
location. Both descriptions will give
rise to the same mathematics and are,
therefore, equivalent. Sometimes it is
convenient to refer to the neutron as a
wave because the picture thus conjured
is easier to understand. At other times it
is more useful to think of the neutron as
a particle. We can switch from one de-
scription to the other at will, and if we
do the mathematics correctly, we will
always get the same answer.

The neutrons used for scattering ex-
periments usually have energies simi-
lar to those of atoms in a gas such as
air. Not surprisingly, the velocities at
which they move are also comparable
with those of gas molecules—a few
kilometers per second. Quantum me-
chanics tells us that the wavelength of
the neutron wave is inversely propor-
tional to the magnitude of the neutron

we will use a bold variable to represent
a vector quantity and a nonbold ver-

LOS Alamos Science Summer 1990

sion of the same variable to represent
the corresponding magnitude). For the
neutrons used in scattering experiments,

angstroms (1 angstrom = 10-10 meter).
It is often useful to work in terms of the
so-called neutron wave vector, k, which

points along the neutron’s trajectory.
The vectors k and v are collinear and
related by the equation

(1)

where h is Planck’s constant, m is the
mass of the neutron (1.67495 x 10-27

kilogram), and mv is the momentum of
the neutron.

The scattering of a neutron by a sin-
gle nucleus can be described in terms of

(1 barn = 10-28 square meter), that
is equivalent to the effective area pre-
sented by the nucleus to the passing
neutron. If the neutron hits this area, it
is scattered isotropically, that is, with
equal probability in any direction. Why
isotropically? The range of the nuclear
potential is tiny compared to the wave-
length of the neutron, and so the nu-
cleus is effectively a point scatterer.
(X rays, on the other hand, do not scat-
ter isotropically because the electron
clouds around the atom scattering the x
rays are comparable in size to the wave-
length of the x rays.)

Suppose that at an instant in time we
represent neutrons incident on a fixed
nucleus by a wave function ei kr, which
is a plane wave of unit amplitude ex-
pressed in terms of the position vector

cross section

The effective area presented by a nucleus

to an incident neutron. One unit for cross

section is the barn, as in “can’t hit the side of

a barn!”

r. Note that the square modulus of this v
wave function is unity, which means
the neutron has the same probability of point scatterer
being found anywhere in space but has

An object that scatters incident radiation
nodes of the wave—that is, the points isotropically by virtue of being very small

compared with the wavelength of the radia-
where n is an integer—are the straight tion.

5
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NEUTRON Scattering
FROM A FIXED POINT

Fig. 4. A neutron beam incident on a single
scattering center and traveling in the x
direction can be represented as a plane wave
e with unit amplitude. Because the neutron
sees the scattering center (a nucleus) as a
point, the scattering will be isotropic. As a
result, the scattered neutron beam spreads
out in spherical wavefronts (here drawn as
circles) of amplitude b/r. The 1/r part of
this amplitude factor, when squared to get
intensity, accounts for the 1/r2 decrease in
intensity with distance that occurs as the
scattered wavefront grows in size. Because
we have here taken the scattering center to be
rigidly fixed, the interaction is elastic, there is
no exchange of energy, and the incident and
scattered wave vectors both have magnitude
k. (To be rigorous, we should have included
the time dependence eiwt. But since the
scattering is elastic, this factor is the same for
the incident and scattered waves and cancels
out of relative expressions, such as the one
for the cross section.)

scattering length

A measure of the strength of the neutron-
nucleus interaction, denoted by b and related

isotopic labeling

A technique that takes advantage of the
considerable variation in scattering cross
section among isotopes. By substituting one
isotope for another (of either the same or a
different element), the scattering from those
constituents containing the substitute may
be varied to reveal their positions relative to
other constituents.

k

Y

wavefronts shown in Fig. 4 (for a wave wave function, decreases as the inverse
traveling in the x direction). In light square of the distance from the source.
of our earlier discussion, we ought to In this case, the source is the scatter-
choose the amplitude of the neutron ing nucleus. The constant b, referred to
wave function (the constant multiplying as the scattering length of the nucleus,
the exponential) so that the amplitude measures the strength of the interaction
squared gives a probability of finding between the neutron and the scattering
a neutron at a position r that is con- nucleus. The minus sign in the wave
sistent with the number of neutrons in
the beam we are using. However, since
we shall be interested only in the ratio
of the amplitudes of the incident and
scattered neutron waves, we can set the
amplitude of the incident wave to unity
for the moment.

What is the amplitude of the neutron
wave scattered by the nucleus? That de-
pends on the strength of the interaction
between the neutron and the nucleus.
Because the scattered neutron wave
is isotropic, its wave function can be
written as (–b/r)e ikr if the scattering
nucleus is at the origin of our coordi-
nate system. The spherical wavefronts
of the scattered neutron are represented
by the circles spreading out from the
nucleus in Fig. 4. The factor (1/r) in
the wave function of the scattered neu-
tron takes care of the inverse square
law that applies to all wave motions:
the intensity of the neutron beam, given
by the square of the amplitude of the

function means that b is a positive num-
ber for a repulsive interaction between
neutron and nucleus.

For the type of collision being imag-
ined here, the energy of the neutron is
too small to change the internal energy
of the scattering nucleus, and because
we imagine the nucleus to be fixed, the
neutron cannot impart kinetic energy.
Thus, the scattering occurs without any
change of the neutron’s energy and is
said to be elastic. Because the neu-
tron energy is unchanged by a nuclear
collision, the magnitude of its velocity
and thus of its wave vector is also un-
changed, and the same k appears in the
wave function of the incident and the
scattered neutrons.

What is the relationship between scat-
tering length, b, and the cross section,

strength of the scattering interaction?

to b, a length, by the simple relation

6 Los Alamos Science Summer 1989
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elastic scattering

Scattering with no change in the energy of
the incident neutron; or, in terms of the wave
vector of the neutron, scattering in which the
direction of the vector changes but not its
magnitude.

were half the radius of the nucleus as
seen by the neutron.

For a few nuclei the scattering length,
b, varies with the energy of the inci-
dent neutrons because compound nu-
clei with energies close to those of ex-
cited nuclear states are formed during
the scattering process. This resonance
phenomenon gives rise to complex val-
ues of b: the real part corresponds to
scattering of the neutrons, whereas the
imaginary part corresponds to absorp-
tion of the neutron by a nucleus. Usu-
ally, such resonant effects occur at neu-
tron energies greater than those used to
probe the structure of matter. In the ma-
jority of cases of interest to scientists
doing neutron scattering, b is a real and
energy-independent quantity. However,
b has to be determined experimentally
for each nuclear isotope because, unlike
the equivalent quantity for x rays, the
scattering length for neutrons cannot be
calculated reliably in terms of funda-
mental constants.

Also unlike x rays, neutrons interact
with atoms of an element in a manner
that does not seem correlated with the
atomic number of the element (as is
evident in Fig. 1). In fact, the neutron’s
interaction with a nucleus of an atom
varies from one isotope to another. For

example, hydrogen and deuterium, both
of which interact weakly with x rays,
have neutron scattering lengths that are
relatively large and quite different. The
differences in scattering lengths from
one isotope to another can be used in
various isotopic-labeling techniques
to increase the amount of information
available from a particular neutron-
scattering experiment. We shall discuss
isotopic labeling in more detail in the
section on small-angle scattering.

Scattering of Neutrons by Matter

To work out how neutrons are scat-
tered by matter, we need to add up the
scattering from each of the individual
nuclei. This is a lengthy and not partic-
ularly instructive quantum-mechanical
calculation. Fortunately, the details of
the calculation are not very important.
The result is, however, both simple and
appealing.

When neutrons are scattered by mat-
ter, the process can alter both the mo-
mentum and the energy of the neutrons
and the matter. The scattering is not
necessarily elastic as it is for a single,
rigidly fixed nucleus because atoms in
matter are free to move. to some ex-
tent. They can therefore recoil during a
collision with a neutron, or if they are
moving when the neutron arrives, they
can impart or absorb energy just as a
baseball bat does.

AS is usual in a collision, the total
momentum and energy are conserved:
when a neutron is scattered by mat-

is gained by the sample. From Eq. 1 it
is easy to see that the amount of mo-
mentum given up by the neutron during
its collision, the momentum transfer, is

vector of the incident neutrons and k'
is that of the scattered neutrons. The
quantity Q = k – k’ is known as the
scattering vector, and the vector rela-
tionship between Q, k, and k' can be

inelastic scattering

Scattering in which exchange of energy and
momentum between the incident neutron and
the sample causes both the direction and the
magnitude of the neutron’s wave vector to
change. .

Los Alamos Science Summer 1989 7
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SCATTERING TRIANGLES

Fig. 5. Scattering triangles are depicted here
for both (a) an elastic scattering event in
which the neutron is deflected but the neutron
does not lose or gain energy (so that k’ = k)
and (b) inelastic scattering events in which
the neutron either loses energy (k’ < k) or
gains energy (k’ > k) during the interaction.
In both elastic and inelastic scattering events,
the neutron is scattered through the angle

vector relationship Q = k — k’. For elastic
scattering, a little trigonometry shows (lower

neutron-scattering law

The intensity of scattered neutrons as a func-
tion of the momentum and energy transferred
to the sample during the scattering. The

displayed pictorially in the so-called
scattering triangle (Fig. 5). This trian-

ergy transfer (see Eq. 3 in ‘cThe Mathematical gle also emphasizes that the magnitude
Foundations of Neutron Scattering”). and direction of Q is determined by the

the magnitudes of the wave vectors for
the incident and scattered neutrons and
the angle 2% through which a neutron
is deflected during the scattering pro-
cess. Generally, 29 is referred to as the
scattering angle. For elastic scattering

trigonometry applied to the scattering

In all neutron-scattering experiments,
scientists measure the intensity of neu-

8

trons scattered by matter (per incident
neutron) as a function of the variables Q

as the neutron-scattering law for the
sample.

In a complete and elegant analysis,
Van Hove showed in 1954 that the scat-
tering law can be written exactly in
terms of time-dependent correlations
between the positions of pairs of atoms
in the sample (see “The Mathematical
Foundations of Neutron Scattering” for
a more detailed discussion). Van Hove’s

Los Alamos Science Summer 1989
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portional to the Fourier transform of a
function that gives the probability of
finding two atoms a certain distance
apart. It is the simplicity of this result
that is responsible for the power of neu-
tron scattering. If nature had been un-
kind and included correlations between
triplets or quadruplets of atoms in the
expression for the scattering law, neu-
tron scattering could never have been
used to probe directly the structure of
materials.

Of course, we have not yet explained
how one may measure the intensity
of scattered neutrons as a function of

Hove’s result provides a way of relating
the intensity of the scattered neutrons
to the relative positions and the relative
motions of atoms in matter. In fact, Van
Hove’s formalism can be manipulated
(see “The Mathematical Foundations
of Neutron Scattering”) to reveal scat-
tering effects of two types. The first is
coherent scattering in which the neutron
wave interacts with the whole sample
as a unit so that the scattered waves
from different nuclei interfere with each
other. This type of scattering depends
on the relative distances between the
constituent atoms and thus gives infor-
mation about the structure of materials.
Elastic coherent scattering tells us about
the equilibrium structure, whereas in-

provides information about the collec-
tive motions of the atoms, such as those
that produce vibrational waves in a crys-
talline lattice. In the second type of
scattering, incoherent scattering, the
neutron wave interacts independently
with each nucleus in the sample so that
the scattered waves from different nuclei
don’t interfere. Rather the intensities
from each nucleus just add up. Inco-
herent scattering may, for example, be
due to the interaction of a neutron wave
with the same atom but at different po-
sitions and different times, thus provid-
ing information about atomic diffusion.

Los Alamos Science Summer 1990

Diffraction, or Bragg Scattering

The simplest type of coherent neu-
tron scattering to understand is diffrac-
tion. Suppose that atoms are arranged at
fixed positions on a lattice (such as the
two-dimensional portion of the lattice
shown in Fig. 6) and a beam of neu-
trons is fired at that lattice. We imagine
that all of the neutrons move on paral-
lel paths and have the same velocity, so
that there is only one value for the inci-
dent wave vector, k. Because the atoms
and their associated nuclei are imagined
to be fixed, there is no change in the
neutron’s energy during the scattering
process; that is, the scattering is elastic
and k' = k.

As the incident neutron wave arrives
at each atom, the atomic site becomes
the center of a scattered spherical wave
that has a definite phase relative to all
other scattered waves. In two dimen-
sions, it is as if a handful of pebbles
have been thrown into a calm pond.
At the point where each pebble strikes
the pond (the atomic site), a circular
wave spreads outwards. Because the
waves from each site overlap there will
be places where the disturbances from
different waves reinforce one another

and other places where they cancel out.
This is the phenomenon of interference.

As the waves spread out from a reg-
ular array of sites, the individual distur-
bances will reinforce each other only in
particular directions. In other words, if
we observe the wave motion at some
distance from the lattice, we will see
waves (scattered neutrons) traveling in
well-defined directions (Fig. 6). These
directions are closely related to the sym-
metry and spacing (or lattice) of the
scattering sites—a hexagonal grid will
generate a different set of wavefronts
than a square grid. Consequently, one
may use a knowledge of the directions
in which various incident waves are
scattered to deduce both the symmetry
of the lattice and the distances between

coherent scattering

Scattering in which an incident neutron wave

interacts with all the nuclei in a sample in

a coordinated fashion; that is, the scattered

waves from all the nuclei have definite relative

phases and can thus interfere with each

other.

incoherent scattering

Scattering in which an incident neutron wave

interacts independently with each nucleus in

the sample; that is, the scattered waves from

different nuclei have random, or indeterminate,
relative phases and thus cannot interfere with

each other.

diffraction

A type of scattering in which coherently

scattered waves interfere.

9
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DIFFRACTION FROM A LATTICE

interfere with each other. In those directions
in which the interference is constructive,
scattered neutrons may be measured. The
figure depicts such constructive interference
in two dimensions with planar wavefronts
represented as lines, spherical wavefronts
as colored circles, and the scattering centers
as small circles. To simplify the diagram,
the scattering is shown only for four centers
(solid black) in each of the two rows of
scattering planes. Also, color is used to
relate each incident wavefront to the scattered
wavefronts that have so far been generated
by it. Thus, the incident red wavefront Scattering
has passed over and scattered from four
scattering centers in Scattering Plane 1;
the orange wavefront has passed over and
scattered from these scattering centers plus
the leftmost scattering center in Scattering
Plane 2; the yellow wavefront has passed over
all eight scattering centers in both planes. For Scattering

constructive interference to take place, Q must
be perpendicular to the two scattering planes,

distance between the two scattering planes
and n is an integer. Combining this condition
with Q =

10 Los Alamos Science Summer 1990
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where rj and rk represent the positions
of atoms labeled j and k in the lattice
and bcoh is the coherent scattering length
of those atoms.

Equation 2 is the scattered intensity
that would be measured in a neutron-
diffraction experiment with a real crys-
tal, and is often called the structure fac-
tor, S(Q). As we count through the
atoms of a lattice performing the sum
in Eq. 2, the real and imaginary parts
of the exponential function both take
values that are distributed essentially at
random between plus and minus one.
Because many atoms are involved, the
sum usually averages to zero, except at
certain unique values of Q.

Obviously, the values of Q for which
the structure factor, S(Q), is nonzero are
rather special, and it is easy to imagine
that not many values of Q satisfy this
condition. Further, those values are in-
timately related to the structure of the
crystal because the vectors rj – rk. in
Eq. 2 represent the set of distances be-
tween different atoms in the crystal.

We can determine the values of Q
at which S(Q) is nonzero and at which
diffraction occurs by consulting Fig. 6.
Suppose Q is perpendicular to a plane
of atoms such as Scattering Plane 1 in
this figure. If the value of Q is any in-

distance between parallel, neighboring
planes of atoms (Scattering Planes 1
and 2 in Fig. 6), then Q (rj – rk) is

because each exponential term in the
sum in Eq. 2 is unity. Thus, Q must be
perpendicular to planes of atoms in the
lattice and its value must be an integral

do not satisfy this condition, S(Q) = 0,
and there is no scattering.

The values of Q at which neutron
diffraction occurs are governed by the
same law that was discovered for x
rays in 1912 by William and Lawrence
Bragg, father and son. To see this, we
apply the condition described above

Los Alamos Science Summer 1990

to the scattering triangle for elastic scat-
tering. Then using the relationship be-

condition can be rewritten as

(3)

This equation. called Bragg’s law, re-

terplanar spacing in a crystalline sample.
Bragg’s law can also be understood in

terms of the path-length difference be-
tween waves scattered from neighboring
planes of atoms (Fig. 7). For construc-
tive interference to occur between waves
scattered from adjacent planes, the path-
length difference must be a multiple

condition to Fig. 7 immediately yields
Bragg’s law in the form given in Eq. 3.
Many of the results described in the ar-
ticles in this issue will fall back on this
point of view.

Diffraction, or Bragg scattering, as
it is sometimes called, may occur for
any set of atomic planes that we can
imagine in a crystal, provided the wave-

incident neutron beam and the planes
are chosen to satisfy Eq. 3. Bragg scat-
tering from a particular set of atomic
planes resembles reflection from a mir-

re la t ive  phase

the expression A eik r describing a plane wave

of amplitude A. For a plane wave traveling in

wave vector k and equal amplitude A are in

phase, their phases at any point in space are

the same and the waves add constructively to

yield an intensity of 4 A2. When the relative

waves will interfere with each other so that

their resulting intensity fluctuates in space and

is always less than 4A2. Incoherent scattering

produces random changes in the phase of

the incident wave so that the relative phases

of the scattered waves are indeterminate, the

waves do not interfere with each other, and

the intensity of each wave is added separately

to yield the total intensity.
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THE PATH-DIFFERENCE
APPROACH TO BRAGG’S LAW

Fig. 7. Constructive interference occurs when
the waves reflected from adjacent scattering
planes remain in phase. This happens when
the difference in distance traveled by waves
reflected from adjacent planes is an integral
multiple of the wavelength. The figure shows
that the extra distance (shown in red) traveled
by the wave reflected from Scattering Plane

when n = 1, but higher-order Bragg peaks are
also observed for other values of r?.

Scattering Plane 1

Scattering Plane 2

Reflected Beam

ror parallel to those planes: the angle
between the incident beam and the plane
of atoms equals the angle between the
scattered beam and the plane (Fig. 7). If
a beam of neutrons of a particular wave-
length is incident on a single crystal,
there will, in general, be no diffraction.
To obtain diffraction for a set of planes.
the crystal must be rotated to the cor-
rect orientation so that Bragg’s law is
satisfied-much as a mirror is adjusted

to reflect the sun at someone’s face.
The signal thus observed by a neutron
detector at a particular scattering angle
is called a Bragg peak because as we
rotate the crystal to obtain diffraction
we observe a peak in the signal being
recorded.

According to Eq. 2, the intensity of
the scattered neutrons is proportional
to the square of the density of atoms
in the atomic planes responsible for the
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I

I

scattering. We can see this by noting
that as the summation is carried out
for each atom j in one plane, unit ex-
ponential factors are added for all the
atoms k in another plane. And the more
closely the atoms are spaced within a
reflecting plane, the more unit factors
will be summed per unit area. Thus,
an observation of Bragg peaks allows
us to deduce both the spacing of planes
(from Bragg’s law) and the density of
the atoms in the planes. To measure
Bragg peaks corresponding to many dif-
ferent atomic planes with neutrons of a
particular wavelength, we have to vary

crystal orientation. First we choose the
detector position so that the scattering
angle satisfies Bragg’s law, then we ro-
tate the crystal until a Bragg diffracted
beam falls on the detector.

To this point we have been discussing
a simple type of crystal that can be built
from unit cells, or building blocks, that
each contain only one atom. In this
case, each of the exponential factors
that contribute to S(Q) in Eq. 2 is unity,
and the structure is easily deduced from
the intensities of the Bragg peaks and
the scattering angles at which Bragg dif-
fraction occurs. However, the unit cells
of materials of interest to chemists or
biologists almost invariably have more
complicated shapes and contain many
different types of atoms distributed
throughout their volumes. Those atoms,
of course, are not positioned randomly
in the unit cell but are arranged in a ge-
ometric pattern determined by the way
they bond together. Nevertheless, it may
not be trivial to deduce the atomic po-
sitions from an observation of Bragg
scattering because some of the expo-
nential factors that contribute to S(Q)
are now complex and the phases of
these quantities cannot be obtained di-
rectly from a measurement of Bragg
diffraction. Deducing the structure of
a complex material may take several
months and a great deal of ingenuity.
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crystals, the sample must be correctly
oriented with respect to the neutron
beam to obtain Bragg scattering. Fur-
thermore, if neutrons of a single wave-
length are used, the detector must also
be positioned at the appropriate scatter-
ing angle for the atomic planes causing
the scattering. On the other hand, poly-
crystalline powders, which consist of
many randomly oriented single-crystal
grains, will diffract neutrons whatever
the orientation of the sample relative to
the incident beam of neutrons. There
will always be grains in the powder
that are correctly oriented to diffract.
Thus, whenever the scattering angle,

isfy the Bragg equation (Eq. 3) for a
set of planes, a reflection will be de-
tected, independent of the sample orien-
tation. This observation is the basis of
a widely used technique known as pow-
der diffracfion, which is implemented
in slightly different ways depending on
the nature of the neutron source. Before
describing powder diffraction in greater
detail, we digress to consider the dif-
ferent techniques that may be used to
produce neutrons for scattering experi-
ments.

Neutron Production

Neutron-scattering facilities through-
out the world generate neutrons ei-
ther with nuclear reactors or with high-
energy particle accelerators. The neu-
trons produced have energies up to tens
or even hundreds of mega-electron volts
(MeV), and the corresponding neu-
tron wavelengths are far too short for
investigating condensed matter. Fur-
thermore, neutrons whose energies are
above a few electron volts tend to dam-
age solids by knocking atoms out of
their official positions, producing vacan-
cies and interstitial. For this reason,
neutrons must be “cooled down” before
being used for scattering experiments.

unit cell

The repeating unit of a crystal.
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I

!

cold neutrons

Neutrons whose energies have been reduced
below about 5 meV by inelastic scattering
in a cold material such as liquid hydrogen
or deuterium. Researchers use such longer-
wavelength neutrons to conduct experiments
at larger length scales.

Such cooling is done by bringing the
neutrons into thermal equilibrium with a
“moderating” material—a material with
a large scattering cross section, such
as water or liquid hydrogen. The mod-
erator, whose volume may vary from
a deciliter to several tens of liters, is
placed close to the neutron source. Neu-
trons enter the moderator and, in a se-
ries of collisions in the material, lose
energy to recoiling moderator atoms.
After a few tens of collisions, the ener-
gies of the neutrons are similar to those
of the atoms of the moderator. Thus,
thermal neutrons are emitted from the
moderator surface with a spectrum of
energies around an average value de-
termined by the moderator temperature.
The average energy of neutrons from
a water moderator at ambient tempera-
ture is about 25 thousandths of an elec-
tron volt (25 meV), and the average
energy from a liquid-hydrogen modera-
tor at 20 kelvins is around 5 meV. The
wavelength of a 25-meV neutron is 1.8
angstroms (1.8 x 10-10 meter), which is
of the same order as typical interatomic
distances and, therefore, is quite suitable
for diffraction experiments.

Reactor Sources. Neutrons are pro-
duced in a nuclear reactor by the fis-
sioning of atoms in the reactor fuel,
which, for research reactors, is invari-
ably uranium. The neutrons are moder-
ated in the manner described above and
allowed to emerge from the reactor in a
continuous stream with an energy spec-
trum similar to the curves of Fig. 8a.

For most scattering experiments at re-
actors, the neutrons emerging from the
moderator must be reduced to a mon-
ochromatic beam: that is, only those
neutrons in a single, narrow energy band
are selected from the spectrum. This
selection is usually accomplished by
Bragg reflection from a large single
crystal of a highly reflective material,
such as pyrolytic graphite, germanium,
or copper. A crystal monochromator

(a) Reactor Neutrons

(b) Spallation Neutrons

Energy (meV)

REACTOR AND
SPALLATION NEUTRONS

Fig. 8. (a) The relative flux of neutrons as a
function of energy for the high-flux reactor
at the Institut Laue-Langevin in Grenoble,
France. The curves show the distribution
of neutrons emerging from moderators at
temperatures of 20, 300, and 2000 kelvins.
(b) Similar distribution curves for neutrons
generated at the Manuel Lujan, Jr. Neutron
Scattering Center at Los Alamos (LANSCE)
by moderators al temperatures of 20 and 290
kelvins.

works because, even though the inci-
dent beam contains neutrons of many
wavelengths, the spacing of the reflect-
ing planes of atoms, d, and the scatter-

those neutrons with a wavelength sat-
isfying the Bragg equation are trans-
mitted in the direction of the exper-
iment. The wavelength of the neu-
trons used for experiments can then
be controlled by changing the scat-
tering angle at the monochrornator.
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spallation neutrons

Neutrons generated at an accelerator by
driving a highly energetic beam of particles,
typically protons, into a target of heavy atoms,
such as tungsten. The incident protons knock
neutrons loose from the nuclei of the target,
creating a pulse of highly energetic spallation
neutrons.

Spallation Sources. Other neutron fa-
cilities, such as the one at the Manuel
Lujan, Jr. Neutron Scattering Center at
Los Alamos (LANSCE), use acceler-
ators to produce spallation neutrons.
This is done by allowing high-energy
protons (or, less effectively, electrons)
to collide with a heavy-metal target,
such as tungsten or uranium, driving
neutrons from the nuclei of the tar-
get. The protons are produced by the
accelerators—in this case, LAMPF (the
Los Alamos Meson Physics Facility)
coupled with a proton storage ring—in
bursts that last for less than a microsec-
ond. At LANSCE there are 20 such
bursts of 800-MeV protons per second.
Each proton in the burst then generates
about 20 neutrons.

One of the advantages of a spallation
source is that only a small amount of
energy—about 27 MeV per neutron—
is deposited in the spallation target by
the protons. Nuclear fission produces
about four or five times as much energy
in generating each of its neutrons. How-
ever, the cost of producing the high-
energy protons—the electricity bill of
the accelerators—is not cheap.

The moderated neutrons that finally
emerge into the experimental area from
a spallation source have a spectrum re-
sembling the curves of Fig. 8b. Clearly,
this spectrum is quite different from
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that produced by a reactor (Fig. 8a) be-
cause there is a greater percentage of
high-energy neutrons. However, the
spectrum is not the only difference be-
tween the two types of neutron sources.
Neutrons from a spallation source ar-
rive in pulses rather than continuously
as they do at a reactor. This fact means
that the monochromator crystal needed
at reactors can here be avoided and all
the neutrons can be used (rather than
only those in a narrow energy band).

The trick that allows the use of all
neutrons from a spallation source relies
on the measurement of the time it takes
for each detected neutron to traverse the

neutron velocity can be determined, and
Eq. 1 gives its wavelength. Generat-
ing a monochromatic beam is therefore
unnecessary.

A thermal neutron with an energy of
25 meV travels at a speed of about 2.2
kilometers per second, or about Mach 7.
A typical neutron spectrometer is about
10 meters long, so the neutron travels
from the moderator to the detector in time of flight

about 5 milliseconds. Because the du-
ration of the neutron pulse emerging The time it takes a neutron to travel from a

from the moderator of a pulsed source pulsed source to a detector, which is thus a

is typically a few tens of microseconds, measure of the neutron’s velocity and kinetic

the time of flight of the neutron can be energy.

determined with high relative precision.
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Powder Diffraction

Now let’s return to powder diffrac-
tion. In a powder-diffraction instru-
ment at a reactor source (Fig. 9), a
monochromatic beam of neutrons im-
pinges on a powdered sample, and the
neutrons scattered from the sample are

Each Bragg peak in a typical scattering
pattern (Fig. 10) corresponds to diffrac-
tion from atomic planes with a differ-
ent interplanar spacing, or value of d.
Many peaks can be recorded simultane-
ously by placing detectors at a variety
of scattering angles (such as the sixty-
four helium-3 detectors in Fig. 9).

In a powder diffraction instrument at
a spallation source (Fig. 11), the sam-
ple is irradiated with a pulsed beam of
neutrons having a wide spectrum of en-
ergies. Scattered neutrons are recorded
in banks of detectors located at differ-
ent scattering angles, and the time at
which each scattered neutron arrives
at the detector is also recorded. At a
particular scattering angle, the result
is a diffraction pattern very similar to
that measured at a reactor, but now the
independent variable is the neutron’s
time of flight rather than the scattering
angle. Because the neutron’s time of
flight is proportional to its wavelength
and, for constant scattering angle, wave-
length is proportional to the spacing
between atomic planes (Eq. 3), the mea-
sured neutron scattering can be plotted

spacing (Fig. 12). (The resemblance be-
tween Figs. 10 and 12 is obvious. The
patterns are equivalent ways of prob-
ing Bragg’s law, and in fact, diffraction
data obtained at reactors and spallation
sources can be plotted on the same scale

independent variable. )
As in the reactor case, detectors at a

spallation source can be placed at dif-
ferent scattering angles, allowing many
patterns to be measured simultaneously,

POWDER DIFFRACTION AT A REACTOR SOURCE

Fig. 9. An essential component of a powder diffractometer at a high-flux reactor

Moderated
Neutron
Beam

is a very large
crystal whose reflecting surface may be as large as 200 square centimeters. The crystal acts as
a monochromator by scattering neutrons of a given energy toward the sample. To help focus
the beam of neutrons, the crystal may also be curved, effectively acting as a concave mirror. A
second scattering occurs at the powder sample, which scatters the monoenergetic focused beam
toward a set of detectors (here, 64 helium-3 neutron detectors). These detectors are here shown
positioned along an arc on one side of the sample, but the whole array can be moved to other
positions along the circular support track. The distance between the monochromator and the
sample is typically about 2 meters.

120 130 140 150

A POWDER DIFFRACTION PATTERN RECORDED AT A REACTOR

Fig. 10. A typical powder diffraction pattern obtained at a reactor source gives intensity, or
numbers of neutrons, as a function of the scattering angle 219. Each peak represents neutrons
that have been scattered from a particular set of atomic planes in the crystalline Iattice.
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Sample

POWDER DIFFRACTION AT A SPALLATION SOURCE

Fig. 11. The Neutron Powder Diffractometer (NPD) at LANSCE (see photograph on page 54). The
incident beam of neutrons, having been moderated with water chilled to 10” C, is directed onto
the target in a large evacuated chamber. Surrounding this chamber are eight banks of detectors
positioned at fixed scattering angles. Each bank consists of sixteen helium-3 detectors, and the
d-spacing that can be measured ranges from about 1.2 to 33.6 angstroms at the 20° detector
bank to about 0.25 to 5.2 angstroms at the 148° detector bank. The distance between the sample
and the detectors at the 90° scattering angle is about 2 meters, so the whole spectrometer is
very much larger than the equivalent instrument at a reactor.

I I I I

0 . 5 0 , 6 0 . 7 0 . 8

A POWDER DIFFRACTION PATTERN RECORDED AT A SPALLATION SOURCE

Fig. 12. A typical powder diffraction pattern obtained at a spallation source (“fat garnet” measured
at one of the 148° bank of detectors in the diffractometer of Fig. 11). As in Fig. 10, the vertical
coordinate is the intensity, or number of neutrons, but the horizontal coordinate is the d-spacing

neutron time of flight (via Eqs. 1 and 3).
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Detectors at small scattering angles pro-
vide information about widely spaced
atomic planes, whereas those at larger
angles record data relevant to small
spacings. There is usually some overlap
of information provided by the different
detectors.

Using patterns like those of Figs. 10
and 12, the atomic structure of a poly -
crystalline sample may be deduced from
Eq. 2. In practice, however, one guesses
the atomic positions, evaluates Eq. 2,
and from a comparison of the calcu-
lated and measured diffraction patterns,
refines the atomic coordinates. This
type of procedure is described in de-
tail in the article “X-Ray and Neutron
Crystallography—A Powerful Combina-
tion” by Robert Von Dreele.

Probing Larger Structures

Another way of thinking about coher-
ent elastic neutron scattering is shown in
Fig. 13. One can imagine the incident
and scattered neutron waves setting up
a “probe wave” in the sample—much as
two misaligned picket fences generate a
set of moire fringes. One can alter the

by
changing the angle between the ingoing
and outgoing waves (that is, the scatter-
ing angle) or by increasing or decreas-
ing the wavelength of the neutrons used.
To obtain information about structures

must be chosen to be approximately the
same as the size of the structure. For
crystallography this means that &~&~
needs to be of the same order as inter-
atomic spacings. We already know this
from Bragg’s law. A little trigonom-
etry applied to Fig. 13 will show that

adjacent scattering planes, Bragg’s law
is satisfied.

The probe-wave idea shows us how
we can measure structures that are larger
than typical interatomic distances. We
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THE PROBE-WAVE VIEW
OF NEUTRON SCATTERING

Fig. 13. Another way to view neutron scat-
tering is to imagine that the incident neutron
wave (In) and the scattered neutron wave (Out)
form a secondary “probe wave” (here seen as
a moire pattern in both examples) that must
match the average periodicity of the structure
in the scattering sample. Because the average
periodicity of the top sample is larger than
that of the lower one, the wavelength of the

must be smaller (here 30). Another way to

In
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either by decreasing the scattering an-
gle or by increasing the neutron wave-
length. In practice, to examine some
of the larger structures displayed in
Fig. 3—polymers, colloids, or viruses,
for example—we need to use neutron
wavelengths greater than 5 angstroms
and scattering angles less than 1 de-
gree. Because of the latter constraint,
this technique is known as small-angle
neutron scattering, or SANS.

The Van Hove formulation for neu-
tron scattering may be manipulated (see
“The Mathematical Foundations of Neu-
tron Scattering”) to provide the follow-
ing equation for the intensity of neu-
trons scattered at small angles (that is,
for small values of Q):

where the integral extends over the
entire scattering sample and b(r), the
scattering-length density, is calculated
by summing the coherent scattering
lengths of all the atoms over a small
volume and dividing by that volume.

In many cases, samples measured by
SANS consist of particles with a uni-
form scattering-length density bp that
are dispersed in a uniform matrix with
a scattering-length density bm. Exam-
ples include pores in rock, colloidal dis-
persions, biological macromolecules in

water, and many more. The integral
in Eq. 4 can, in this case, be separated
into a uniform integral over the whole
sample and a term that depends on the
difference, bp – bm, between the scat-
tering length’ of the particles and that of
the matrix. This difference is called the
contrast factor. If all the particles are
identical and their positions are uncorre-
lated, Eq. 4 becomes

where the integral is now over the vol-
ume Vp of one of the particles and NP

is the number of such particles in the
sample.

The integral above of the phase factor
e iQ r over a particle is called the form

factor for that particle. For many sim-
ple particle shapes, the form factor can
be evaluated without difficulty: the ex-
pression for spherical objects was first
derived by Lord Rayleigh in 1911.

Equation 5 allows us to understand an
important technique used in small-angle
scattering known as contrast match-
ing. The total scattering is proportional
to the square of the scattering contrast
between a particle and the matrix in
which it is embedded. If we embed the
particle in a medium whose scattering
length is equal to that of the particle,

small-angle neutron scattering

A technique for studying structural details with
dimensions between 10 and 1000 angstroms
by measuring the intensity of neutrons
scattered through small angles, usually less
than 1 degree.

contrast matching

An isotopic-labeling technique based on the
dramatic difference between the scattering
lengths of hydrogen and deuterium, which
is particularly useful in neutron-scattering
studies of complex biological molecules in
aqueous solution. The technique involves
matching the scattering from the solvent with
that from one component of the biological
molecules by replacing the hydrogen atoms
in the solvent or the component or both with
deuterium. The observed scattering is then
due to only the unmatched components.
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A SMALL-ANGLE
NEUTRON-SCATTERING
SPECTROMETER

Fig. 14. (a) The spectrometer illustrated here,
the Low-Q Diffractometer (LQD) at LANSCE,
measures neutron scattering at small angles.
The neutrons are first moderated in liquid
hydrogen to increase the percentage of very
cool, long-wavelength neutrons in the beam
that hits the sample. The moderated beam
then passes through a collimating system that
is more than 7 meters long before impinging
on the sample. To increase the accuracy
with which the small scattering angles can
be measured, the large position-sensitive
detector is placed far from the sample (about
4 meters). (b) Neutrons from a spallation
source have a range of speeds and are thus
under the influence of gravity for different
amounts of time, an effect that smears the
signal at the detector. However, the beam can
be “focused” by placing a fixed aperture at the
beginning of the collimator and a moveable
aperture at the end of the collimator and
accelerating the latter aperture upward during
the pulse of neutrons. Such an arrangement
selects only those neutrons with parabolic
trajectories that end at the center, or focus, of
the detector. Small-angle scattering is suitable
for studying structures with dimensions in the
range of 10 to 1000 angstroms.

Neutron

the latter will be invisible. (This tech-
nique is used by the manufacturers of
gel toothpaste—there really is gritty ma-
terial in there to clean your teeth. but
you can’t see it because the grit and the
gel have similar refractive indices!)

Suppose the particles we are inter-
ested in are spherical eggs rather than
uniform spheres: they have a core (the
yolk) with one scattering length and a
covering (the white) of a different scat-
tering length. If such particles are im-
mersed in a medium whose scattering
length is equal to that of the egg white,
then a neutron-scattering experiment
will only “see” the yolk. The form fac-
tor will be evaluated by integrating over
this central region only. On the other
hand, if our particles are suspended in a
medium whose scattering length is the
same as that of the yolk, only the egg
white will be visible; the form factor
will correspond to that of a thick, hol-
low shell. The scattering pattern will be
different in the two cases, and from two
experiments, we will discover the struc-
tures of both the covering and the core
of the particle.

Variation of the scattering-length den-
sity of the matrix is often achieved by
choosing a matrix that contains hy-
drogen (such as water). By replac-

ing different fractions of the hydrogen
atoms with deuterium atoms, a large
range of scattering-length densities
can be achieved for the matrix. This
contrast-matching technique works, as
we pointed out earlier, because of the
significantly different scattering-length
densities of hydrogen and deuterium,
and it is one of the main reasons for the
successful application of neutron scatter-
ing to problems in biology. Both DNA
and protein can be contrast matched by
water containing different fractions of
deuterium. Several problems in struc-
tural biology that have been studied by
contrast matching are described in “Bi-
ology on the Scale of Neglected Dimen-
sions” by Jill Trewhella.

Small-angle scattering is perhaps the
easiest neutron-scattering technique to
realize in practice. Like diffraction ex-
periments, SANS experiments at a re-
actor source require a monochromator,
whereas at a spallation source measure-
ment of times of flight determine the
wavelengths of the incident and scat-
tered neutrons.

The Low-Q Diffractometer at the
LANSCE facility (Fig. 14a) is an exam-
ple of a SANS spectrometer at a spal-
Iation source. One essential component
of the instrument is a large position-
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sensitive neutron detector located behind
the sample directly in line with the inci-
dent beam. Another important compo-
nent (invented by Phil Seeger at LAN-
SCE) is the gravity focuser (Fig. 14b),
which accounts for the fact that neutrons
fall under the influence of gravity. If
the aperture at the exit of the collimator
that defines the trajectory of the incident
neutron beam was fixed, neutrons of dif-
ferent velocities could only pass through
that slit if they were following parabolic
paths that fell on the detector at differ-
ent heights, blurring the image produced
there. To avoid this blurring, the exit
aperture of the collimator is moved up-
ward during each neutron pulse. Slower
neutrons then have to go through an
opening that is higher relative to the
center of the detector. The position of
the aperture at each instant is chosen so
that all neutrons, independent of their
speed, arrive at the center of the de-
tector, if they are not scattered by the
sample. The whole thing is a little like
a stone-throwing contest: weak throwers
have to throw stones on a higher trajec-
tory to hit the target.

Inelastic Scattering

In reality, atoms are not frozen in
fixed positions in a crystal. Thermal en-
ergy causes them to oscillate about their
lattice sites and to move around inside
a small volume with the lattice site at
its center. Since an atom can fully con-
tribute to the constructive interference of
Bragg scattering only when it is located
exactly at its official position in the lat-
tice, this scattering becomes weaker the
more the atoms vibrate and the less time
they spend at their official positions.

When a crystal structure is deter-
mined from single-crystal or powder dif-
fraction, the extent of the thermal mo-
tion of the atoms is found at the same
time as the atomic positions. Often, the
thermal motions are anisotropic, indicat-
ing that it is easier for an atom to move
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in particular directions away from its
equilibrium position. Sometimes this
information can be related to other prop-
erties, such as structural changes that
occur at a phase transition or elastic
anisotropy.

Although such weakening of the
scattering signal is the only effect of
the thermal motion of atoms on elas-
tic Bragg scattering, it is not the only
way to use neutrons to observe atomic
motion. In fact, one of the great ad-
vantages of neutrons as a probe of con-
densed matter is that they can be used
to measure the details of atomic and
molecular motions by measuring inelas-
tic scattering. In other words, when the
neutron bounces off a molecular frame-
work that is not totally rigid, we can
have an inelastic interaction with an ex-
change of energy between neutrons and
the lattice.

To explain this, we begin with an-
other simple analogy. If one end of
a rope is tied to a fixed point and the
other end is jerked up and down, a
wave can be observed traveling along
the rope. A discontinuous version of
this effect can be obtained with a chorus
line (for this analogy I am indebted to
a colleague who once choreographed it
for a midwestern television station). If
each member of the line swings a leg
but starts the swing slightly after his
or her nearest neighbor to one side, the
net effect is the appearance of a wave
traveling along the line. The thermal
motion of atoms in a crystal can be de-
scribed in terms of a superposition of
waves of this sort. One may imagine
the atoms to be the feet of the members
of the chorus line.

The analogy, if not the image, can
be improved by replacing the swinging
legs with rigid pendulums with weights
at their extremities. Rather than watch-
ing for a neighbor to swing a leg, we
achieve coupling by attaching identical
springs between each pendulum and its
two nearest neighbors. Now, if we dis-

place one pendulum, the springs tend
to cause the neighboring pendulums to
move as well, and a wave starts pass-
ing up and down the line, just as it did
for the chorus. The frequency of motion
depends on the mass of the pendulums
and the stiffness of the springs that con-
nect them.

Waves similar to those in the chain
of pendulums pass through a lattice of
atoms connected by the binding forces
that are responsible for the cohesion
of matter. The whole effect is much
more difficult to visualize in this case,
however, because it happens in three di-
mensions. Nevertheless, it is possible
to prove that any atomic motion in a
crystal can be described by a superpo-
sition of waves of different frequencies
and wavelengths traveling in different
directions. In other words, the thermal
motion of the atoms about their lattice
sites can be described as a superposition
of waves moving through the lattice,
and these waves are known as phonons.
Their energies are quantized so that
each phonon has an energy hv, where
v is the frequency of atomic motion as-
sociated with that phonon. Just as in the
pendulum analogy, the frequency of a
phonon depends on the wavelength of
the distortion, the masses of the atoms,
and the stiffness of the “springs,” or
binding forces, that connect them.

When a neutron is scattered by a
crystalline solid, it can absorb or emit
an amount of energy equal to a quantum
of phonon energy, hv. This gives rise to
inelastic coherent scattering of neutrons
in which the neutron energy before and
after the scattering event differ by an

In most solids v is a few times 1012

hertz, and the corresponding phonon
energy is a few meV (1012 hertz cor-
responds to an energy of 4.18 meV).
Because the thermal neutrons used for
scattering experiments also have ener-
gies in the meV range, scattering by a
phonon causes an appreciable fractional
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phonons

Fundamental vibrational waves in a crystal in
which nuclei oscillate in a coordinated manner
about their “official” positions.

change in the neutron energy. This al-
lows an accurate measurement of the
energy change and makes neutrons an
ideal tool for measuring phonon fre-
quencies and hence for obtaining infor-
mation about the forces that hold matter
together.

For inelastic scattering—from pho-
nons, for example—a neutron has differ-
ent velocities, and thus different wave
vectors, before and after it interacts
with the sample; so the corresponding
sides of the scattering triangle (k and
k’ in Fig. 5b) are of unequal lengths.
To determine the phonon energy and
the scattering vector, Q, we need to de-
termine the neutron wave vector be-
fore and after the scattering event. At
a reactor we may resort to the method
already discussed—Bragg scattering
from single crystals. A first crystal, the
monochromator, directs neutrons of a
given energy at the sample (as was done
for the powder diffractometer shown
in Fig. 9). After the sample scatters
these neutrons in various directions, a
second crystal—positioned at a well-
defined scattering angle and called the
analyzer -Bragg reflects only those
neutrons that have a particular energy
into a suitably placed detector. This
type of instrument is called a three-axis
spectrometer (Fig. 15) because there are
three centers (monochromator, sample,
and analyzer) at which the scattering an-
gles can be altered. Such instruments
are the workhorses for the measurement
of phonons at reactors.

Three-axis spectrometers have con-
tributed prolifically to the various sci-
entific problems studied by neutron
scattering, probably because they are
so inefficient. At each setting of the
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spectrometer-corresponding to partic-
ular scattering angles at the monochro-
mator, sample, and analyzer—a mea-
surement is made for a single scatter-

Each measurement usually takes sev-
eral minutes; a complete scan at a series

days. This inefficiency has advantages,
though—it allows the experimenter to
concentrate on measuring particular ex-
citations at particular values of Q and

each new measurement in light of the
data already accumulated.

The success of three-axis spectrome-
ters leads to an interesting philosophical
dilemma. Does materials science by
its very nature require for its study an
instrument such as a three-axis spec-
trometer? That is, is there some reason
to believe that a majority of interest-
ing and important effects occur, like
Bragg scattering, only in a restricted

understanding of materials actually been
hampered because three-axis spectrom-
eters have been so popular and prolific?
Have we seen only a part of the truth
because three-axis spectrometers can
only probe a single scattering vector and
energy transfer at one time? Would we
learn more if we could make measure-
ments for a wide range of values of Q

the extensive use of alternative types of
spectrometers can answer this question.
Many of the instruments that are best
suited to surveys of neutron scattering
for large ranges of scattering vector and
energy transfer are located at spallation
sources such as the one at LANSCE.

There is no real equivalent of the
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THREE-AXIS
NEUTRON SPECTROMETER

Fig. 15. A three-axis spectrometer built by
the author at the Institut Laue Langevin in
Grenoble, France. The scattering angles at
the monochromator, sample, and analyzer
can be varied by moving these connected
units on the air pads seen in the photograph.
This spectrometer is equipped for polarization
analysis. The hollow box-like object on the
sample table has current-carrying wires along
each edge that can produce a field of about
100 oersteds at any direction on a sample
placed at the center of the box. Various spin
flippers, diaphragms, and filters are mounted
on the optical benches before and after the
sample position.

three-axis spectrometer that can be built
at a spallation source. Inelastic scat-
tering can, however, be measured in a
variety of ways. Perhaps the simplest
is to place an analyzing crystal in the
scattered neutron beam just as one does
with the three-axis machine. This crys-
tal determines the final energy of the
neutrons scattered by the sample. Once
this energy and the total time of flight
from the moderator to the detector are
known, the incident energy can also be
deduced.

Another method of measuring in-
elastic scattering at a pulsed spallation
source has been used to obtain some
of the data discussed by Juergen Eck-
ert and Phil Vergamini (see “Neutrons
and Catalysis”). This method uses a fil-
ter rather than an analyzing crystal in
the scattered neutron beam. The filter
allows only neutrons whose energy is
less than a certain cutoff value to pass
through to a detector behind the filter.
Filters of this type can be made, for
example, from a block of cooled poly-
crystalline beryllium that is several cen-
timeters thick, When neutrons impinge
on the block, they are scattered just as
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they would be from any polycrystalline
material. But there is a maximum value
of the neutron wavelength beyond which
Bragg scattering cannot occur because
there are no atomic planes spaced far
enough apart to diffract these long-
wavelength neutrons. Neutrons with
wavelengths greater than the cut-off
therefore pass through, the filter without
being scattered out of’ the beam. In the
case of beryllium, neutrons with wave-
lengths greater than about 4 angstroms
(energies less than about 5 meV) are
transmitted. In the Filter-Difference
Spectrometer at LANSCE, two filters
are used, beryllium and beryllium ox-
ide. The latter material transmits neu-
trons with energies below 3.7 meV. By
subtracting data obtained with the BeO
filter from that obtained with the Be fil-
ter, we obtain a result that includes only
those neutrons with final energies in the
narrow window between 3.7 meV and
5 meV, the two filtering energies. This
technique allows the energy of the scat-
tered neutrons to be determined accu-
rately. As usual, the total time of flight
lets us deduce the incident energy of the
neutrons.

The Filter Difference Spectrometer
is not well suited for measurements of
phonons because the geometry of the
instrument makes it inherently difficult
to determine the scattering vector, Q, to
a high degree of accuracy. This is an
advantage when one is measuring in-
coherent inelastic scattering, however,

independent of Q, and one may sum
scattered intensities for many values of
Q, thereby increasing the statistical ac-
curacy of the data obtained. This sum-
mation is accomplished automatically
with the Filter Difference Spectrometer
at LANSCE.

The final method of measuring inelas-
tic scattering at a spallation source—a
method that does determine the scat-
tering vector accurately—makes use of
a so-called chopper spectrometer. The
chopper, which can be thought of as a
short (20-centimeter) pipe rotating about
an axis perpendicular to its length, is
placed in the neutron beam ahead of
the scattering sample. If the pipe is ro-
tating at a frequency that is an integral
multiple of that of the pulsed neutron
source, it briefly becomes aligned with
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the neutron beam at the same time dur-
ing each neutron pulse from the mod-
erator. Because the chopper is usually
several meters from the neutron mod-
erator, the fast neutrons in each pulse
arrive at the chopper ahead of their
slower brethren. Only those neutrons
that arrive at the chopper when it is
open—that is, aligned with the beam—
get through. Thus, the chopper selects
neutrons in a small band of velocities
and allows them to impinge on the sam-
ple. Neutrons outside this band will
arrive either too late or too early at the
chopper and will be stopped. The chop-
per thus determines the wave vector of
the neutrons incident on the sample,
whereas a measurement of the total time
of flight allows the wave vector of the
scattered neutrons to be calculated as
well.

A great advantage of chopper spec-
trometers is that neutron detectors can
be placed at many different scattering
angles simultaneously, allowing scatter-
ing to be recorded at many values of Q

perimenter is inundated with data and
must rely heavily on computers to re-
duce the massive array of numbers to
something comprehensible.

In fact, massive amounts of data are
the norm for spectrometers at spallation
sources. At each detector, a series of Q

spond to a full range of differing flight
times of the detected neutrons. One au-
tomatically obtains these values whether
one wants the flood of data or not. In
short, a three-axis spectrometer at a re-
actor source is a rifle, whereas its equiv-
alent at a spallation source is a shot-
gun. Which source is more efficient for
a given experiment really depends on
what type of information one wants—
a single bull’s-eye or a barn door full
of interesting holes! More seriously,
we can obtain a detailed knowledge of
the scattering law for a few values of

24

extended picture covering a wide range
of these variables at a spallation source.

Magnetic Scattering

So far we have discussed only the
interaction between neutrons and atomic
nuclei. But there is another interaction
between neutrons and matter—one that
results from the fact that a neutron has a
magnetic moment (Fig. 2). Just as two
bar magnets either attract or repel one
another, the neutron experiences a force
of magnetic origin whenever it passes
close to another magnetic particle, such
as an electron in matter.

Most electrons in atoms or in matter
are paired so that the magnetic moment
of one electron cancels that of its part-
ner. Occasionally, however, not all the
outer, or binding, electrons are paired in
a particular compound, and neutrons are
scattered by the resulting magnetic mo-
ments. Diffraction experiments, similar
to those described earlier, can be used
to measure the density of such unpaired
electrons between the atoms of a solid.

Ferromagnetic materials, such as iron,
are magnetic because the moments of
their unpaired electrons tend to align
spontaneously. For many purposes, such
materials behave as if a small magnetic
moment were located at each atomic
site with all the moments pointed in the
same direction. These moments give
rise to Bragg diffraction of neutrons in
the same manner as the nuclear inter-
action. Because nuclear and magnetic
interactions experienced by the neu-
tron are of similar magnitude, the cor-
responding Bragg reflections are also of
comparable intensity.

One difference between the two types
of scattering, however, is that magnetic
scattering, unlike its nuclear counter-
part, is not isotropic. The magnetic in-
teraction has a dipolar nature, which
can easily be observed by bringing two
bar magnets close to one another. Sup-
pose the two magnets are parallel with

their north poles pointing upward. If
one magnet is above the other, unlike
poles will be close, and the magnets
will attract; if they are side by side,
like poles will be close, and the mag-
nets will repel. For neutrons, the dipolar
nature of magnetic interaction means
that only the component of the sample’s
magnetization that is perpendicular to
the scattering vector, Q, is effective in
scattering neutrons. Neutron scattering
is therefore sensitive to the direction of
magnetization in a material as well as to
its spatial distribution.

The anisotropic nature of the mag-
netic interaction can be used to separate
nuclear and magnetic Bragg peaks in
ferromagnets, for which both types of
Bragg peaks occur at the same values
of Q. If the electronic moments can be
aligned by an applied magnetic field,
magnetic Bragg peaks for which Q is
parallel to the induced magnetization
vanish, leaving only the nuclear com-
ponent. On the other hand, an equiva-
lent Bragg peak for which the scattering
vector is perpendicular to the field will
manifest both nuclear and magnetic con-
tributions.

In an antiferromagnet (a material with
unpaired electrons that have an alter-
nating, or antiparallel, arrangement),
the repeat distance between planes of
magnetic moments is twice that of the
spacing between corresponding planes
of atoms. As a result, Bragg’s law is
satisfied at scattering angles whose sines
are half those for normal Bragg scat-
tering, as well as at the normal angles.
Half the magnetic Bragg peaks fall be-
tween their nuclear counterparts, and
the problem of separating magnetic and
nuclear contributions does not arise.
Nevertheless, the dipolar character of
the magnetic interaction again allows
the electronic spin directions to be es-
tablished. A recent example of this
is to be found in the superconducting
cuprates—the so-called high-temperature
superconductors—some of which are an-
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(a)

Neutron

(b)

Cooling
Fan

A FLAT-COIL NEUTRON-SPIN FLIPPER

Fig. 16. (a) Schematic diagram of one type of neutron flipper. A direct current in the horizontal
coil of aluminum wires (blue) produces a field HI inside the device that is equal but opposite
to the neutron guide field Hguide, effectively canceling that component. The vertical coil (red)
produces a field Hz that is at right angles to the guide field and thus to the moment of the
neutron, causing it to precess. The strength of this field and the thickneas d of the flipper are
chosen so that the neutron precesses exactly 160 degrees during its passage. (b) Photograph
of disassembled neutron flipper. The penetrating power of neutrons is apparent in the fact that
there is no “window” in the two coils of wire; the neutrons pass on through the aluminum wire
unimpeded. The component on the right produces a vertical guide fieid of about 40 oersteds.

tiferromagnetic when oxygen deficient.

Polarized Neutrons. Usually, a neu-
tron beam contains neutrons with mag-
netic moments pointing in all directions.
If we could measure the number of neu-
trons with moments parallel and antipar-
allel to a particular direction—say an
applied magnetic field-we would find
equal populations. However, various

special techniques can generate a po-
larized beam, that is, one with a large
fraction of its neutron moments in the
same direction. The polarization of such
a beam can be maintained by applying
a modest magnetic field (a few tens of
oersteds) all along the beam. Such a
field is called the guide field.

There are several ways to polarize
neutron beams: Bragg diffraction from

suitable magnetized crystals, reflec-
tion from magnetized mirrors made of
cobalt and iron (CoFe), and transmis-
sion through polarized helium-3, for ex-
ample. Each of these methods aligns
the neutron moments parallel or an-
tiparallel to an applied magnetic field.
If the neutron moments are parallel
to the field, they are said to be’ up; if
the moments are antiparallel, they are
said to be down. An ‘up’ polarizer will
not transmit ‘down’ neutrons, just as a
‘down’ polarizer blocks ‘up’ neutrons.
Thus, by placing an cup’ polarizer be-
fore and after a scattering sample, the
neutron scattering law can be measured
for those scattering processes in which
the direction of the neutron moment
is not changed. To measure the other
combinations—such as ‘up’ neutrons be-
ing flipped to ‘down’ neutrons—requires
either a variety of different ‘up’ and
‘down’ polarizers or a device called
a flipper. Because polarizers tend to
be expensive, flippers are the practical
choice.

A flipper is a device that can change
the direction of a neutron moment from
up to down or vice versa. This can be
done in one of two ways. Either the
guide-field direction can be inverted
without changing the direction of the
neutron moment in space, or the neutron
moment can be inverted without alter-
ing the direction of the guide field. In
either case, the direction of the neutron
moment with respect to the field (which
is all that counts) has been changed.

An example of the second type of
flipper is shown in Fig. 16. It consists
of two flat coils of wire wrapped one on
top of the other. One of the coils pro-
duces a field inside the flipper that is
equal and opposite to the guide field, ef-
fectively canceling that component, and
the other coil produces a field perpen-
dicular to the guide field. Thus, when
a neutron enters the flipper, it suddenly
experiences a magnetic field that is at
right angles to the direction of its mag-
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netic moment. In this situation the clas-
sical equations that describe the motion
of the neutron moment are similar to
those of a rotating top that has been
pushed by a force from the side and
so begins processing about its original
axis of rotation. The neutron does the
same thing—its moment starts to pre-
cess about the local field direction at a
rate known as the Larmor frequency,
which depends on the magnitude of the
field inside the flipper. By choosing the
thickness of the flipper and the strength
of the field in the second coil appropri-
ately, one can arrange for the neutron
moment to rotate precisely 180 degrees
during its passage through the flipper.
Clearly, if a neutron’s moment was up
before the flipper, it will be down after
the flipper, and vice versa.

Now suppose we have a spectrome-
ter with polarizers before and after the
scattering sample. If flippers are in-
serted on either side of the sample, we
can measure all of the neutron scatter-
ing laws—up to down. up to up, and
so forth-simply by turning the appro-
priate flipper on or off. This technique,
known as polarization analysis, is useful
because some scattering processes flip
the neutron’s moment whereas others do
not.

Scattering from a sample that is mag-
netized provides a good example. Mag-
netic scattering will flip the neutron’s
moment if the magnetization responsi-
ble for the scattering is perpendicular to
the guide field used to maintain the neu-
tron polarization. If the magnetization
is parallel to the guide field, no flipping
occurs. Thus, like the dipolar interaction
described earlier, polarization analysis is
a technique that helps determine the di-
rection of electronic moments in matter.

Incoherent scattering that arises from
the random distribution of nuclear spin
states in materials provides another ex-
ample of the use of polarization anal-
ysis. Most isotopes have several spin
states, and the scattering cross section
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for a nucleus varies with spin state. The
random distribution of nuclear spins in
the sample gives rise to incoherent scat-
tering of neutrons. It turns out that two-
thirds of the neutrons scattered by this
incoherent process have their moments
flipped, whereas the moments of the re-
maining third are unaffected. This result
is independent of the isotope that is re-
sponsible for the scattering and of the
direction of the guide field. Although
incoherent scattering can also arise if a
sample contains a mixture of isotopes of
a particular element, neither this second
type of incoherent scattering nor coher-
ent nuclear scattering flip the neutron’s
moment. Polarization analysis thus be-
comes an essential tool for sorting out
these different types of scattering, al-
lowing nuclear coherent scattering to be
distinguished from magnetic scattering
and spin-incoherent scattering.

Polarization analysis has been partic-
ularly useful in the study of magnetic
phenomena because it has helped to de-
termine the directions of the magnetic
fluctuations responsible for scattering.
Without this technique, many of the el-
egant experiments that have provided
confirmation for ideas about nonlinear
physics (see “Nonlinear Science—From
Paradigms to Practicalities” by David K.
Campbell, Los Alamos Science No. 15,
1987) could not have been performed.
The three-axis spectrometer of Fig. 15,
for example, is equipped for polarization
analysis.

Magnons. Another important aspect
of magnetized materials is the fact that
the directions of the atomic moments
in a material such as iron can oscillate
like the pendulums considered earlier
for lattice vibrations. Here again, there
is a coupling between magnetization at
different atomic sites, and a wave of
magnetic oscillations can pass through
the material. These magnetic excita-
tions, or magnons, are the magnetic
analogue of the phonon displacement

waves described earlier. Not surpris-
ingly, magnon frequencies can be mea-
sured by inelastic neutron scattering in
the same way as phonon frequencies.
Since the magnetic oscillations that
make up the magnons are perpendicu-
lar to the equilibrium direction of the
atomic moments, the scattering causes
the magnetic moment of the neutrons to
be flipped, provided the neutron guide
field is parallel to the equilibrium di-
rection of the atomic moments. This,
of course, allows one to distinguish be-
tween phonons and magnons.

Surface Structure

So far we have described only exper-
iments in which the structure of bulk
matter is probed. One may ask whether
neutrons can provide any information
about the structure of the surfaces of
materials. At first sight, one might
expect the answer to be a resounding
"No!” After all, one of the advantages
of neutrons is that they can penetrate
deeply into matter without being af-
fected by the surface. Furthermore,
because neutrons interact only weakly
with matter, large samples are generally
required. Because there are far fewer
atoms on the surface of a sample than
in its interior, it seems unreasonable to
expect neutron scattering to be sensitive
to surface structure.

In spite of these objections, it turns
out that neutrons are sensitive to sur-
face structure when they impinge on
the surface at sufficiently low angles.
In fact, for smooth surfaces, perfect re-
flection of neutrons occurs for almost
all materials at angles of incidence (the
angle between the incident beam and
the surface) less than a critical angle,

to the coherent scattering-length density
of the material and the neutron wave-
length. For a good reflector, such as
nickel, the critical angle measured in de-
grees is about one-tenth of the neutron
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0.05 0.1 0.15 0.2 0.25

wavelength measured in angstroms—
it is well under a degree for thermal
neutrons. As the angle of incidence in-
creases above the critical angle, less
and less of the incident neutrons are re-
flected by the surface. In fact, reflectiv-
ity, which measures the fraction of neu-
trons reflected from the surface, obeys
the same law, discovered by Fresnel,
that applies to the reflection of light: re-
flectivity decreases as the fourth power
of the angle of incidence at sufficiently
large grazing angles.

However, Fresnel’s law applies to re-
flection of radiation from the smooth,
flat surface of a homogeneous material.
If the material is inhomogeneous and
there is a variation of the scattering-
length density perpendicular to the sur-
face, the neutron reflectivity, measured
as a function of the angle of incidence,
shows a more complicated behavior. By
keeping the reflection angle, 8, small,
neutron reflectometry can be used to
probe density variations in the surface
to depths of a few thousand angstroms
with a resolution of a few angstroms.

Most of today’s technical gadgets
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are either painted or coated in some
fashion to prevent corrosion or wear.
Reflectometry can often provide useful
information about such protective lay-
ers. Figure 17, for example, shows the
reflectivity, measured on the LANSCE
Surface Profile Analysis Reflectome-
ter (SPEAR), from a 1500-angstrom
layer of diblock copolymer (polystyrene-
polymethylmethacrylate) multilayer
deposited on a silicon substrate. The
spacing of the undulations in this result
provides a direct measure of the aver-
age thickness of the polymer layers in
the film. When the detailed shape of
the reflectivity profile is compared with
theoretical predictions, the density and
thickness of the polymer layers, as well
as the thickness of the interface between
layers, can be deduced.

Neutron reflectometry is a relatively
new technique. It is also one ideally
suited to spallation sources. In the next
few years I expect the method to pro-
vide new information on subjects as di-
verse as the recycling of polymers, mag-
netic recording media, and the cleanup
of oil spills. For someone like me who

SURFACE REFLECTIVITY
MEASUREMENTS

Fig. 17. Neutron reflectivity as a function

thick diblock copolymer (polystyrene-poly-
methylmethacrylate) multilayer deposited on
a silicon substrate. The solid line represents
calculated reflectivity for the data shown. The
calculation was performed by Tom Russell,
IBM Almaden Research Labs.

has been associated with neutron scat-
tering for more than twenty years, the
birth of this new technique is a happy
event. It means that there are still qual-
itatively new ways in which neutrons
can help unravel the complex struc-
tures of the materials on which we de-
pend. ■
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The Mathematical Foundations
of Neutron Scattering

I trons scattered by any assembly of nuclei. His result makes use of Fermi ob-
servation that the actual interaction between a neutron and a nucleus may be

replaced by an effective potential that is much weaker than the actual interaction.
This pseudo-potential causes the same scattering as the actual interaction but is weak
enough to be used in the perturbation expansion derived by Max Born. The Born ap-
proximation says that the probability of an incident plane wave of wave vector k be-
ing scattered by a weak potential V (r) to become an outgoing plane wave with wave
vector k’ is proportional to

(1)

where the integration is over the volume of the scattering sample. (We should note
that even though individual nuclei scatter spherically, V (r) represents the potential
due to the entire sample, and the resulting disturbance for the assembly of’ atoms is a
plane wave.)

The potential to be used in Eq. 1 is Fermi’s pseudo-potential. which, for a single

vector r coincides with rj. Thus, for an assembly of nuclei, such as a crystal, the
potential V (r) is the sum of individual neutron-nuclei interactions:

(2)

where the summation is over all the nuclear sites in the crystal.
Using Eqs. 1 and 2, Van Hove was able to show that the scattering law—that is,

the number of neutrons scattered per incident neutron-can be written as

(3)

Note that the sum here is over pairs of nuclei j and k and that the nucleus labeled j
is at position r;(f) at time t, whereas the nucleus labeled k is at position rk(0) at time
t = 0. The angular brackets (. .) denote an average over all possible starting times
for observations of the system, which is equivalent to an average over all the possible
thermodynamic states of the sample.

The position vectors rj in Eq. 3 are quantum-mechanical operators that have
to be manipulated carefully. Nevertheless, it is instructive to ignore this subtlety
and treat the equation as if it described a system obeying classical mechanics be-
cause such an approach clarifies the physical meaning of the equation. The sum over
atomic sites in Eq. 3 can then be rewritten as
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in which the Dirac delta function appears again, this time in terms of r and a differ-
ence vector between the position of nucleus j at time t and that of nucleus k at time
zero.

Let us suppose for the moment that the scattering lengths of all the atoms in our
sample are the same (b j = bk = b). In this case, the scattering lengths in Eq. 4 can be
removed from the summation, and the right side becomes

(5a)

and N is the number of atoms in the sample. The delta function in the definition of
G(r, t) is zero except when the position of an atom k at time zero and the position
of atom j at time t are separated by the vector r. Because the delta functions are
summed over all possible pairs of atoms to obtain G (r, t), this function is equal to
the probability of an atom being at the origin of a coordinate system at time zero
and an atom being at position r at time t. G (r, t) is generally referred to as the time-
dependent pair-correlation function because it describes how the correlation between
two particles evolves with time.

Van Hove’s neutron-scattering law (Eq. 3) can now be written as

(6)

forms of the time-dependent pair-correlation function. This general result gave a uni-
fied description for all neutron-scattering experiments and thus provided the frame-
work for defining neutron scattering as a field.

Fourier transform of a function that gives the probability of finding two atoms a cer-
tain distance apart-is responsible for the power of neutron scattering. By inverting
Eq. 6, information about both structure and dynamics of condensed matter may be
obtained from the scattering law.

Coherent and Incoherent Scattering

Even for a sample made up of a single isotope, all of the scattering lengths that
appear in Eq. 3 will not be equal. This is because the scattering length of a nucleus
depends on its spin state, and most isotopes have several spin states. Generally, how-
ever, there is no correlation between the spin of a nucleus and its position in a sam-
ple of matter. For this reason, the scattering lengths that appear in Eq. 3 can be av-
eraged over the nuclear spin states without affecting the thermodynamic average (de-
noted by the angular brackets).

value of b2 (b2). In terms of these quantities, the sum in Eq. 3 can
the nuclear spins to give

and the average
be averaged over

where Ajk is shorthand for the integral in Eq. 3. The first term on the right side of
Eq. 7 represents the so-called coherent scattering, whereas the second represents
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(7)
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the incoherent scattering. Thus, we can define the coherent and. incoherent scattering
lengths as

(8)

The expression for the coherent scattering law is a sum over both j and k and
thus involves correlations between the position of an atom j at time zero and the
position of a second atom k at time t. Although j and k are occasionally the same
atom, in general they are not the same because the number N of nuclei in the sample
is large. We can thus say that coherent scattering essentially describes interference
between waves produced by the scattering of a single neutron from all the nuclei in
a sample. The intensity for this type of scattering varies strongly with the scattering
angle.

Incoherent scattering, on the other hand, involves correlations between the posi-
tion of an atom j at time zero and the position of the same atom at time t. Thus, in
incoherent scattering, the scattered waves from different nuclei do not interfere with
each other. For this reason, incoherent scattering provides a good method of exam-
ining processes in which atoms diffuse. In most situations, the incoherent scattering
intensity is isotropic; that is, it is the same for any scattering angle. This effect of-
ten allows incoherent scattering to be ignored when observing coherent scattering
because the incoherent effects just add intensity to a structureless background.

The values of the coherent and incoherent scattering lengths for different ele-
ments and isotopes do not vary in any obviously systematic way throughout the peri-
odic table. For example, hydrogen has a large incoherent scattering length (25.18 fer-
mis) and a small coherent scattering length (–3.74 fermis). Deuterium, on the other
hand, has a small incoherent scattering length (3.99 fermis) and a relatively large co-
herent scattering length (6.67 fermis). As mentioned in the main article, the differ-
ence between the coherent scattering lengths of hydrogen and deuterium is the basis
of an isotopic-labeling technique, called contrast matching, that is especially impor-
tant in applications of neutron scattering to structural biology and polymer science.

Diffraction
One of the important applications of Van Hove’s equation (Eq. 3) is the scatter-

ing law for diffraction, which we develop here for a crystal containing a single iso-

neutron diffractometers actually integrate over the energies of scattered neutrons.

to be evaluated at t = O for diffraction. The result, for a crystal containing a single
isotope, is

(9)
j,k

where the atomic positions rj and rk are evaluated at the same instant.
If the atoms in a sample were truly stationary, the thermodynamic averaging

brackets could be removed from Eq. 9 because rj and rk would be constant. In re-
ality the atoms oscillate about their equilibrium positions and only spend a fraction
of their time at these positions, When this is taken into account, the thermodynamic
average introduces another factor, called the Debye-Wailer factor, and Eq. 9 then be-
comes
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,
1’

librium position and diffracted intensity is now also called S (Q), the structure factor.
This equation is the basis of any crystallographic analysis of neutron-diffraction data.

Small-Angle Scattering.

An important simplification of Eq. 3 occurs when the scattering angle is small.
This approximation leads to the formula for one of the most popular neutron-scatter-
ing techniques—SANS, or small-angle neutron scattering.

Although Eq. 3 correctly describes neutron scattering at any scattering angle,
when the magnitude of Q is very small compared to a typical interatomic distance,
the exponential factors in Eq. 3 do not vary much from atom to atom, and the sum
over the atomic sites may be replaced by an integral. As a result, the small-angle
scattering law for coherent, elastic scattering from an assembly of “objects” (such as
those depicted in Fig. 13 in the main text) can be written

where b (r) is the scattering-length density and the integral extends over the entire
sample. To calculate b (r) for a large molecule, for example, we simply add up the
coherent scattering lengths of the atoms in the molecule and divide by the molecular
volume. Equation 11 is essentially a coarse-grained version of the “truth” given by
Eq. 3 and is valid only when Q is small. However, it is the basic analytic tool of
small-angle scattering. ■
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