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How final-state effects
were really calculated

T
he derivation of final-state broadening presented in the main text was phys-
ically intuitive but, like all heuristic arguments, involved a sleight of hand:
The classical-trajectory concept was not derived from first principles. In prac-

tice. the theory of final-state effects is a very difficult many-body problem. Conven-
tional perturbative expansion about the non-interacting ground state. a technique so
successful in calculating the properties of’ weakly interacting systems, is not a use-
ful approach here because helium atoms interact at short distances through a steeply
repulsive potential. However. alternatives to perturbation methods, such as the varia-
tional and Monte Carlo methods. are capable of handling strongly interacting systems
and thus have been most successful in calculating ground-state properties of helium,
including the momentum distribution n(p) and the pair-correlation function g(r).

In order to test the ground-state results against neutron-scattering experiments,
we need to calculate the dynamical response of the system to neutron scattering.
Since we have an obvious interest in not repeating the considerable work involved
in generating the ground-state results, we want to calculate the response by applying
perturbation theory to the variational and Monte Carlo results for the ground state.
However, conventional perturbation theory is again out of the question because the
dynamical response also involves helium-helium interactions.

Before we present our solution to this problem, let’s outline the starting point.
We assume that neutron scattering at momentum transfer h Q introduces, at time zero,
a fluctuation about the ground state in the density of atoms with wave vector Q. By
calculating the amplitude of that density fluctuation at a later time t and taking its
Fourier transform, we can determine S (Q, w), the observed scattering law. (Note
that w is conjugate to t.) The density fluctuation is equal to a summation over all
so-called particle-hole excitations about the ground state, that is, over all processes
that add to the ground state an atom with wave vector k + Q and remove from the
ground state an atom with wave vector k.

In the impulse approximation we assume that the particle-hole excitations prop-
agate freely without interacting with other atoms. Final-state effects, on the other

hand, are due to interaction of the excitations with other atoms. Scattering of a par-
ticle and a hole creates more particle-hole excitations about the ground state. Al-
though in principle an infinity of multiple scattering of a particle-hole pair can oc-
cur, the correlations in the ground-state wave function imply that only single addi-
tional particle-hole excitations need be considered. In effect, the correlations screen
the steeply repulsive core interaction at short distances, rendering that interaction fi-
nite. After all, to minimize their energy in the ground state, the atoms tend to sit in
the attractive part of the potential, far away from its steeply repulsive core. Thus the
effective final-state interactions can be characterized by a small parameter. and per-
turbation theory can be used for systematic, controlled calculations.

The divergent terms in the perturbative expansion of S(Q, w) involve all pro-

finite results, those divergent terms must be explicitly resummed to all orders in the
perturbation expansion. In practice. the summation is accomplished by defining a
“projection superoperator.” which acts in the Hilbert space of (k + Q, k ) particle-hole
excitations about the ground state much as ordinary operators act in the Hilbert space
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Law = Impulse Approximation + New Final-State-Effects TheoryNeutron Scattering

k + Q

NEW THEORY OF
FINAL-STATE EFFECTS

The author approximates the neutron scatter-
ing law for helium as the sum of the impulse

approximation and one additional scattering
that accounts for final-state effects. Shown
here are Feynman diagrams for that approxi-
mation. The Feynman diagram for the neutron

scattering law represents the propagation of a
particle-hole excitation that removes a particle
of wave vector k from the ground state and

adds to the ground state a particle of wave
vector k + Q. Arrows denote the direction of

momentum flow. Arrows pointing right denote
particle lines; arrows pointing left denote hole
lines. Only the particle lines carry high mo-
mentum. The hatched area denotes the exact

result for S(Q, w) including all scattering of

particles and holes. The Feynman diagram
for the impulse approximation indicates that

both particles and holes propagate without

scattering. The Feynman diagram. for the
final-state effects indicates that each particle
scatters from another atom and creates a new
particle-hole excitation. (Further scattering

are possible but not included in the approxi-
mation.) The shaded square is the two-particle

density matrix describing the correlations be-
tween the two holes in the ground state

created by the two particle-hole excitations.
The hole-hole correlations are related by sum

rules to the pair-correlation function of the
ground state. The dashed lines represent the

two-particle t-matrix that describes particle

scattering. Because the hatched area appears
in the Feynman diagrams for both the neutron

scattering law and the final-state effects,
the scattering that transform a (k + Q, k)

calculated self-consistently.
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Particle-Hole Excitation
by Neutron Scattering

Q

of quantum-mechanical states. The neutron scattering law then equals the expectation
value of the projection superoperator, and calculations analogous to ordinary pertur-
bation theory can be carried out in the superoperator Hilbert space. The effective
interaction is the two-atom scattering matrix multiplied by a ground-state correlation
function, which acts to screen the short-distance pathologies of the potential. Addi-
tional restrictions on the important scattering processes are obtained by noting that
all k entering a two-particle density matrix must be characteristic of the ground-state
wave function, as given by the momentum distribution, and that Q is much larger
than those characteristic values.

After the above procedure is implemented, the neutron scattering law can be
expressed as the sum of the impulse approximation and one additional scattering
process. The accompanying figure shows the Feynman diagrams for the components
of the sum. In the Feynman diagram for the one additional scattering process, the
dashed line represents the t-matrix describing the scattering of two particles and the
square represents the two-particle density matrix for the ground state. The latter ma-

trix is a generalization of the correlation functions, such as g(r) and n(p), that char-
acterize the ground-state wave function.

If we approximate the density matrix in terms of g(r) and n(p) in a way that
satisfies sum rules and, since Q is large, use a semiclassical approximation for the t-
matrix, then the final “Dyson” equation can be solved analytically. The result for the
final-state broadening, R(Y, Q), is given by

where

The above expression for R(Y, Q), which is somewhat more complicated than
Eq. 14 in the main text, is the expression we have plotted in Fig. 11 of the main text
and used in comparing theory with experiment. It is essentially the same as the fa-
miliar Wentzel-Kramers-Brillouin (WKB) classical-trajectory approximation taught in
elementary quantum mechanics except that the potential, V (x), is replaced by an “op-

the scattering of two helium atoms. The approach taken here is required for helium,
a strong scatterer, but it is satisfying that the result reduces to the WKB approxima-
tion in the limit of a weak scatterer. ■

Los Alamos Science Summer 1990


