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arallel computers provide the most
powerful information-processing
capabilities available.  Like all dig-

ital computers, they represent and
process information in ways that are
based on simple ideas of Boolean logic.
In this article we introduce those ideas
and sketch the ways in which they are
implemented in the elementary circuits
of electronic computers.  We then dis-
cuss the principles behind the high per-
formance—in particular, the high
speed—of vector and parallel supercom-
puters.

 

Digital Information, Boolean
Logic, and Basic Operations

Suppose that an airplane is about to
enter a runway for takeoff.  The air-
traffic controller must determine, with
the aid of a computer, whether the 
plane can safely proceed onto the run-
way.  Has the airplane that just landed
cleared the runway?  Are all incoming
planes sufficiently far away?  The
answers to those questions—yes or no,

true or false—are information of a kind
that can be managed by digital comput-
ers.  The two possibilities are encoded
within a computer by the two possible
output states of electronic devices.  For
instance, “Yes” or “True” can be repre-
sented by an output signal on the order
of 5 volts, and “No” or “False” by a
near-zero voltage level.  This simple
code is the basis of the more complicat-

ed codes by which information is repre-
sented in computers.

Suppose that a light on the air-traffic
controller’s console is to be lit if and
only if (1) the runway is clear of other
planes and (2) all incoming planes are at
a safe distance.  What is the mechanism
by which an electronic computer
“decides” whether to turn on the light?
Each of the two conditions is represent-
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ed by the voltage in a wire; when the
condition is true the wire is at roughly 5
volts.  (We imagine that the voltages are
set by the controller using manual
switches.)  The wires are the inputs to a
circuit called an AND gate.  The output
wire of the AND gate is at high voltage
(to turn on the light) only when both
input wires are at 5 volts, that is, when
the following statement is true: The 

runway is clear, and all incoming
planes are at a safe distance.  If the
voltage that represents statement 1 is
near zero (False), the output of the 
AND gate will also be at near zero volt-
age, so the light will not be lit.  Like
wise if the voltage representing state-
ment 2 is low or if both voltages are
low, the output will be at low voltage,

and the light will not be lit.  The simple 

arrangement of switches drawn above
acts as an AND gate that decides, on the
basis of the information given by its
inputs, whether to turn on the light.

Computers also use gates that make
other decisions.  For instance, OR gates
give an output of True when either or
both of two inputs is True.  The deci-
sions made by gates—whether an output
is to be True or False depending on
which inputs are True and which are
False—are equivalent to the operations
of Boolean logic (developed by George
Boole, a nineteenth-century English
mathematician).  As the arithmetic oper-
ation of multiplication is specified by a
multiplication table, Boolean operations
(or gates) are specified by their 

YES



“truth tables,” which show all possi-
ble input combinations and the con-
sequent outputs.  Figure 1 shows
truth tables for NOT, AND, and OR.
Figure 2 shows examples of electronic
circuits for NOT and AND gates.

The operations AND, OR, and NOT
can be combined to make other
Boolean operations by using the output
of one operation as an input of another.
For instance, computers frequently use
the EQUAL operation, which gives a
True output if and only if its two inputs
are equal (both True or both False).
That operation can be built from the
gates already defined:  Input 1 EQUAL
Input 2 is equivalent to (Input 1 AND
Input 2) OR (NOT Input 1 AND NOT
Input 2).  (The Boolean operations are
combined in the same way as mathe-
matical operations.) The EQUAL oper-
ation is used, for example, when a com-
puter checks whether a user intends to
delete a file.  The computer might
prompt the user, 

 

“If you’re sure
you want to delete that
file, type Y.”  The character
the user types is translated into a se-
quence of eight bits according to some
code such as ASCII.  If the sequence of
bits representing the typed character is
equal to the sequence of bits represent-
ing the letter Y, the output of the
EQUAL circuitry activates the circuitry
that deletes the file.  In fact, circuits
consisting only of the AND, OR, and
NOT gates defined above can make any
decision that depends only on which
statements in a given set are true and
which are false.*

In addition to processing characters
and logical statements, computers must
also process numbers.  Two-state elec-
tronic devices represent numbers

through the use of the base-2, or binary,
system—for instance, higher and lower
voltages can indicate 1 and 0, respec-
tively.  A many-digit number is repre-
sented by the voltages in an ordered
group of many such electronic devices.
In fact, any kind of quantitative infor-
mation can be represented by a series
of higher and lower voltages.  Further-
more, all of the operations of arithmetic
can be performed (on binary numbers)
by circuits made up of combinations of
logic gates and other simple compo-
nents.  For example, the truth table of
AND is a multiplication table if T is in-
terpreted as 1 and F as 0.  

Computers must also be able to store
and retrieve information.  Storage is
performed by “memory” devices that
can be set to maintain either a higher
voltage or a lower voltage in their out-
puts and that, once set, maintain that
voltage until they are reset.  In our ex-
ample of runway clearance at an airport,
these devices were manual switches, but
an electronic computer needs a memory
containing a large number of two-state
devices that can be set to either output
state electronically.  Such electronic cir-
cuits are called flip-flops.  A flip-flop
can be set to either state by the applica-
tion of a voltage pulse to the proper
input terminal, and it remains in that
state until the application of another
input voltage pulse.  Thus each flip-flop
“remembers” a single binary digit (ab-
breviated as “bit”), which is the smallest
unit of quantitative information.  Flip-
flops are usually organized into cells,
ordered arrays that each store a “word”
of binary data (often 16, 32, or 64 bits
long), which may encode a number, an
alphabetic or other character, or quanti-
tative information of any other kind.

The elements of electronic comput-
ers—electronic representation of infor-

mation, logic gates, and flip-flops—
provide the abilities to execute any
Boolean operation and to read and write
data.  The English mathematician Alan
Turing and others showed that if a ma-
chine has those abilities (and if it has
sufficient memory and enough time is
allowed), it can perform any known in-
formation-processing task that can be
specified by an algorithm—a sequence
of well-defined steps for solving a prob-
lem.  An algorithm may include alterna-
tive actions depending on contingencies.
A great many tasks can be specified by
algorithms, as shown by the abilities of
computers to perform them—such as
controlling a satellite in orbit, trading
stocks, and managing the text and fig-
ures for this magazine.  Indeed, the lim-
its of computers are unknown—though
computers cannot yet comment insight-
fully on a poem, no one has conclu-
sively ruled out that possibility.

Stored-Program Computers   

Computers accomplish calculations
and other tasks by executing “pro-
grams,” which are lists of instructions.
Examples of instructions are fetching a
number from memory, storing a num-
ber in memory, adding two numbers,
and comparing two numbers or two
characters.  To “run” a program, the in-
struction list must first be loaded into
memory in binary form.  Then each in-
struction is read from memory and car-
ried out by complicated circuits com-
posed of the gates described above.
Normally the instructions are performed
in sequence.  However, certain instruc-
tions allow different actions to be per-
formed under different conditions.  De-
pending on a specified input, these
instructions cause execution either to
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Figure 1.  Examples of Truth Tables

*In principle, AND, OR, and NOT gates can all
be built out of NAND gates (see Figure 2); they
can also be built out of NOR gates (whose output
is the opposite of that of an OR gate).  Thus a
computer could be built out of only one kind of
gate.
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Figure 2.  Computer Circuits
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An NPN transistor can be put into either a conducting or a 
nonconducting state by the input voltage applied to it, so it 
can be used as the basic two-state switch in all the gates of 
an electronic computer.  When an NPN transistor is used in 
a computer, the input is the voltage at the base and the 
output, which is controlled by the state of the transistor, is 
the voltage at the collector.  (The emitter is grounded, or 
held at 0 volts).  When the base is at a voltage near 5 volts, 
the transistor presents almost no resistance to the flow of 
electric current from the collector to the emitter, so the 
collector is effectively grounded.  When the base is at a 
voltage near 0, the transistor blocks the flow of current 
between the emitter and the collector, so the voltage at the 
collector is determined by the other connections of the 
collector.

A NOT gate, or inverter, can be made from an NPN 
transistor and a resistor.  When the input is at 5 volts, the 
output (the collector voltage) is grounded and is thus 
fixed at 0 volts.  When the input is at low voltage, the 
output is isolated from ground, no current flows through 
the resistor, and the output is consequently at 5 volts.

An AND gate can be made from NPN transistors and resistors.  The part of the circuit to the left of point A 
is actually a NAND gate; that is, the voltage at point A is given by the operation NOT(input 1 AND input 2).  
The NAND gate operates by a principle similar to that of the NOT gate, and the voltage at point A is 
inverted by the NOT gate to the right.  When both inputs are at 5 volts, point A is grounded (False), so the 
output of the AND gate is True.  When either input is near 0 volts, point A is isolated from ground and thus 
at 5 volts (True), so the output of the AND gate is False. 
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“jump” to a specified instruction else-
where in the program or to continue
with the next instruction in sequence.

Serial Computers

The simplest electronic computers
are serial computers—those that per-
form one instruction at a time.  Figure
3 shows a typical example of the archi-
tecture, or overall design, of a modern
serial computer.  Note that the architec-
tures of computers vary enormously on
all levels, from the choice and configu-
ration of the large-scale components
down to the choice of binary code used
to represent numbers.  Every illustra-
tion in this article shows an example
chosen from among many possibilities.

The major components of a serial
computer appear in Figure 3.  The cen-
tral processing unit (CPU) is the heart

of the computer.  The CPU in a modern
serial computer often consists of a sin-
gle integrated-circuit chip.  It contains
the arithmetic-logic unit (ALU), the
part of the computer that actually com-
putes.  The ALU consists of circuits
that perform various elementary
processes such as addition, multiplica-
tion, comparison of numbers, and
Boolean operations.  Such operations
are performed on data that are in regis-
ters—very quickly accessible memory
cells located within the CPU.  The con-
trol unit contains circuits that direct the
order and timing of the operations by
“gating,” or opening and closing elec-
tronic pathways among the ALU, the
memory, and the input/output units.  A
typical calculation involves loading data
from main memory into registers, pro-
cessing of those data by the ALU, and
storage of the results in main memory.
Note that the CPU typically includes a

clock, a device that synchronizes opera-
tions by emitting electric pulses at reg-
ular intervals.

Main memory stores information
that can be read and written by other
parts of the computer.  It consists of
memory cells that are packed together
densely on a device consisting of one
or more semiconductor chips; a single
chip can store many millions of bits of
information.  Each cell is labeled by a
numerical address, and other parts of
the computer can read from or write to
any cell by sending its address and a
read or write signal to the memory de-
vice.  Because the memory cells of the
device can be accessed in any order,
main memory is called random-access
memory, or RAM.  Main memory is
“volatile;” that is, the stored informa-
tion is lost when the power is switched
off.  Therefore main memory typically
stores information that the CPU will
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use in the short term, such as the pro-
gram being executed and the data that
the program processes and generates.

The computer contains a very large
number of connections between its
main components and within the CPU.
The connections are conducting paths
that make the voltage at the input of a
circuit equal to the voltage at the output
of another.  The lines in Figure 3 indi-
cate schematically whether one part of
the computer is connected to another
part.  Solid lines indicate data connec-
tions; dashed lines indicate control con-
nections.  The connections consist of
multiple conducting paths or wires.  For
instance, the connection between main
memory and the CPU includes separate
pathways for data transfers, addresses,
read and write signals, and other pur-
poses.  Furthermore, the data path must
have a number of wires equal to the
number of bits that must be transferred.
Thus in a computer whose words con-
sist of 16 bits, a data connection be-
tween main memory and the CPU con-
sists of 16 wires.

Auxiliary memory refers to non-
volatile storage devices such as disk
and tape drives.  Auxiliary memory is
generally much more capacious than
main memory (and less expensive per
bit of capacity).  Present auxiliary mem-
ories have capacities of up to millions
or billions of words.  However, the ac-
cess (read/write) times for auxiliary
memory are greater than those for main
memory.  Therefore auxiliary memory
is generally used to store programs and
data while they are not in use.

Input and output devices communi-
cate data between the main memory
and users or other computers, translat-
ing the data between bit sequences used
by the computer and forms understand-
able to people (or other computers).
Probably  the most common input de-
vice is the keyboard, and the most com-
mon output devices are the printer and

the monitor.  There are many other
more- or less-specialized input-output
devices, such as network connections,
modems, mice, scanners, loudspeakers,
and so forth.  Some auxiliary-memory
devices can be used for input/output—
for instance when one computer writes
onto a floppy disk that another comput-
er will read.

To show how a serial computer per-
forms a calculation, we will take as an
example the calculation of the salary
raises r of a company’s 800 employees.
Each raise is given by the product of an
employee’s present salary p and an ad-
justment factor a previously calculated
on the basis of the employee’s perfor-
mance.  In our example we use the
common technique of storing the values
of p in the computer as a one-dimen-
sional array, or vector, p(i); the value
of p for the first employee is called
p(1), and so forth.  When the program
runs, the elements of p(i) are stored
in consecutive memory cells.  The val-
ues of a are stored similarly as ele-
ments of a vector a(i).  Thus the cal-
culation can be written as r(i)

 

5
p(i)*a(i) for all i.

Figure 4 shows how an exemplary
serial computer performs a multiplica-
tion.  Since the auxiliary memory and
input-output devices are not involved in
this calculation, they are omitted from
the figure.  The program for the raise
calculation has been loaded into main
memory; each instruction is stored as a
16-bit number.  The figure shows the
location of one instruction, which is
represented by the four digits 3123.
The first digit in the instruction is inter-
preted by our example control unit as
an operation, the next two digits are the
numbers of the two registers containing
the operands, and the final digit is the
number of the register where the result
is to be placed.  Here 3 is the code for
MULTIPLY; then the instruction 3123
means, “Multiply the number in register

1 by the number in register 2 and place
the result in register 3.”*  The p(i)
and a(i) arrays are also in main
memory.  In this example, each of the
first two elements of p(i) has already
been multiplied by the corresponding
element of a(i), and the resulting
r(1) and r(2) have been stored in
main memory.  (The cell where r(3)
will be stored is still blank.)  The num-
bers in the registers—p(3) and
a(3)—were loaded by the execution
of the previous instructions.

The computer in this example per-
forms instructions in two stages:  First
it fetches an instruction from main
memory, then it executes the instruc-
tion.  Figure 4a shows the fetching
process.  We begin following the
process just after the instruction to load
a(3) has been executed.  As always
after an instruction has been executed,
the control unit is in a state such that a
voltage impulse from the clock causes
it to fetch the next instruction.  (The
control unit was initially put in that
state by the “run” command that began
the execution of a program.)   Also, the
address of the multiply instruction is in
the instruction-address register (not
shown).  At the clock signal, the in-
struction, stored as the number 3123, is
fetched from main memory into the in-
struction register.  The bottom part of
Figure 4a illustrates how the outputs
from the control unit transfer, or gate,
the instruction from main memory to
the instruction register.  In general, gat-
ing is the control unit’s primary means
of controlling the operations.

At the next clock signal, the instruc-
tion is gated into circuits in the control
unit.  Figure 4b shows that the resulting
outputs from the control unit gate the
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*In this example, each digit stands for one of the
16 four-bit numbers. and is therefore to be inter-
preted in base 16.  The instruction represented by
the base-16 number 3123 would be stored as the
binary representation of that number:  0011 0001
0010 0011. 
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Shown at left is the gating of an instruction, which consists 
of a single word, from a cell in main memory to the instruc-
tion register.  A number of other connections controlled by 
AND gates are involved in fetching the instruction; for clarity 
they are not shown, but they are described in the paragraph 
below.  The instruction-count register specifies that the word 
to be copied is in memory cell number 270.  We assume the 
computer was designed to use words consisting of 16 bits; 
therefore the memory cell and the instruction register each 
consist of 16 flip-flops.  The output of each flip-flop of the 
memory cell is connected to one input of an AND gate, and 
the read-enable wire from the control unit is connected to 
the other input of each AND gate.  When the read-enable 
wire (red dashed line) is set by the control unit to 5 volts as 
shown, the output wire of each AND gate is at the same 
voltage as its input from memory.  Therefore the output of 
each flip-flop of the instruction register is set to 5 volts or 0 
volts depending on whether the bit stored in the correspon-
ding flip-flop in main memory is 1 or 0.  Thus the control unit 
“gates” the 16 bits of the word from the memory cell to the 
instruction register.  However, when the read-enable wire is 
at 0 volts, all the inputs to the instruction register are at 0 
volts.  This set of AND gates might be compared to a 
starting gate at a racetrack, which either holds all the horses 
in place or lets them all run at once.  

The appropriate memory cell is chosen by use of the circuit 
called the address decoder.  The control unit gates the 
address of the desired instruction from the instruction-count 
register to the address decoder which, in combination with a 
signal from the control unit to the entire memory, turns on 
the read-enable wire of the memory cell at that address and 
no other.  The output of the cell goes to the memory-output 
pathway (which along with the address decoder and the 
memory-input pathway was shown adjacent to the main 
memory in Figure 3).  Yet another signal gates the contents 
of the memory-output pathway to the instruction register.

Enlargement of gate
shown directly above

Voltage Voltage



numbers in registers 1 and 2 to the
multiplier and gate the output of the
multiplier, which is the product of the
two numbers, into register 3.  The exe-
cution of the multiplication takes sever-
al clock cycles.

Other instructions, perhaps seven or
eight, must be executed as part of the
routine that calculates each employee’s
raise.  Before the multiplication the
memory addresses of p(i), a(i), and
r(i) are calculated on the basis of the
value of i.  As we have mentioned, the
factors p(i)and a(i)are gated into
registers.   This is the most time-con-
suming step; loading a word from
memory may take 20 clock cycles.
After the multiplication, the number in
register 3 is stored in memory at the
address for r(i).  Finally, the value of
i is incremented and the result is com-
pared with 800 to determine whether
the calculation is finished.  If not, the
control unit jumps to the beginning of
the routine (by writing the address of
the first instruction of the multiplication
routine into the instruction-address reg-
ister) and repeats the routine for the
next value of i.  The total time to per-
form the routine for one value of i
may be about 30 clock cycles.

Typical processors contain circuits to
perform all these operations.  The
specifics of the elementary instructions,
however, vary greatly among different
computers, and the choice of “instruc-
tion set” is an important part of com-
puter architecture.

A computer’s instruction set is also
called its assembly language.  Users
can write programs in assembly lan-
guage, one encoded instruction at a
time.  However, the coding is quite te-
dious, and the result is difficult for a
human being to read.  Moreover, since
instruction sets differ among computers,
an assembly-language program written
for one type of computer cannot be
“understood” by any other.  Therefore,

many high-level languages have been
developed.  They consist of instructions
that combine several assembly-language
instructions in ways that are convenient
for humans.  For instance, when written
in the popular language FORTRAN, the
instructions (or code) for the raise cal-
culation above might look like this:

do i 5 1, 800
r(i) 5 p(i)*a(i)

end do

Those lines of FORTRAN code instruct
the computer to perform the statement
between the do and the end do for
all values of i from 1 to 800.  Pro-
grams called compilers, assemblers, and
loaders translate the high-level code
into binary instructions and assign
memory addresses to variables.  Not
only is the FORTRAN code easier to
read than assembly code, but it is also
portable; that is, it can be executed by
any computer that has a FORTRAN
compiler.  (Complicated programs may
not be perfectly portable—minor adjust-
ments may be required to run them on
computers other than the original.)  All
the advantages of high-level languages
are counterbalanced by some cost in
execution speed, so sometimes when
speed is the highest priority, program-
mers write in assembly language.

Speed is not always the highest pri-
ority, but it is always important.  Speed
is continually being increased by the
development of faster and smaller gates
and flip-flops.  (Smaller components
can be packed on a chip in larger num-
bers so that there are more of the fast
connections within chips and fewer of
the slower connections between chips.)
Integrated-circuit technology has
reached the point where mass-produced
CPU and memory chips are fast enough
to serve as components in the fastest
computers used for large calculations in
science and engineering.

To take advantage of high-speed
components, manufacturers use archi-
tectures designed for high speed.  For
instance, the main memory must be
large so that it can store all the data for
large problems without requiring trans-
fers of data to and from auxiliary mem-
ory during the calculation.  (Such trans-
fers are relatively slow.)  Also, the
bandwidth, or capacity, of the connec-
tions must be increased by adding
wires, so that the connections can trans-
fer more data in a given amount of
time.  These features provide higher
performance, but serial computers have
the essential limitation that instructions
can be performed only one at a time.
Therefore supercomputers—the fastest
(and most expensive) computers—usu-
ally have architectures that allow the
performance of several instructions at
once.  There are two such architectures:
vector and parallel.

Vector Computers

Vector computers are based on
processors that execute calculations on
the elements of a vector in assembly-
line fashion.  As illustrated in Figure 5,
a vector processor contains five to ten
“functional units” that can act simulta-
neously, each carrying out an instruc-
tion.  Functional units are thus analo-
gous to the stations on an assembly
line.  The functional units include vari-
ous circuits on the ALU.  Three addi-
tional functional units are the separate
connections between main memory and
registers that allow the simultaneous
loading of two numbers into registers
and storing of one number from a regis-
ter.  (These connections are an example
of high-bandwidth connections that
speed up transfers of data.)  Another
distinctive feature of vector processors
is that they contain several vector regis-
ters.  The vector registers shown in Fig-
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ure 5 can contain 64 elements of a vec-
tor at once.

We use the calculation of raises as
our example again.  As shown in Fig-
ure 5, the calculation is set up in “as-
sembly-line” fashion so that at any time
each functional unit is working on a
different element of the result r.  At
the stage shown, the first element of r
has been completely processed and
stored.  The second element is being
stored, the multiplication for the third
element is being performed, and data
for the fourth and fifth elements are
being loaded from RAM into elements
of vector registers.  When 64 elements
of r (enough to fill a vector register)

have been calculated, the process re-
peats to compute the 65th through
128th elements, and so forth until all
800 elements have been computed.

After the first element of r is stored,
another element comes off the line in
every clock cycle—just as cars may
come off an assembly line every hour
even though assembling a single car
takes days of work.  Since a serial cal-
culation of a single element requires
perhaps 30 clock cycles, a vector
processor that performs those instruc-
tions simultaneously reduces the calcu-
lation time by a factor of roughly 30.
Calculations that use more of the
processor’s functional units are sped up

still more.  Furthermore, each instruc-
tion is fetched only once and executed
many times, so the speedup is greater
still.  (In a typical serial computer,
fetching each instruction requires a
clock cycle or more.)  Some “over-
head” time is needed to set up the as-
sembly line, but that time can often be
reduced or eliminated because function-
al units not used in one assembly line
can set up the next one.  Despite a
slight additional overhead at the begin-
ning and end of the calculation when
some functional units on the assembly
line are idle, speedups of factors of
hundreds are possible in favorable
cases.
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However, many calculations cannot
be sped up by vector processing be-
cause they cannot be “vectorized,” or
put in the form of identical operations
on elements of vectors so that each
functional unit has a predictable task on
the “assembly line.”  The number of el-
ements of the vectors must be at least
comparable to the number of elements
of the vector register so that the time
saved by performing the calculation on
an assembly line more than compen-
sates for the overhead.  Also, the calcu-
lations on different components should
be independent of each other so that
they can proceed simultaneously.  An
example that does not satisfy that con-
dition is the calculation of the sum of
many terms, Si

x(i).  If the calcula-
tion is performed by the straightforward
method of adding each element in turn
to the subtotal, it cannot be vectorized
because the the subtotal of the first i
elements must be completely calculated
before the addition of x(i 1 1) can
begin.  (Ingenious methods for vector-
izing sums of many terms have been in-
vented, but nonetheless vector comput-
ers perform sums more slowly than
such calculations as the multiplication
shown in Figure 5.)  Calculations that
vector computers can perform particu-
larly fast include linear algebra, Fourier
and other integral transforms, and other
calculations used in such scientific ap-
plications as finite-difference and finite-
element simulations of fluid flow.  Even
when a calculation cannot be vector-
ized, vector computers often provide
some speedup if the calculation in-
volves large amounts of data, because
one may be able to vectorize the load-
ing of the data from main memory and
the storing of the results.

Vector computers have been made
relatively easy to program.  In fact, pro-
grams written for a serial computer can
usually run on vector computers, al-
though to take full advantage of vector

processing, the programs often must be
rewritten.  However, techniques for
doing so are well known.  Furthermore,
much of the necessary rewriting is now
automated; that is, the programmer can
write code as if for a serial machine,
and the compiler will translate the pro-
gram to assembly code optimized for
the vector processor.

Parallel Computers

Parallel computers consist of a num-
ber of identical units that contain CPUs
and essentially function as serial com-
puters.  Those units, called nodes, are
connected to one another and simulta-
neously perform more or less the same
calculation on different parts of the
data.  For example, Figure 6 shows an
eight-node parallel computer calculating
the salary raises of our earlier example.
Each processor is connected to its own
main memory.  (This arrangement is
called distributed memory.)  The nodes
are connected to each other by a high-
bandwidth communication network.
Each of the eight nodes stores and
processes only one-eighth of the data—
node 1 stores p(1) through p(100)
and a(1) through a(100), and it is
calculating r(1) through r(100).
The maximum possible increase in
speed would be a factor equal to the
number of nodes.  If that speedup can
be attained for a given calculation, the
calculation is said to be scalable.  In
practice, the speedup is somewhat less,
because time must be spent in commu-
nicating the data between nodes and in
coordinating the functions of the nodes.
When a calculation can be made nearly
scalable, it is well-suited for massively
parallel computers—those that have
hundreds of processors.

Parallel computers have the great ad-
vantage over vector computers that they
can be built from off-the-shelf CPUs

and other components made for serial
computers.  Since vector computers re-
quire special-purpose vector processors,
parallel computers can offer higher
maximum speed (in terms of operations
per second) than vector computers of
the same price.  However, running par-
allel computers at their maximum speed
is more difficult than running vector
computers at their maximum speed.
The two basic problems of parallel
computers are the coordination of the
processors and their access to data.

A simple hardware method of mak-
ing data available to all processors
would be to change the architecture
shown in Figure 6 by giving the com-
puter a shared memory—one extremely
large memory to which all the proces-
sors have equal access.  However, for
technical reasons the number of data
and control connections to a shared
memory increases faster than the num-
ber of processors, so making massively
parallel shared-memory computers is
impractical at present.  Therefore most
massively parallel computers, like the
computers sketched in Figure 6, have
distributed memories, and each proces-
sor can retrieve data directly from its
own memory only.  Because reasons of
cost require connections between the
nodes of a distributed-memory comput-
er to have less bandwidth than those
between a processor and its own main
memory, data transfers between nodes
are relatively slow.  An important
problem in programming such comput-
ers is minimizing the time spent in
transferring data from the memory of
the processor that stores them to the
memory of the processor that needs
them.  Several solutions to this prob-
lem have been tried.  The choice of so-
lutions presents computer buyers with
a trade-off:  A computer that handles
the communication and control auto-
matically and thus hides communica-
tion and control problems from the
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user is easier to program than one that
requires the user to solve those prob-
lems.  However, automation is relative-
ly inflexible, so such a computer can
speed up fewer kinds of programs than
one that requires the user to do more
programming work.

The earliest approach to solving the
communication problem is particularly
automatic and rigid.  It is known as the
single-instruction/multiple-data,  or
SIMD, architecture.  In SIMD comput-
ers, all processors execute the same in-
structions in synchrony on different
parts of the data set.  On a SIMD ma-
chine, the control of the processors and
communication between them is
straightforward.  Programmers can
write code for SIMD computers in a
style identical to that for serial comput-
ers, and each processor executes a copy
of the code.  Since the problems are di-
vided in a predictable way, data can be
distributed to the processors that need
them without any need for complex cal-
culations.  However, only a limited set
of problems can be approached so sim-
ply.  In fact, most calculations suitable
for SIMD computers are equally suit-
able for vector computers.

The other common parallel architec-
ture is MIMD (multiple-instruction/
multiple-data), which is being used for
most currently available parallel com-
puters.  Each processor in a MIMD
computer functions independently of
the other processors.  Because MIMD
systems have greater flexibility than
vector or SIMD systems, they work
well on more kinds of programs: for in-
stance, databases, simulations of many
interacting bodies (see “State-of-the-Art
Parallel Computing” and “A Fast Tree
Code for Many-Body Problems), and
Monte Carlo simulations (see “A Monte
Carlo Code for Particle Transport”).
However, interprocessor communica-
tion in MIMD systems is more compli-
cated than in SIMD systems.

The different approaches to commu-
nication in MIMD machines include
different programming models.  (A
computer’s programming model is the
structure of the programs it is designed
to run.)  Two programming models that
offer relative ease of programming but
limited versatility are data parallelism
and distributed computing.  Data paral-
lelism is similar to SIMD in that each
processor performs the same routine,
but differs in that each processor can
spend a different amount of time on the
routine.  High-level languages have
been devised to automate most of the
communication in data-parallel compu-
tation.  At the other extreme of proces-
sor synchrony is distributed computing,
in which the processors are nearly inde-
pendent.  Distributed computing is par-
ticularly useful in Monte Carlo calcula-
tions; then each processor can perform
simulations independently of all the
others.

The most versatile programming
model, between data parallelism and
distributed computing in the degree of
processor independence, is message-
passing.  This model effects communi-
cation by having the processors send
messages to each other as needed to re-
quest or transmit data.  Thus communi-
cation can be performed more flexibly
than in data-parallel computers, where
communication must fit into a fixed
model.  However, programs that call
for message passing must include spe-
cific instructions for the messages.
Therefore programmers often need to
understand the details of how the par-
ticular computers they use handle com-
munication.  Programmers are making
progress in applying messages-passing
methods, as described in several articles
in this issue.  We should note that some
massively parallel computers allow the
user to choose or combine program-
ming models to suit each problem.  The
CM-5 Connection Machine supports

both the data-parallel and the message-
passing models.  The article “State-of-
the-Art Parallel Computing” describes
the Laboratory’s CM-5, including the
control of and communication among
the processors.

Finally, we should note that there is
no reason not to combine vector and
parallel architectures.  Vector comput-
ers have long incorporated up to sixteen
processors with a shared memory.  Fur-
thermore, one modern supercomputer,
the CM-5, is a massively parallel com-
puter in which each node contains one
or more vector processors in addition to
its main CPU.  Computers of these “hy-
brid” types dominate the supercomputer
market.  Making predictions about su-
percomputers is very risky because of
the rapid development of hardware,
software, and architectures, but we can
expect that for some time the fastest su-
percomputers will probably be massive-
ly parallel computers and vector-paral-
lel hybrids. 
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