Jet Stability

Numerical simulation is also a powerful
tool for studying the effects of instabilities in
time-dependent jets. This approach comple-
ments the traditional analytic tool of linear
perturbation theory, which completely
characterizes all modes of instability only in
the small-amplitude limit. In contrast to
linear theory, our simulations show which
modes grow to large amplitudes and how
they ultimately affect the flow. We now have
some tantalizing hints that Kelvin-
Helmholtz instabilities. which disrupt labo-
ratory jets with low Mach numbers, may be
reduced or totally absent in the high-Mach-
number jets emerging from radio galaxies
and quasars. In addition, our simulations
confirm recent analytic predictions of the
existence in supersonic jets of a new family of
modes of the Kelvin-Helmholtz instability
and characterize for the first time the
nonlinear behavior of the new modes. To
motivate our discussion. we review the key
results gleaned from analytic studies of jet
stahility,

Linear Stability Theory

A simple analysis of the growth of axisym-
metric, or pinch, modes of instability in
supersonic beams is given in Sidebar 4,
“Pinch Instabilities and the Bernoulli
Effect.” This analysis predicts that the rela-
tion

M=1+/n )

defines a stability boundary in the (M,n)
plane. For M < 1 + \/n, the pinch modes
grow, whereas for A > | + /7, they damp.
This analysis applies to a purely longitudinal
mode, that is, one that introduces no trans-
verse structure within the perturbed channel.
Such a mode corresponds to the fundamental
axisymmetric mode of instability}.

In 1981 Attilio Ferrari and coworkers in
Bologna determined from perturbation the-
ory that a whole family of unstable (that is.
capable of growth) higher order modes exists
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Pinch Instabilities

SIDEBAR 4

and the Bernoulli Effect

hat happens to a fluid beam
when its flow is dlightly con-
stricted? Does the flow resist the

constriction and remain stable? Or does the
constriction grow and pinch off the flow?
Here we use a simple argument based on
Bernoulli’s principle to derive the conditions
under which supersonic flow is susceptible to
pinch instabilities, or, in other words, is un-
stable to longitudinal constrictions.

To establish the basic mechanism that
drives a pinch instability, we consider first in
Fig. Al the steady flow of an incompressible
fluid, such as water, in a pipe with a localized
constriction. The velocity and pressure of the
fluid far from the constriction are v,and P,
respectively. At steady state the mass flux,
pVvA, is constant along the length of the pipe,
Since the fluid is incompressible (that is, p is
constant) the fluid velocity v must increase
when the cross-sectiona area A decreases,
The Bernoulli principle states that along a
fluid streamline the total specific energy E
remains constant:

1 Yy P

E=—yl4 — — —constant . n
2 y—1ip

Consequently, if p remains constant and v
increases, the pressure P in the vicinity of the
constriction must decrease. Figure A2 shows
what happens if the channel wall is replaced
by a static background fluid of uniform pres-
sure P,. Since the beam pressure P near the
constriction is less than the background pres-
sure P, the channel boundary will move
inward, further constricting the flow. By the
above reasoning further constriction leads to
even higher velocities, lower pressures. and
even further constriction.

Precisely this sequence of events is respon-
sible for pinch instabilities in subsonic jets,

In principle, an initial constriction of
arbitrarily small amplitude will be amplified
by the Bernoulli effect until the constriction
completely pinches off the flow. In actuality,
the ambient fluid following the channel
boundary inward at the point of constriction
is swept into the channel and carried down-
stream by the flow asin Fig. A3. As a resullt,
pinch instabilities contribute to the mixing of
a subsonic jet with its environment.

When the beam is supersonic, two other
effects come into play. First and most impor-
tant. the compressibility of the fluid can no
longer be ignored. Thus the constancy of the
mass flux no longer implies an increase in
velocity with a decrease in area. Instead the
density increases so rapidly as the area de-
creases that the velocity decreases aso. A
genera mathematical expression relating ve-
locity change to area change in a flow channel
of dowly varying cross section is

dv v? ~l g4
“=(~Q~—l) —, 2)

v ¢ A

where c is the speed of sound in the fluid. We
see that if the flow is subsonic (v < c), its
velocity increases (dv > 0) at a constriction
(dA < 0) just as it does in an incompressible
fluid, whereas if the flow is supersonic (v> c),
its velocity decreases (dv < 0) a a constric-
tion (dA < 0).

A naive application of the Bernoulli prin-
ciple would predict that all supersonic beams
are stable to the pinch instability, since by
Egs. 1 and 2 the pressure now increases at a
constriction and thus resists further
pinching. This prediction is incorrect be-
cause we have failed to take into account the
effects of the motion of the boundary in the
direction of the flow. As shown in Fig. B1, the
instability created when one fluid moves past
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Super sonic Jets

Fig. A. Incompressible Flow

(1) One-Dimensional Flow in a Pipe

(2) Pinch Instability in Subsonic Flow
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SIDEBAR 4

another (the Kelvin Helmholtz instability) is
a convective instability; that is, the waveform
of the perturbed boundary is carried down-
stream with some velocity v.

Figure B2 shows the flow in a frame mov-
ing a velocity v'. In this frame the beam
flows through the constriction with a relative
speed of v,— V', and the ambient gas flows
past the constriction with a relative speed of
—V'. Now consider the Bernoulli effect in the
two flow channels shown in Fig. B2—one
inside the jet boundary and one surrounding
it. To guarantee pinching. we require that at
the constriction the pressure decrease inside
the jet boundary and increase outside the jet
boundary. This will be the case if both the jet
gas and the ambient gas move subsonically
with respect to the constriction, since, from
Egs. 1 and 2, only for relative Mach numbers
(ratios of flow velocities in the moving frame
to sound speed) less than unity will the chan-
nel area and the pressure vary in the same
direction. Therefore, a sufficient condition
for instability is that v,- v' < c,and V' < c,
where ¢,and c,are the speeds of sound in the
beam gas and the ambient gas, respectively.
Adding the two inequalities eliminates the
unknown Vv’ and yields the condition

Bh<cpt . (3

Thus, on very simple physical grounds in-
stability requires that the jet speed be subsonic
with respect to the sum of the internal and
external sound speeds.

To express this condition in terms of the
dimensionless parameters Mach number M
and density ratio n, we eiminate ¢ by invok-
ing the pressure balance between the jet and
imbient gases (p, ¢2 = pp, cf) and obtain

M<1+n. (4)

This relationship, which was first deduced by
David Payne and Haldan Cohn from a dis-
persion analysis of the linearized equations
of motion, thus follows simply from the fact
that the growth of pinch instabilities requires
subsonic flow of both beam gas and ambient
gas relative to the moving constriction. m

63



