


SHORT SUBJECT

T he phrase “order in chaos” seems self-contradictory:
chaos is, after all, conventionally viewed as the complete
absence of order. Yet precisely this title attracted two
hundred and ten scientists from fourteen countries to Los

Alamos from May 24-28, 1982, to attend the second annual
international conference of the Center for Nonlinear Studies. The
purposes of the conference were to survey the recent rapid develop-
ments and to anticipate the trends for future research in the area of
“chaos in deterministic systems.” The breadth of scientific interest in
this topic was reflected in the variety of subjects discussed at the
meeting. Presentations ranged from abstract mathematics through
numerical simulations to experimental studies of fluid mechanics,
chemistry, and biology. Even weather prediction made an appear-
ance.

To appreciate the appeal of the conference title-and the im-
portance of the field of research it describes—requires a closer look
at the apparently contradictory components. The concepts of
“order” and “determinism” in the natural sciences recall the predict-
ability of the motion of simple physical systems obeying Newton’s
laws: the rigid plane pendulum, a block sliding down an inclined
plane, or motion in the field of a central force are all examples
familiar from elementary physics. In contrast, the concept of “chaos”
recalls the erratic, unpredictable behavior of elements of a turbulent
fluid or the “randomness” of Brownian motion as observed through a
microscope. For such chaotic motions, knowing the state of the
system at a given time does not permit one to predict it for all later
times. In place of the determinism of the orderly systems, one has
only probabilistic estimates and statistical averages.

Thus, in some sense, the possibility that chaos exists in de-
terministic systems runs directly counter to our intuition. To
understand that this possibility is nonetheless real, we can refer to the
deeper insight of Henri Poincare, one of the founders of modern
dynamical systems theory. Writing in the pre-quantum era of pure
Newtonian determinism, Poincare noted that

A very small cause which escapes our notice determines a

considerable effect that we cannot fail to see, and then we say
that the effect is due to chance. If we knew exactly the laws of
nature and the situation of the universe at the initial moment,
we could predict exactly the situation of that same universe at
a succeeding moment. But even if it were the case that the
natural laws had no longer any secret for us, we could still
only know the initial situation approximately. If that enabled
us to predict the succeeding situation with the same approx-
imation, that is all we require, and we should say that the

phenomenon had been predicted, that it is governed by laws.
But it is not always so; it may happen that small differences in

the initial conditions produce very great ones in the final
phenomena. A small error in the former will produce an
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enormous error in the latter. Prediction becomes impossible,
and we have the fortuitous phenomenon.

Hence, the crucial ingredient in deterministic chaos is a very sensitive
dependence on initial conditions. Motions that start close to each
other develop in time in dramatically different ways, and uncertain-
ties in the initial values develop rapidly—exponentially, in fact—in
time. Although the motion from instant to instant can be predicted,
over macroscopic times it becomes no more predictable than a
random sequence.

At first it might appear that the distinction between orderly and
chaotic motions is merely one of the complexity of the system
involved. In the parlance of dynamical systems theory, the orderly
motions described above involve just one “degree of freedom,”
whereas the chaotic fluid involves many-in conventional
hydrodynamics, infinitely many—degrees of freedom. It is thus
tempting to associate simple systems with order and complicated
ones with chaos.

In fact, this naive association is wrong for several fundamental
reasons, some obvious and some subtle. First, everyday experience
tells us that complicated systems with many degrees of freedom can
undergo very orderly motion. For example, a fluid in smooth
(laminar) flow moves in a regular, totally predictable manner.

Second, it is less familiar but nonetheless true that very simple
physical systems can exhibit chaotic behavior, with all the associated
randomness and unpredictability. Numerical experiments show that
the motion of a rigid plane pendulum, if damped and driven, becomes
truly chaotic. This result illustrates strikingly that a completely
deterministic system can produce chaos without the addition of any
external random noise. In other words, you don’t have to put
randomness in to get it out. The existence of deterministic motions
that produce chaos is a clear example of order in chaos.

Third, it is now well established that, at least in some cases, the
chaos observed in very complicated systems can be understood
quantitatively in terms of simple models that involve very few degrees
of freedom. This profound result, several examples of which were
presented at the conference, is perhaps the most significant mani-
festation to date of order in chaos.

From this general motivation of the theme “order in chaos,” we
turn to a discussion of the specific results described at the conference.
(The accompanying table lists the authors and titles of the talks
presented.) Very roughly, the presentations divided into two major
areas. First, there were attempts to identify the qualitative and
quantitative essential features of deterministic chaos to describe
and model it more accurately. Second, there were discussions
of the transition from regular motion to chaos. Here the focus
was on identifying various possible routes and establishing whether
they had “universal” properties that were independent of the de-
tails of the mathematical model or physical system being studied.
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1982 CNLS CONFERENCE TALKSa

Review

M. Feigenbaum An Overview of Order in Chaos
Los Alamos National Laboratory

H. Swinney Observations of Chaos
University of Texas, Austin

Theoretical

S. Aubry
Laboratoire Leon Brillouin and
Los Alamos National Laboratory

J. D. Farmer
Los Alamos National Laboratory

J. Ford
Georgia Institute of Technology

V. Franceschini
University of Modena

J. Guckenheimer
University of California, Santa Cruz

M. Gutzwiller
International Business Machines Corporation

E. Heller
Los Alamos National Laboratory

P. Holmes
Cornell University

P. Huerre
University of Southern California

C. Leith
National Center for Atmospheric Research

R. MacKay
Princeton University

B. Mandelbrot
International Business Machines Corporation

J. Marsden
University of California Berkeley

E. Ott
University of Maryland

Devil’s Staircase and Order Without Periodicity in Condensed Matter Physics

Dimension, Fractal Measures, and Chaotic Dynamics

Classical and Quantum Billiards: New Insights into Chaos

Bifurcation Phenomena in Truncated Navier-Stokes Equations on a Two-Dimensional
Torus

Overview of Dynamical Systems Theory

Stochastic Behavior in Electron Scattering

Quantum Manifestations of Classical Chaos

Periodically Forced Nonlinear Oscillations of Dissipative Systems: Some Answers
and Questions

Long-Time Solutions to the Ginzburg-Landau Equation: A Numerical Study

Chaos and Order in Weather Prediction

A Renormalization Method for Orbits with Generalized Golden Ratio Rotation Number

Quadratic Chaos, Scaling, and Fractals

Fluids, Vortices, and Coadjoint Orbits

Strange Attractors in Crisis

A significant aspect of the conference was that in each of these areas ‘c Observations of Chaos” Harry Swinney of the University of Texas,
there were important new developments both in theoretical modeling Austin, described experimental observations in electrical oscillators,
and prediction and in experimental observation, chemical reactions (the Belousov-Zhabotinskii reaction), and fluid

These new developments were woven into the previous results in flows (Rayleigh-Benard convection and circular Couette flow) that
the conference’s two introductory reviews surveying the field. In his established the existence of deterministic chaos. He reviewed ex-
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N. Packard Measures of Chaos in the Presence of Noise
University of California, Santa Cruz

D. Ruelle Unconventional Turbulent Structures
Institut des Hautes Etudes Scientifiques

S. Shenker Scaling Behavior in Maps of the Circle
University of Chicago

E. Siggia A Universal Transition from Quasi-Periodicity to Chaos in Dissipative Systems
Cornell University

J. Yorke The Dimension of Strange Attractors
University of Maryland

A. Zisook Universal Effects of Dissipation in Two-Dimensional Mappings
University of Chicago

Experimental

I. Epstein Oscillations and Chaos in Chemical Systems
Brandeis University

L. Glass Chaos in a Petri Dish: Nonlinear Dynamics of a Cardiac Oscillator
McGill University

H. Haucke and Y. Maeno Time-Dependent Convection in 3He/Superfluid 4He Solution
University of California, San Diego,
and Los Alamos National Laboratory

R. Keolian Generation of Subharmonic and Chaotic Behavior in High-Amplitude, Shallow-
University of California, Los Angeles Water Waves

O. Lanford, 111 Period Doubling in One and Several Dimensions
University of California, Berkeley

A. Libchaber Mercury in a Magnetic Field, A Rayleigh-Benard Study
Group de Physique des Solides de
l’Ecole Normale Superieure

J. D. Roux Chaos in the Belousov-Zhabotinskii Reaction
University de Bordeaux

R. Shaw The Dripping Faucet as a Model Chaotic System
University of California, Santa Cruz

C. W. Smith Bifurcation Universality for First-Sound Subharmonic Generation in Superfluid  4He
University of Maine

aProceedings of the conference will be published by North-Holland, as a special issue of Physica D and also as a hardbound volume. The Center
gratefully acknowledges support for the conference from the Applied Mathematical Sciences Program in the U.S. Department of Energy’s Office of
Basic Energy Sciences.

perimental data showing there are at least seven well-defined routes illustrate these results. These introductory surveys set the stage for
leading from smooth, regular motion to chaos. In his “Overview of over a score of additional presentations, in which theory and
Order in Chaos” Mitchell Feigenbaum of Los Alamos reviewed the experiment, abstraction and observation, were mingled in an ap-
theoretical description of deterministic chaos, recalling some of the propriately chaotic manner.
essential ideas and methods and introducing simple model systems to To explain both the experimental and the theoretical results in
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more detail, it is necessary to introduce some concepts from
dynamical systems theory, which is the formal discipline underlying
the study of all types of motion. These general concepts were
discussed, in slightly differing contexts, in the survey by Feigenbaum
and in the talks of Ford, Guckenheimer, Holmes, and Marsden.
Dynamical systems can be divided into two broad cate-
gories—conservative and dissipative—depending on whether or
not the energy is conserved. The Navier-Stokes equations of fluid
mechanics are an important (infinite degrees of freedom) dissipative
dynamical system, since the viscosity converts the energy of fluid
motion into heat. Most of the research presented at the conference
dealt with dissipative systems, where the long-time behavior is
controlled by various kinds of “attractors.” That is, different initial
conditions evolve in time “toward” an attractor, and after initial
transients die out the motion reduces, in a well-defined sense, to
motion “on” the attractor,

A simple model description of a dissipative dynamical system,
used in Feigenbaum’s talk and familiar to the readers of Los Alamos
Science,* is the discrete “logistic map,” in which one point in the
interval [0, 1] is transformed to another according to

x (1)

Since xn+1 follows uniquely from xn, the map is deterministic. To view
this map as a dynamical system, we need only think of the number of
iterations of the map as “time” and the sequence of points x1, x2, x3,
. . .

point” attractor at x = O. As a simple exercise on a pocket calculator

interval are eventually attracted, after many iterations (long time),
toward the point x = O. In real physical systems this type of attractor
corresponds to motion that does not change in time. Thus, for
example, when a pot is filled with water and placed on a flat surface,

the fixed point at the origin is unstable, and a new stable fixed point
at x = 1 – l/L appears. Analogous behavior is seen when a pot of
water is heated and steady convection rolls form. Even though the
fluid is moving, because the flow pattern is constant in time, the
attractor is a fixed point.

A second type of attractor found in Eq. 1 is a periodic limit cycle,

sequence of periodic cycles with periods 2n, n = 1, 2, 3, . . . . In our

● Mitchell J. Feigenbaum, “Univeral Behavior in Nonlinear systems, ” Los  
Alamos  Science, Vol. 1, No. 1, 4-27 (1980).

70

analogy to a heated pot of water, a limit cycle corresponds to
oscillatory convection rolls in which the flow pattern changes
periodically in time.

The third type of attractor in Eq. 1 is much less familiar and, in
fact, is called a strange attractor, a term first introduced by David
Ruelle. These strange attractors (also called chaotic attractors) occur

“motion” in the map in the sense that the sequence of points {x. } is
random. For some time, it has been thought that these strange
attractors underlie the chaos observed in more complicated
dynamical systems. Thus, for example, the turbulence seen in a pot of
boiling water can be described by a strange attractor. One of the
most exciting aspects of the conference, which we shall discuss in
detail later, was the conclusive evidence from a variety of experi-
ments that the chaos in several real systems can be described by low-
dimensional strange attractors.

Chaotic or strange attractors are elegant incarnations of “order in
chaos.” Since many initial conditions collapse onto the attractor, the
number of degrees of freedom “actively” participating in the chaos
can be many fewer than in the full system. On the other hand, the
chaos is real, because nearby points on the attractor separate initially
at an exponential rate (determined by the positive Lyapunov
exponents), causing small errors to amplify very fast and producing
sensitive dependence on initial conditions.

Strange attractors are like bakers. Thinking of the whole space of
possible initial conditions as dough, a strange attractor grabs the
dough, stretches it, and then folds it back onto itself. Just as a small
drop of vanilla will quickly get mixed throughout the dough by this
process, a strange attractor rapidly mixes together all the initial
conditions that it attracts, creating chaos.

The dimension of an attractor is, roughly speaking, the number of
“active modes” that are left once all the transients have died out. It
turns out, though, that the folding described above creates a
complicated structure, something like the filo dough of Greek
pastries. This structure, dubbed fractal by Mandelbrot and described
in detail in his talk, makes dimension a difficult concept to define; in
particular, the dimension need not bean integer. Relations among the
dimension of a chaotic attractor and its other properties-such as
the values of the Lyapunov exponents—were discussed in the
presentations of Farmer and Yorke.

Given a chaotic dynamical system, one of the central problems is
to ferret out the strange attractor—assuming it is present—and to
estimate its dimension and other properties. This and related
problems were analyzed in theoretical models in the talks by Farmer,
Holmes, Huerre, Marsden, and Ott. In particular, Farmer’s and
Huerre’s presentations underscored by example the possibility,
mentioned in many other talks, that even in a dissipative  dynamical
system with infinitely many degrees of freedom, the chaotic attractor
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may be low dimensional, involving perhaps only two or three active
modes. In some of the most exciting reports to the meeting, this
possibility was confirmed or at least supported in a variety of
experimental systems. The experiments described included fluid flows
(Haucke and Maeno, Keolian, and Libchaber), surface tension
(Shaw), chemical reactions (Epstein and Roux), and physiological
studies of heart beat irregularities (Glass). The accompanying figure,
which is from the presentation of Haucke and Maeno, contains a
portrait of the slightly more than two-dimensional strange attractor
that evolved from convective flow in a Rayleigh-Benard cell contain-
ing a mixture of helium-3 and superfluid helium-4 at 4 degrees kelvin.

Other experimental examples of chaos were much closer—some
amusingly. some frighteningly—to our day-to-day reality, Have you
ever been kept awake at night by a dripping faucet? If so. you might
have noticed that some faucets drip periodically, while others drip in
an unpredictable, apparently chaotic manner. In his talk Shaw
analyzed a dripping faucet, and showed that, in some cases, the time
intervals between drips are determined by a nearly two-dimensional
chaotic attractor. Your frustration with the television weatherman
might be moderated by considering some of the points raised by
Leith. The extreme sensitivity of weather to initial conditions has long
been recognized. Indeed, Leith recalled that one of the first simple
dynamical systems known to lead to deterministic chaos was
developed by meteorologist Edward Lorenz in the context of weather
prediction. On the basis of model experiments, turbulence calcula-
tions. and studies of the differing evolution of similar atmospheric
states, meteorologists estimate that the average doubling time for
errors (which is related to the Lyapunov exponents mentioned
earlier) is two and a half days. Yet another example, one with which
none of us would want to be familiar, was discussed by Glass. The
normal “motion” of a heart is a regular oscillation, which can be
modeled by a periodic attractor. Glass presented experimental
evidence that under certain stimuli the underlying attractor can

Illustrations from the presentation of Hauke and Maeno
showing the (nearly) two-dimensional strange attractor under-
lying chaotic flow in a mixture of helium-3 and superfluid
helium-4. (a) A "phase portrait” formed by plotting the
temperature T at time t vs the temperature at a delayed time t
+ T as measured on a probe. Since the attractor is nearly two-
dimensional, it can be pictured as a ribbon (perhaps with folds
and twists), and the plot is a projection of this ribbon onto a
two-dimensional surface. (b) A “slice” through the attractor
formed by making what is technically called a Poincare
section. The fact that each of the two disjoint parts of this slice
looks one-dimensional (that is, like a line) demonstrates that
the attractor is approximately two-dimensional.
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change from a limit cycle to a strange attractor, with the resulting
chaos possibly being related to a heart attack.

Thus far we have focused on the nature of deterministic chaos,
which was the first of the two major areas discussed at the
conference. The second major area, routes to chaos, was also well
represented both theoretically and experimentally. In his survey
Swinney identified and gave experimental evidence for seven distinct
routes to chaos, thus stressing the point that no single scenario exists
to describe the transition to chaos in deterministic systems. On the
theoretical side, the talk of Franceschini revealed the variety of routes
to chaos in finite mode truncations of the Navier-Stokes equations.
Since in this brief review we cannot possibly discuss all these routes,
we shall focus on the two that arose most frequently in the
presentations at the conference: the period doubling transition to
chaos and the transition from periodic to quasi-periodic motion
(which involves two or more frequencies that are not rational
multiples of each other) to chaos.

The period doubling route to chaos has already been obliquely
mentioned in our discussion of the logistic map. In fact, this route is
known to exist in a wide class of dynamical systems, and, when it is
observed, its essential properties are “universal” in the sense that
they do not depend on the details of the specific system. This
quantitative universality was first discovered and then extensively
analyzed by Feigenbaum. Examples were discussed in his survey, in
a presentation of two-dimensional maps by Zisook, and in a more
general and abstract setting by Lanford. Experimentally, this route
was observed in chemical reactions (Swinney and Roux), Rayleigh-
Benard convection experiments in mercury (Libchaber), first sound
generation in superfluid helium-4 (Smith), heart beat irregularities
(Glass), dripping faucets (Shaw), and water waves (Keolian).

One underlying mechanism for the periodic-quasi-periodic-chaotic
transition to chaos was originally suggested by Ruelle and Takens in
a general abstract mathematical framework. More recent work on a
somewhat different, more explicit mechanism was discussed in the
talks of Shenker and Siggia, and related calculations were described
by MacKay. Experimental evidence for this route to chaos was
discussed in chemical systems (Roux) and in Rayleigh-Benard
convection experiments in mercury (Libchaber). In several of the
experimental talks, observations of some of the other routes to chaos
mentioned by Swinney were also discussed.

Although most of the conference presentations fell into one of the
two main areas already discussed, a number of talks addressed other
topics related to chaos in deterministic systems. The nature of chaos
in conservative systems, in which there cannot be attractors, was

mentioned briefly in several talks and discussed more extensively by
MacKay and Ford, Chaos in conservative systems has its historical
roots in the fundamental questions of statistical mechanics. Why
should a gas of interacting particles be described by the well-known
statistical ensembles of Gibbs? Although we expect a large, isolated
collection of interacting particles to be in thermal equilibrium, there is
no generally applicable mathematical theorem that corroborates this
expectation. In the specific context of the billiard ball problem, Ford
discussed the possibility that the chaotic dynamics might lead to a
state resembling thermal equilibrium.

Among the other topics discussed, several appeared to point the
way to significant problems of the future. In emphasizing de-
terministic chaos, we have thus far explicitly excluded external noise
or thermal fluctuations, which could add a separate, nondeterministic
source of randomness to a dynamical system. Since in any experi-
ment some level of noise can be anticipated, the response of chaotic
deterministic systems to noise is a very important question. In
particular, does external noise destroy the order in deterministic
chaos? In his presentation Packard discussed this point and the
scaling properties of information production rates for chaotic
systems with external noise.

The possible role of chaos not in the time evolution of a dynamical
system but in the spatial structure of condensed matter systems was
discussed in the talks of Aubry and RueIle.

Finally, there were presentations concerned with the manifesta-
tions of chaos in quantum mechanical systems. Gutzwiller displayed
an example where the solutions to a particular Schrodinger equation
depended sensitively on initial conditions. (Note that the sensitivity to
initial conditions displayed in this example and in classical dynamics
is quite different from the indeterminism in any measurement
embodied by Heisenberg’s uncertainty principle.) Heller illustrated
the relations between the structure of quantum mechanical states and
the orbits of the corresponding chaotic classical system.

In a very real sense, the Center for Nonlinear Studies’ conference
represented the “end of the beginning” of the field of deterministic
chaos. Many of the fundamentals of low-dimensional chaos are
theoretically modeled and experimentally verified, and a variety of
intriguing questions seem ripe for answering. Given the panoply of
models and the range of observed phenomena, it was no surprise that
by the end of the conference most of the participants appeared ready
to agree with the American poet Wallace Stevens, who, in his poem
“Connoisseur of Chaos,” asserted that

The squirming facts
exceed the squamous mind. ■
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