




There are two types of symmetries in

nature: external (or space-time) symmetries

and internal symmetries. Examples of inter-

nal symmetries are the symmetry of isotopic

spin that identifies related energy levels of

the nucleons (protons and neutrons) and the

more encompassing SU(3) X SU(2) X U(1)

symmetry of the standard model (see “Par-

ticle Physics and the Standard Model”).

Operations with these symmetries do not

change the space-time properties of a par-

ticle.
External symmetries include translation

invariance and invariance under the Lorentz

transformations. Lorentz transformations,

in turn, include rotations as well as the

special Lorentz transformations, that is, a

“boost” or a change in the velocity of the

frame of reference.

Each symmetry defines a particular opera-

tion that does not affect the result of any

experiment. An example of a spatial transla-

tion is to, say, move our laboratory (ac-

celerators and all) from Chicago to New

Mexico. We are, of course, not surprised that

the result of any experiment is unaffected by

the move, and we say that our system is

translationally invariant. Rotational in-
variance is similarly defined with respect to

rotating our apparatus about any axis. In-

variance under a special Lorentz transforma-

tion corresponds to finding our results un-

changed when our laboratory, at rest in our

reference frame, is replaced by one moving at

a constant velocity.

Corresponding to each symmetry opera-

tion is a quantity that is conserved. Energy

and momentum are conserved because of

time and space-translational invariance, re-

spectively. The energy of a particle at rest is
its mass (E= mc2). Mass is thus an intrinsic

property of a particle that is conserved be-

cause of invariance of our system under

space-time translations.

Spin. Angular momentum conservation is a

result of Lorentz invariance (both rotational

and special). Orbital angular momentum re-

fers to the angular momentum ofa particle in
motion, whereas the intrinsic angular

momentum of a particle (remaining even at

rest) is called spin. (Particle spin is an ex-

ternal symmetry, whereas isotopic spin,
which is not based on Lorentz invariance, is

not.)

In quantum mechanics spin comes in inte-

gral or half-integral multiples of a fundamen-

tal unit h (h = h/2z where h is Planck’s

constant). (Orbital angular momentum only

comes in integral multiples of h.) Particles
with integral values of spin (O, h, 273, . .) are

called bosons, and those with half-integral

spins (r5/2, 3fz/2, 5h/2, . .) are called fer-

miens. Photons (spin 1), gravitons (spin 2),

and pions (spin O) are examples of bosons.

Electrons, neutrinos, quarks, protons, and

neutrons—the particles that make up or-

dinary matter—are all spin-% fermions.

The conservation laws, such as those of

energy, momentum, or angular momentum,

are very useful concepts in physics. The fol-
lowing example dealing with spin and the

conservation of angular momentum

provides one small bit of insight into their

utility.

In the process of beta decay, a neutron

decays into a proton, an electron, and an

antineutrino. The antineutnno is massless

(or very close to being massless), has no

charge, and interacts only very weakly with

other particles. In short, it is practically in-
visible, and for many years beta decay was

thought to be simply

rz+p+e-

However, angular momentum is not con-

served in this process since it is not possible

for the initial angular momentum (spin 1/2

for the neutron) to equal the final total

angular momentum (spin 1/2 for the proton
~ spin 1/2 for the electron* an integral value

for the orbital angular momentum). As a

result, W. Pauli predicted that the neutrino

must exist because its half-integral spin

restores conservation of angular momentum

to beta decay.

There is a dramatic difference between the

behavior of the two groups of spin-classified

particles, the bosons and the fermions. This

difference is clarified in the so-called spin-

statistics theorem that states that bosons

must satisfy commutation relations (the

quantum mechanical wave function is sym-

metric under the interchange of identical

bosons) and that fermions must satisfy a.nti-

commutation relations (antisymmetnc wave

functions). The ramification of this simple

statement is that an indefinite number of

bosons can exist in th~ same place at the

same time, whereas only one fermion can be
in any given place at a given time (Fig,, 1).

Hence “matter” (for example, atoms) is

made of fermions. Clearly, if you can’t put

more than one in any given place at a time,

then they must take up space. If they are also

observable in some way, then this is exactly

our concept of matter. Bosons, on the other

hand, are associated with “forces.” For ex-

ample, a large number of photons in the

same place form a microscopically ob-

servable electromagnetic field that affects

charged particles.

Supersymmetry. The fundamental prop-

erty of supersymmetry is that it is a space-

time symmetry. A supersymmetry operation

alters particle spin in half-integral jumps,

changing bosons into fermions and vice
versa. Thus supersymmetry is the first sym-

metry that can unify matter and force, the

basic attributes of nature.

If supersymmetry is an exact symmetry in

nature, then for every boson of a given mass

there exists a fermion of the same mass and
vice versa; for example, for the electron there

should be a scalar electron (selection), for the

neutrino, a scalar neutrino (sneutrino), for

quarks, scalar quarks (squarks), and so forth.

Since no such degeneracies have been ob-

served, supersymmetry cannot be an exact

symmetry of nature. However, it might be a

symmetry that is inexact or broken. If so, it

can be broken in either of two inequivalent

ways: explicit supersymmetry breaking in

which the Lagrangian contains explicit terms

that are not supersymmetric, or spontaneous
supersymmetry breaking in which the La-

grangian is supersymmetric but the vacuum

is not (spontaneous symmetry breaking is
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Fig. 1. (a) An example of a symmetric wavefunction for a pair of bosons and (b) an
antisymmetric wave function for a pair of fermions, where the vector r represents
the distance bet ween each pair of identical particles. Because the boson wave
function is symmetric with respect to exchange (t+, (r) = yr,(-r)), there can be a
nonzero probability (y;) for two bosons to occupy the same position in space (r =
O), whereas for the asymmetric fermion wave function (VF (r) = –VF (–r)) the
probability (y;) oft wo fermions occupying the same position in space must be
zero.

explalncd In Notes 3 and 6 of ‘“Leclurc

Notes—From Simple Field Theories to the

Standard Model””). Either way will Iif! the

boson-fcrmlon dcgcncracy, bul the latter way

will introduce (In a somewhat analogous way

10 lhc Higgs boson of weak-interaction sym-

metry breaking) a new particle. the Gold-

SIOIIC fermion. (Wc develop ma[hcma[lcally

some of Ihc ideas of this paragraph in

““Supcrsymmt’[ry and Quantum Mechan-

ics’-, )

.+ qucs(ion of extreme imporrancc is lhe

scale of supcrsymmctry breaking. This scale

can be characterized in terms of lhe so-called

fI(prr,w/J. [he mass splilting bel WCt?n fCr-

mlons and thcirbosonic partners (b: = ,lf~ –

.!l~). Dots onc c~pecl this scale to bc ofthc

order of ~hc weak scale ( -100 GcV). or IS it

much larger? WC WIII discuss the tirsl

possiblil> al Icngth bccausc If supcrsym-

metry IS broken on a scale of order 100 GcV
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lhcrc arc many prcdictmrss tha( can be vcri -

fmd in [hc next generation of high-energy

accelerators. The second possibility would

nol ncccssanly lead m any new Iow-m-wrgy

conscqucnccs.

We will also discuss [be role gravity has

played in the description of low-energy

supersymmetry. This connection bctwcecn

physics al the largest mass scale in nature

(the Planck scale: ‘Mpl= (h~’/(;N)”2 = 1.2 X

1019 CJeV/C2. where (;N is Newlon”s gravila-

[ional constant) and physics at tbe low

encv-gies of the weak scale (.kf~ = 83 GeV/c2

where ,Jf,+ is the mass of the U’ boson re-

sponsible for weak interactions) is both

novel and cxci[ing,

Motiwtions, Why would onc ccmsdcr

supcrsymmctry to star[ wilh’?

First. supersymmclry is ~he largest

possible symmetry of nature that can com-

—

bine Internal symmclrics and space-~lmc

symmetries In a nontrivial way, This com-

bination IS nw a necessary feature of supcr-

symmclry (in fact. it is accomplished b! ek-

tendinglhc algebra of Eqs. 2 and 3 In ‘“Super-

symmetry and Quantum Mechanics”” 10 ln -

cludc more supcrsymmcvr> generators and

internal s>mmclry generators), However, an

Important conscqucrrcc ofsuch an c~[ension

might bc Ihat hosons and fcrmions In dtf-

fcrcmt rcprcscnlalions of an lnlc.rnril s>m-

mclry group arc rclawd. For ckample. quarks

(fcrmions) arc in [riplcis in the strong-l ntLv-
ac[ion group S[1(3), whereas the gluons (bos-

ens) arc in OCICIS.Perhaps !hcy are all rclaled

in an cxtcndcd supcrsymmcir!. Ihus prol ld-

!ng a unifwd dcscrip[ion ofquarks and [heir

forces.

Second. supcrsymrnctry can provide a the-

ory of gravit}, [f supcrs}mmclr> IS glohisl,

[hen a given supers> mmctry rotation must

be the same over all space-time. However, if

supcrsymmct~ is local. the system IS in-

varian[ under a supersymme[ry rotation tha~

may be arbitrarily different a{ even poln(,

Because the various generators (supersym -

mcln charges. four-m omcn[um ~rans]a-

lmnal gcncralors. and Lorcntz generators for

both ro[atlons and boosIs) satlsf} a common

olgcbra 01’ commutation and anllcwmmula-

IIon rclalwns. consistcnc! M>qu(rrs tha[ all

the symmc(rlcs arc local. (In facl. ~hc anti -

commutator of Iwo supers} mmctr> gen-

erators IS a Iranslallrm gcncralor. ) Thus dif-

ferent points In space-llrnc can transform In

differcnl ways: puI simply. this can amount

10 accclcratlon hclwccm points. whtch. in

turn. is cqutvalcnt to gra~lt>. In fac~. the

thcov of local translations and Lorentz

Transformations isjust general relatlvtt}. ~ha[

is. Einstcin”s theory of gravity. and a supcr-

symmc[ric [heo~ ofgravlty IS called supcr-

gravily. 11 IS just the theory invariant under

local supcrsymmetry, Thus. supers} mmctr>

allows for a possible unification of all of

naturc”s parllclcs and ~hclr !nmrac[lons,

These IWO motivations were realized quite

soon after the ad} cmt of supers} mmc[n.

They arc posslhilitws tha[ unfortunate!

have nol yet Icd to any reasonable predic-

(Ymll!llw[i on {?UC(, 106
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I
intend to develop here some of the algebra pertinent to the

basic concepts of supersymmetry. I will do this by showing an

analogy between the quantum-mechanical harmonic os-

cillator and a bosonic field and a further analogy between the
quantum-mechanical spin-% particle and a fermionic field. One

result of combining the two resulting fields will be to show that a

“tower” ofdegeneracies between the states for bosons wtd fermions is

a natural feature of even the simplest of stspersymmetry theories.
A supersymmetry operation changes bosons into fermions and

vice versa, which can be represented schematically with the operators

Q: and Q, and the equations

(?$lboson) = Ifermion)a

and (1)

Q.lfermion) = Iboson)a.

In the simplest version of supersymmetry, there are four such

operators or generators of supersymmetry (Q~ and the Hermitian

conjugate Q$ with a = 1, 2). Mathematically, the generators are

Lorentz spinors satisfying fermionic anticommutation relations

[Q:>QB}= I+’(oA , (2)

where # is the energy-momentum four-vector @o = H, p’ * three-

momentum) and the UP are two-by-two matrices that include the

Pauli spin matrices ai (GP = (1, d“) where i = 1, 2, 3). Equation 2

represents the unusual feature of this symmetry: the supersymmetry
operators combine to generate translation in space and time. For

example, the operation of changing a fermion to a boson and back

again results in changing the position of the fermion.

If supersymmetry is an invariance of nature, then

[H, Q.]= O, (3)

that is, Q. commutes with the Hamiltonian H of the universe. Also,

in this case, the vacuum is a supersymmetric singlet (Qalvac) = O).

Equations I through 3 are the basic defining equations of super-

symmetry. In the form given, however, the supcrsymmetry is solely
an external or space-time symmetry (a supersymmetry operation

changes particle spin without altering any of the particle’s internal
symmetries). An exlended supersymmetry that connects external and
internal symmetries can be constructed by expanding the number of

operators of Eq. 2. However, for our purposes, we need not consider

that complication.

The Harmonic oscillator. In order to illustrate the consequences

of Eqs. 1 through 3, we first need to review the quantum-mechanical

treatment of the harmonic oscillator.

The Hamiltonian for this system is

(4)
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where p and q are. respectively. the momentum and position

coordinates of a nonrelativistic particle with unit mass and a 2K/O
period of oscillation. The coordinates satisfy the quantum-mechani-

cal commutation relation
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Supersymmetryat 100 GeV

[P)d=o’w-w)-=-fh. (5)

The well-known solution to the harmonic oscillator (the set of

eigenstates and eigenvalues of H=) is most conveniedy eztprcased
in terms of the so-called raising msd lowering operators, C?+and a,
respectively, which are defined as

“=AJ’+’”q)
and

1

‘“m ‘–i’’’q)’

and which Satisfi the commutation relation

[a, a’] = 1.

(6)

(7)

[n terms of these operators, the Hamiltonian becomes

HM = hm(ata + %) , (f3)

with eigenstates

In) = Nn(at)”lO), (9)

where Nn is a normalization factor and 10) is the ground state

satisfying

alO)= O

and (10)

(010)= 1.

It is easy to show that

a+ln} = -I In+ 1)

and

a[rs)=fi [n–l),

LOS ALAMOS SCIENCE 8ummer/FatI 1984
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hence the names raising operator for at and lowering operator for a.
Ah note that da is jwst a counting operator since at a In)= n In).
Fizta$iy, we find &t

Hm In)= rl@(n + Y2) pz) , (12)

thatis, the states ~n)have enmgy (n + 1/2)ha) .

The BoaossicField. There is a simple analogy between the quantum

oscillator and the scalar quantum field needed to represent bosons
(scalar particles). A fkee scalar field is quite rigorously described by an

infinite set of nonistteraetktg harmonic oscillators {a~ up),where p is

an index Meting the set. The Hamiltonian of the free field can be
written as

Hwh = ~ hsoP(aJ.aP+ %), (13)

with the summation taken over the individual oscillators p.
The ground state of the f$ee scaiar quantum field is called the

vatmrst (it coztfaks no soaks partickes) and is de.wibed mathe-
matically by the conditions

@p&@ = O

and

(vaclvac) = 1.

(14)

The a$ and aP operators create or annihit

scalar particle with energy Isa)fl (huP =

momewurt carrkd by the created particle and m is the mass). A
Scz21a$particle is *as an exciwtion of one particular oscillator mode.

The FWSBWC FM. TM simple quantum-mechanical analogue of

a spin-% field needed to represent fermions is just a quantum particle
with spin M Tltis is necessary because, whereas bosons can be

represented by soak pasticles satisfying commutation relations,

fermions must be represented by spin-% particles satis~hzg anticom-

mutation relations.

A spin-’jz particte has two spin states 10)for spin down and 11) for

spin up. Once again we detine raising and lowering operators, here bt
and b, respectively. These opezwtors satisfy the anticommutation

relations

{b, bt} = (bb++ btb) = I

103
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and (15)

[b’, b’] = [b, b] = 0.

If blO)= O, it is easy to show that

/$10)=11)

and (16)

h’ll)= lo),

where /}+b is again a counting operator satisfying

/) ’611)=11)

and (17)

b’b 10)= 0.

We may define a Hamiltonian

H,P,n= IIW(b+fi– ‘/2), (18)

so that states II) and 10)will have energy equal to 1/2fI 10 and +21102,

respectively.

The analogy between the free quantum-mechanical fermionic field
and the simple quantum-mechanical spin-Yz particle is identical to

the scalar field case. For example, once again we may define an
infinite set {b;, 6PIof nonin[eracting spin-Yz particles labeled by the

index p. The vacuum state satisfies

bflIvac) = O

and (19)

(vaclvac) = 1.

Here b; and bpare identified as creation and annihilation operators,

respectively, of a single fermionic particle. Note that since {b\, /.$)

= O, it is only possible to create one fermionic particle in the state p.

This is the Pauli exclusion principle.

StqwsymmeCry. Let us now construct a simple supersymmetric

quantum-mechanical system that includes the bosonic oscillator

degrees of freedom (a+ and a) and the fermionic spin-llz degrees of
freedom (bt and b). We define the anticommuting charges

Q=at/2(~~)1/2

and

Qt = abt(fiw)’/2 .

itis then easy to verify that

[Q’, Q]= H= Ho,. + H,.,.

= hw(a+a+ b+b).

and

[H. Q]=O. (22)

Equations 2 I and 22 are the direct analogues of Eqs. 2 and 3.

respectively. We see that the anticommuting charges Q combine to

form the generator of time translation. namely. the Hamiltonian H.
The ground state of this system is the state 10)JO),P,n = 10.0). where

both the oscillator and the spin-Yz degrees of freedom are in the lowest

energy state. This state is a unique one, satisfying

QIO.0) = QtlO,O) = 0. (23)

The excited states form a tower of degenerate levels (see figure) with

energy (n + ‘/2)hco t ‘/2fto+ where the sign of the second term is

determined by whether the spin-’h state is 11)(plus) or 10)(minus).

The tower of states illustrates the boson-fermion degeneracy for

exact supersymmetry. The bosonic states In+ 1,0) (called bosonic in

the field theory analogy because they contain no fermions) have the

same energy as their fermionic partners In, I).

Moreover, it is easy to see that the charges Q and Q+ satisfy the

relations

Qlrrl)=~l~+l.0)

and

(20)
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Energy States

Boson Fermion

o 10,0>

bu i 1,0> 10,1>

2!IU I 2,0> 11,1;/

3hLJ 13,0> !2,1:’

First we may add a small symmelry breaking Iernl to lhc Hanlllto-

nian. thal is, H- // + df’. where & IS a small parameter and

[H’, Q]#O . (25)

This mechanism is called r.Yp//cif .symlnc(rj$ hrcakin~. Using it we can

give scalars a mass that is larger than that of their fermionic parlners.

as is observed in nature. Although [his breaking mcchan]srn ma} be

perfectly self-cons] stcnt (even this is in doubt when one includes

gravity), it is totally ad hoc and lacks prcdicti~c power.

The second symmetry breaking mechanism is termed $pon{u)lcojis

sjw~nwfr,t Iwaking. This mechanism is characterized by Ihc fact that

the Hamiltonian remains supcrsymmetric.

.
[QJI]=O, (26)

.

but the ground state does nol.

Qlvac) # 0. (27)

The boson-fermion degeneracy for exact supersymmetry in
which the first number in In,m) corresponds to the state for
the oscillator degree of freedom (the scalar, or bosonic,
field) and the second number to that for the spin-% degree of
freedom (the fermionicfield).

Q’lrr+l,O)= ~ lrr,l), (24)

which are analogous to Eq. 1 because they represent the conversion of

a fermionic state to a bosonic state and vice versa.

The above example is a simple representation of supersymmetry in

quantum mechanics. It is, however, trivial since it describes non-

interacting bosons (oscillators) and fermions (spin-l/? particles). Non-

trivial in[ww(lng representations of supersymmetry may also be

obtained. In some of these representations it is possible to show that

the ground state is not supersymmetric even though the Hamiltonian

is. This is an example of spontaneous supersymmetry breaking.

Symmetry Breaking. Ifsupersymmetry were an exact symmetry of

nature. then bosons and fermions would come in degenerate pairs,

Since th]s is not the case. the symmetry must be broken. There arc

two inequivalent ways in which to do this and thus to have Ihc

degeneracy removed.

LOS ALAMOS SCIENCE Summer/Fall 1984

Supersymmetry can either be a global symmetrj. such as the

rotational invariance of a ferromagnet, or a local symmetry. such as a

phase rotation in electrodynamics. Spontaneous breaking of a

.q/ohu/ symmetry leads to a massless Nambu-Goldstonc parltclc. In

supcrsymmctry wc obtain a massless fcrmion {;. the goidstino.

Spontaneous breaking ofa /fxa/ symmetry, however. results In the

gauge particle becoming massive. (In Ihc standard model, [hc Ii

bosons oblain a mass .MH = gl’ by “eating” the massless HIRS

bosons. where .r IS [hc S[J(?) coupling conslant nnci I IS [hc lac.uum

cxpcclation value of the neutral Higgs boson. ) The gtiugc partlclr o!’

local supersymmcwy is called a gravitino. it m the spin-3/2 partner O(

the graviton: that is. local supersymmctry incorporates Einstctn’s

theory ofgravily. When supcrsymmctry is spontaneously hrokcn. the

gravi[ino obtains a mass

by “eating” the goldstino (here G~ is Newton’s gravitational constan~

and ASSis the vacuum expectation of some field that spontancousl!

breaks supersymmetry).

Thus. If ~hc ideas of supcrsymmctry are correct. there is an

underlying symmclry connecting bosons and fermions that IS “hid-

den” in nature by spontaneous symme[ry breaking. ■

.—-
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[ions, Many workers in the field are. how-

ever. still pursuing these elegant notions.

Recently a third motivation for supersym-

mel~ has been suggested. I shall describe the

motivation and Ihen discuss its expected

consequences.

For many years Dirac focused at[ention on

~he “problem of large numbers” or. more

recently. Ihe “hierarchy problem. ” There are

many exlremcly large numbers [hal appear

In physics and for which we currently have

no good understanding of their origin. C)ne

such large number is the ratio of the gravita-

tional and weak-in[crac[lon mass scales

mentioned carllcr (.tfPl/.tf Li _ 1017).

The gravlta[ionai force bctwccn IWO parti-

CICS IS proportional to [hc product of [he

cnerg} (or mass If the particles are at rest) of

the IWO parliclcs l!mcs (;~. Thus. since (;N x

I /.t/~l. the force between IWO H“ bosons al

rest IS propor~lonal to ,11~,/tf~l - 10-{4. This

M }0 bc compared IO tbc electric force be-

tween ~t’ bosons. which is proportional to a

= e~/(4rrllc) - 10-j. where c is the elec-

tromagnetic coupling constant. Hence gravi-

[a(ional infractions between all known

elementary paflicles are. at observable

energies. al least 10J~ times weaker ~han their

electromagnetic Interactions.

The key word is observable. for if we could

imagine reaching an energy of order $fplc~.

then the gravitational interactions would be-

come quite strong. [n other words. gravita-

tionally bound states can bc formed. in prln-

ciplc. wilh mass of order .3fP1 - 10’9 GcV.

The Planck scale might thus be associated

wl[h particles. as yel unobserved. that have

slrong gravitational interactions.

.41 a somewhal lower energy. we also have

the grand unilica[[on scale (.tf(i - 1015 GcV

or greater}. another very large scale w}th

similar [hcorctlcal significance, New parti-

cles and lnterac[ions are expected to become

Important al .If{;.

In either case, should these new

phenomena exist. we are faced with the ques-

tion of why there are IWO such diverse scales.

.tfl{ and ,tfPl (or if(;). in nature.

The problem is exacerbated In the context

of [he slandard model. In this mathematical
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Perturbation Mass Corrections

Supersymmetry: As

I

~> $,

I
I

‘1

lf#H = mti =Oand My=m-, then AO+A~=O
-r

Fig. 2. If A. (left) represents a perturbative mass correction for an ordinaty particle
H due to the creation of a virtual photon y, then a supersymmetry rotation of the
central region of the diagram will gen:rate a second m?ss correction A, (right)
involving the supersymmetric partners H and the photino y. If supersymmetg’ is an
exact symmetry, then the total mass correction is zero.

framework. Ihe U’ boson has a nonzero mass

,!ll{ because of spontaneous symmetry

breaking and [he existence of the scalar par-

[iclc called the Higgs boson. Moreover. the

mass of the !4’ and [he mass of the Higgs

parliclc must be approximately equal. Un-

forlunalely scalar masses are typically ex-

tremely sensitive to Ihe details of the theory

at very high energies. In particular. when one

calculates quantum mechanical corrections

to {hc Higgs mass PII in perturbation theory.

one finds

);, = (~y,)~ + ily~ . (1)

where

?yl: - a ,W&C (2)

In these equations p~l is lhe zero[h order

value of the Higgs boson mass. which can be

zero. and 8p2 IS the perlurha[lvc corrcct]on.

The parameter a IS a generic coupling con-

stanl connecting the low mass stales of order

,!1,, and the heavy sta[cs ofordcr ,\ fl,,,gt.. (hat

is. the largest mass scale In [hc [hcor>. For

example. some of the theorized parttclcs With

mass .31PIor .tf(i will have electric charge and

interac[ with known particles. In Ihls case. a

= r~/4nh c. a measure of the elcclromagnctic

coupllng. Clcarl> y,, is naturally very large

here and m){ approximately equal lo the

mass of the H’.

Supersymmc[ry can ameliorate [he prob-

Icm bccausc. In such theor)cs. scalar parllclm

are no longer sensltivc to lhe details at high

cncrg]cs. .4s a rcsull of rnlraculous cancrlla-

~lons. anc finds

@~ - a(p~l)~ In (,ifIOrg(.) (3)

This happens in the following way (Fig. 2).
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Table 1

The Supersymmetry Doubling of F%rtkks

Standard Model Supersymmetric Partners

()

.
spin-Y~ i GU

L ()

spin-O

quarks 22 squarks

spi n-V~
Ieplons ();=e spin-O

; sleplons

(There are two other quark-lepton families similar to this one.)

spin- I
gauge bosons y, W*, ZO, g

spin-O
Higgs bosons (:J (:J

Global Supersymmetry

spin-O
G

scalar partner

heal Supersymsnetry
spin-O

G
scalar partner

spin-2
graviton t3

For each ordinary mass corrcct]on. there will

be a second mass correction relaled IO [he

first by a supersymmetry relation (lhe sym-

metry opera[ion changes the virtual particles

of [he ordinary correction into their cor-

responding supersymmelrlc par~ncrs), .Al-

though each correction .srpura~c/I is propor-

tional 10 a .if~,~,.. Ihc sum of the two correc-
tions IS giwn by Eq. 3. In thlscasc. if~~l = O.

~hen p{l-O and will remain zero 10 all orders

in perturbal}on Iheory as long as supersym -

melry rcmalns unbroken. Hence supersym-

me{ry IS a symmetry that prcven[s scalars

from getllng “large” masses. and onc can

even imagine a Iimtl In which scalar masses

\antsh. [Jndcr ihcsc condllmns wc say

scalars arc “naturally -- light.

How Ihen do WC obtain Ihe spontaneous

LOS .AI..AMC)S SCIENCE Summer/Fall 1984

spin-1/2
~, %’*,Z“, ~ gauginos

(?J (:J Hi:::;

spin-%
d (massless) Goldstino

G (massive)
spin-3/2

gravitino

breaking of the weak interactions and a U“

boson mass? Wc remarked that supcrsym-

mclry cannel be an exact symmclry of

nature: it must be broken. Once supcrsym -

me~ry is broken. the perturba[ive correction

(Eq. 3) IS rcplaccd by

6V~ - a (p~,)~ ]n(.tflarRL.) + a A;S . (4)

where A,~ is the scale of supersymmctn

breaking. If supersymmetry is broken spon-

taneously, then A~$ IS not sensitive 10 .MIargC

and could thus have a value [ha[ is much Icss

than .tfl,,g,.. This correction [o the H iggs

boson mass can then rcsul[ In a spontanccms

breaking of [hc weak interactions. wl{h lhc

standard mechanism. at a scale of ord~’r A,,

<< .Iflargc

The Particles. We’ve dlscusscd a bll 01 the

motivation for supcrsymmctr!. NOW It’[’s

dcscribc the consequences of the m]nlmal

supcrsymmc(ric cxtcnsmn of the slandard

model. that is. [he parliclcs. [heir masses. and

lheir tntcractions.

The particle spec~rum IS Iitcrall! doubled

(Table l). For every spin-’4 quark or Iepton

there is a spin-O scalar partner (squark or

slepton) with the samr quanlum numbers

undcrthc S[](3) X SLI(?) X [)( I)gaugc lnlt’r-

actmns. (WU show onl) the first famll> O!

quarks and Icp[ons tn Table 1. the other IWO

families Include the j. t. h, and r quarks. and.

for Icplons. the muon and tau and [heir

assoclalcd ncutnnos. )

The spin- I gauge bnsons (the pholon y. ~hc

weak interaction bosons Ii’t and X(). and

lhc g}uons g) have spin-l: fcv-mionic par~ncrs.

called gaugtnos.

Llkcwlsc. lhc spin-() HIggs bown. respon-

sible for (he spon~ancous s>mmtlr> breaking

ofthc weak !n[eracllon. should havca spin-) >

fermionic partner. called a Hlggsino. How-

Cvcr. We have included two sets of weak

dfmhkt H iggs bosons. denoted 11 and f{.

giving a total of four Hlggs bosons and four

Higgslnos. .Although onl! onc weak doublet

01 HIggs bosons IS rcqulrcd Ibr the weak

brcaklng of[hc slandard model. a conslstrnt

supers} mrnc[ry thcor} rcqulrcs {hc lwo sets.

4sa rcsul[ (unlike the s~andard model. which

prcdlcts orw ncu{ral HIggs boson). supers> m-

mc[ry prcdlcts that we should obser~c two

[hur,qcd and three neutral Higgs bosons.

Finally. other particles. related to s}m -

metr} breaking and to grai II!. should be

Introduced, For a global supers> mmclr>.

~hcsc parliclm WIII bc a masslcss spin-’:

(ioldsttno and IIS spin-() par~ncr. Howc\er.

In the local supcrsymmctry {hcor> rmdcd

for gravily. Ihcrc will also bc a gra\ilon and

its supcrsymmc[ric parlncr. (he gra$ltlno.

We will discuss [h]s polnl in gwatcr dc~all

later. bul local symmetry break]ng comb]nes

the Golds[lno with [he gravl[lno to form a

rnasslvc. ro[her than a masslcss. grai ][lno,

In many cascvi [he douhltng ot’ partlclm

Jusl outllncd crca[m a supcrs!mmctrlc parl-

ncr [ha[ IS absolu[cl} stable. Such a particle
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Ouark-
Ouark-
Gluon

Gluon-
Gluon-
Gluon

@ark-

Antiquark-
Higgs

Standard Model
Interaction

q

q

9

>

9,

9

9

9

Suparsymmetry Particle.
Ordirsary Particle

interaction

SS Rotation

‘:>

Squark-
Squark-
Gluon

Quark-
Squark-
Gluino

Gluino~
Gluino-
Gluon

Squark-
Antiquark-

Higgsino

Quark-
Antisquark-

Higgsino

Fig. 3, Examples of interactions between ordinary particles obtained by performing a supersymmetry
(left) and the corresponding interactions between an or- first interaction.

dinary particle and two supersymmetric particles (right)

could. in faci. bc Ihc domtnant form of mat-

lcrinourunl~crsc.

The NIasses. What IS the cxpcclcd mass for

the supersymmetric partners ot’ [he ordinary

particles’? The theory. to date. dots not make

any firm prcdwtions: WC can ncvcrthclcss

obtain an order-of-magniiudc estimate in the

rotation on the

following manner. which IS ELI, 4 wl[h [hc Iirs[ ncgllgtblc k’rm

Al[hough an unbroken supcrsymmetry dropped. ll”~c demand the HIgg.s mass p~l -

can kctp scalars masslcss. once supcrsym - bp~ IO bcofordcr .lf;t. [hen A;, - .~l~i~rIIsa[

mclry is broken. all scalars ohlain quantum most olordcr l(H) f)(ic V.Morco\cr. IIICmass

corrccllons to their masses proportional 10 spllttlng lwtw~x’n all ordln~r) par~iclcs and

the supcrsymme!rv breaking scale A,,. that is ihclr supcrs~ mmclric partntm IS a:aln of

order .Illt. WLS thus conclude that It’ supcr-
.

6)s- - (~ A;. . (5) symmc[r} IS rcsponslblc t’or [hc large ratio
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Fig. $ A possible intera@on involving snpmytwmctric particles@ selectroas;+
and e- and the photino y) that experivnentafty would k easily recognizable.

Fig. 5. A process involving supersymnetricparticles(a gfwino ~ and sqwrks ~ thsw
generates two kadronicjets.
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,WP1/.ifl,. Ihcrs lhc ncw partich isssocIaIA

wilh supcrsymmetry WIIIbe seen In Ihc nest

generation of high.ertergy accelerators.

The Interactions, .4s a result of supers! m.
mmry. lhe entire Iow-energy spmvrum o!’

particles has been doubled. the masses of the
ncw particles arc of order .\f II. but Ihcsc

masses cannot be predicicd with an} better

accurac}, 4 rcwsonahlc person might lhmc-

forc ask what propcrtws. ii’ an}. CLJ~IWC

prcdwt. The answer is [hat wc know itll the

interactions of the ncw parlicles with the

ordinan ones. ol’wttich several examples are

shown [n Fig. 3. To get an intcractton bc-
twccn ordlnar> and ncw part Iclcs. wc can

slart wiih an in[craction bclwccn three or.

dinary parliclcs and ro(a[c two of these (Wtlh
a supcrsymmc(r> opera lmrs) tnlo [heir supcr-

symrnctrlc ptrrtncrs. The Importtinl potnl IS

Ihat as a rcsull ofsupcrsymmctr! the coupl-

ing constants remain unchanged.

Since wc understand the interactions of

the ncw partic{cs with the ordinary ones. wc
know how to find these new objecls. For

example, an electron and a positron can an-

nihilate and produce a pair of selections thal

suhscqucntly decay Into an clcclron-posllrmr

pair and IWII photlnos (Ftg, 4), This process

IS cawl) rccognl~ahlc and would he J good

signal of’supersymmetry in high-energy elec.
iron-positron colliders.

Supcrsymnwtry ISalso evident in the proc-

css tlluslratcd in Fig. 5. Here onc of the Ihrcc

quarks in a proton intcrac[s with cmc of the

quarks in an antiprotmr: the intcractton is

mediated by a gluints, The rcsuh is [hc gen-

eration oftwo squarks that decay into quarks

and phounos. f3ccause quarks do not exist as

free particles. (hc experimenter should ob-

serve Iwo hadronic jets (each jet is a collec-

tion of hadrons moving in ~he same direction

as. and as a consequence of. [he initial mo-

tion ofa single quark). The two photinos will

generally not interact In the detector. and

thus some of the lotal energy of [he process
will he “’missing”’,

The thcorim wc hate been discussing until
now have been a mintmal supcrsymmclnc

exlenslon of lhc standard model. There are.
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however. two further extrapolations thal are

interesting both theoretically and phenome-

nologically. The first concerns gravity and

the second, grand unllled supersymmetry

models.

Gravity, We have already remarked thal

supersymmc[~ may be ei~her a global or a

local symmetry. If it is a global symmetry.

[he Goldstlno IS massless and the ligh~est

supersymmctnc partner. However. if super-

symmct~ is a local symmmry. it necessarily

Includes ihc gravi~y ofgcneral relativity and

the Goldstlno hccomcs parl of a massive

gravitlno (the spin-~fl partner of the gravi-

ton) with mass

(6)

With A,, of order .tfIt/ {a or 1000 GeV. lF?c;

Iscxtremcly small (- 10-1(’ times the mass of

the electron).

Recen[ly It was realized thal under certain

circumstances Aj$ can be much larger than

.lfli. but. al the same time. the perlurbative

corrections 5P? can still satisfy the constraint

that they be of order .lf~, In these special

cases. supersymmctry breaking effects van-

ish In ~hc Iimil as some very large mass

diverges: that is. wc obtain

(7)

Instead of Eq. 5. An example is already

provided by [hc gravltino mass ~t~(; (where

.\/lar~C= .!l,,, ). [n fac[. models have now been

constructed in which the grav][ino mass IS of

order .\fII and se[s ~hc scale of~he low-energy

supergap 52 be~wecn bosons and fermions.

In ei~her case (an extremely small or a very

large gravitlno mass). the observation of a

~lla.f.s(regravitlno is a clear signal of local

supersymmetry in nature. that Is. the non-

trivial cxtcnslon of Einstein’s gravity or

supergrav[ty.

Grand Unification. (’)ur second extrapola-

tion of supersymmetry has 10 do with grand

Fig. 6. The decay mode of the proton predicted by the minimal unification
symmetry SU(5). The expected decay products area neutral pion noand a positron
e+.

unified theories, which provide a theo-

retically appealing unification of quarks and

Ieptons and their strong. weak, and elec-

tromagnetic interactions. So far there has

been one major experimental success for

grand unification and two unconfirmed

predictions.

The success has to do with the relationship

bc~wccn various coupling constants, In the

minimal unification symmetry SU(5). two

independent parameters (the coupling con-

stant,qj and the value of the unification mass

,Mci) determine the three Independent coupl-

]ng constants (g.. g. and g’) of the standard-

mode\ S[J(3) X SU(2) X U( I )symmctry. ,Asa

resull. wc obtain one

[ypically expressed in

interaction parameter:

prcdlctlon. which IS

terms of the weak-

(8)

The theory ofmlnimal SU(5) predicts sln%u

= 0,21. whereas the experimentally observed

value IS 0.22 k 0,01. In excellent agreement.

The two predictions of SU(5) that have

not been verified experimentally are the ex-

istence of magnetic monopoles and proton

decay. The expected abundance of magnetic

monopoles today is crucially dependent on

poorly undcrs[ood processes occurrvng In the

firs[ 10-’~ second of the h[stoq o! the unl -

vcrse, AS a result. ifthcy arc not seen. wc ma}

ascribe the problem to our poor understand-

ing of the early universe. On the other hand.

if proton decay IS not observed a[ the ex -
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(10)

P Is upersymmetry Proton Decay K+ +;

n Supersymmetry Neutron Deca ‘O+;

Fig. 7. The dominant proton-decay and neutron-decay modes predicted by super-
symmetry. The expected decay products are K mesons (K+ and K“) and neutrinos
(i).

pectcd ra[e. then minimal SU(5) is in serious and
trouble. n - n-c+ (9)

The dominant decay modes predlc[ed by
These proecsses involve [he exchange ofa so-

minlmal S(J(5) forthc rruclcons arc
called l’ or }’ boson wilh mass of order if<;

(Fig. 6). so !hat Ihe predic!ed proton Iifetimc
p -- rt’~e+ T,, i S

where mfl IS the proton mass.

Recen[ experiments. especially sensitive

to the decay modes of Eq. 9. have found Tp ?

10”]2 years. in contradiction with the predic-

tion. Hence minima} S\J(S) appears to be In

trouble. There am. of course. ways to com-

plicate minimal S(1(5) so as [o be consistent

with [he experimental values for both sin%w

and proton decay. Instead of considering

such ad hoc changes. we will discuss [he

unexpected consequences of maktng mini-

mal S11(5) globally supersymmetric. The pa-

rameter sin%w does not change consider-

ably. whereas .V(; increases by an order of

magnltudc. Hence. tfle good predlcllon for

sirt%w remains intac[ while the proton life-

time. via the gauge boson exchange process

of Fig. 6. naturally increases and becomes

unobservable.

It was quickly realized, however, that

other processes in supersymmetric SU( 5)

give the dominant contribution towards

proton decay ( Fig. 7). The decay products

resulting from these processes would consist

ofk’mesons and neutrinos or muons. that is.

p -- A“;Vor Kop+ . (11)

and so would differ from the c.rpec{ed decay

products of n mesons and posi[rons. This IS

very exciting because detection of the

products of Eq. I 1 not only may signal

nucleon decay but also may provide the first

signal of supersymmetry in nature, Experi-

ments now running have all seen cand]date

cvcn[s of this t}pc, These events are. how-

ever. consis[enl with background. It may

take several more years before a signal rises

up above the background.

Experiments. An encouraging feature of the

[heory is that low-energy supersymmetry can

be verit’icd in the next ten years. poss]bly as

early as ncx[ year with cxpenmen[s now In

progress at the (’ERN proton-antlproton col-

Ildcr,

Experimenters at CERN recently d[s-
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co~ered the ~’+ and Z(l bosons. mcdlators of

the weak Interactions. and produced many of

lhese bosons in high-energy collisions be-

tween prolons and antiprotons (each with

momentum - 270 GeV/c). For example.

Fig, 8 shows Ihe process for the generation of

a !i” - boson. which [hen decays 10 a high-

energy elcclron (detectable) and a bigh-

energ! neulnno (not dctectablc), A single

elec[ron wi[h the characteristic energy of

about 4? GeV was a clear signalure for this

process.

However. also present in the CERN data

were several diffcrmst kinds of unomakm
events (evcnls Ihat cannot be described by

the s{andard model), Some of [hese have

signatures characteristic of the predictions of

supersymmetry.

For example. events were seen that con-

tained one. Iwo. or three hadronlc jets and

nolhing more. which can be interpreted as a

signal for either squark or gluino production

(Figs. 5 and 9). A IWO- or four-jet signal is

canonical. but !heseevcnls can look like one-

or Ihrec-jcl events some fracllon of the lime,

Further. the so-called LJA-I Collaboration

at CERN found SIX events wi~h IWO Jets. a

high-energy electron. and some missing

energy. This is the characteristic signa{ure of

top quark production via Il”decay (F]g. 10).

and thus thmc events may be evldcncc for

Iop quarks. But ~herc IS also an event

prcdictcd by supcrsymmc[ry with the same

slgnalurc. namely. the production of about

40-Gc V squarks (Fig, 1I ). II WIII take many

more events 10 dlscntanglc [hcsc two

posslblltics.

The C’ERN proton-anti pro[on colllder

began taking more data In September 1984

wllh momcn[um Incrcascd 10 320 (icV/t pm

beam and w][h Incrcascd Iumlnostly. [f the

supcrsjmmclnc parlncrs cxtst al these

cnerglcs. the} ma> be dlscovcrcd during the

next year. if. howcvm. such particles arc not

seen. then WC must wait for [hc nex[ gcncra-

tlon ofhigh-energy accelerators.

Hopefully. il will nol bc 100 long before wc

Icarn whc~hcr or not the undcrly]ng s{ruclurc

of the unl~ersc posscssc> this elegant. highly

unlfylng I}pc ofsymrnclr>. ■

Fig. 8. The generation, in a high-energy proton-antiproton collision, of a \\
particle, which then decays into an electron (e-) and an antineutrino (;).

Fig. 9. A p:oton-antiproton collision in volving supersymmetric particles (gluinos
~, squarks q, anfisquarks ti, and photinos ~) that generates four hadronic jets.

Jet -

b
v

t

P

Fig, 10. Two-jet events observed by the L’A-1 (’ol[aboration at CERN can be
interpreted, as shown here, as a process involving top quark tproduction.
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Jet

b e+

d ,/”” “
%+

& Jet

Fig. 11. The same event discussed in Fig. 10, only here interpreted as a supersym-
metric process involving squarks and antisquarks.

Further Reading

Danlcl Z. Frrcdman and Pctcr van Nlcuwcnhulmn. ‘“Supcrgra\tt! and the lJnification of!hc Laws of
Ph:slcs.’” .S(IctIIIfi( l~)~cr((ufl (Fcbruar) 1978): 126-143.

[.OS ,AI..A>10S SC’IES(’E Summer/Foil 1984

Stuart A. Rahy did his undergraduate work at the LJnivcrsily of Rochester. receiving hls B..% In
physics in 1969. Stuarr spenl six years in Israel as a student/~ cachcr, recelvlng a M, SC. In physics from
Tcl AVIV (Jnlvcrslty in 1973 and a Ph.D. in physics from the same lns!t~utlon in 1976, (Jpon
graduating. he took a Research Associale position al Cornell lJnlverstty. From 197810 1980. Stuarr
was .Actlng As.wstant Professor of physics al Stanford [Inivcrsit) and then mo~cd over to a !hree->car
assignment as Research .Associatc al [he Stanford Linear .Accclcrator Ccnwr, He came 10 the
Laboratory as a Temporary Staff Member In 1981, cutting shor{ his SLAC posltlon. and became a
StatT Mcmhcr of Ihc Elemcn[ary Panicles and Flcld Theo~ Group of Thcorctlcal DI\ ismn In 1982
Hc has rcccntly served as Vlsltlng Associate Research Sclcnl]s[ for [hc Univcrslt! of Mlchlgan He
and hls wlfc Mtchcle have two chlldrcn. Enc and Lial.

113

----- —————. -.-—.


	SUPERSYMMETRY AT 100 GeV
	Sidebar: Supersymmetry in Quantum Mechanics
	Further Reading

