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“When two systems, of which we know the
states by their respective representatives,
enter into temporary physical interaction
due to known forces between them, and
when after a time of mutual influence the
systems separate again, then they can no
longer be described in the same way as
before, viz. by endowing each of them with
a representative of its own. I would not 
call that one but rather the characteristic
trait of quantum mechanics, the one that
enforces its entire departure from classical
lines of thought. By the interaction, the 
two representatives (or ψ-functions) have
become entangled.”
—Erwin Schrödinger (1935)



Entanglement, a strong and
inherently nonclassical 
correlation between two or

more distinct physical systems, was
described by Erwin Schrödinger,
a pioneer of quantum theory, as 
“the characteristic trait of quantum
mechanics.” For many years, entan-
gled states were relegated to being
the subject of philosophical argu-
ments or were used only in experi-
ments aimed at investigating the
fundamental foundations of physics.
In the past decade, however, entan-
gled states have become a central
resource in the emerging field of
quantum information science, which
can be roughly defined as the appli-
cation of quantum physics phenom-
ena to the storage, communication,
and processing of information. 

The direct application of entan-
gled states to quantum-based tech-
nologies, such as quantum state tele-
portation or quantum cryptography,
is being investigated at Los Alamos
National Laboratory, as well as other
institutions in the United States and
abroad. These new technologies
offer exciting prospects for commer-
cial applications and may have
important national-security implica-
tions. Furthermore, entanglement is
a sine qua non for the more ambi-

tious technological goal of practical
quantum computation. 

In this article, we will describe
what entanglement is, how we have
created entangled quantum states of
photon pairs, how entanglement can
be measured, and some of its appli-
cations to quantum technologies. 

Classical Correlation and
Quantum State Entanglement

To describe the concept of 
quantum entanglement, we are first
going to describe what it is not! 
Let us imagine the simple experi-
ment illustrated in Figure 1. In that
experiment, a source S1 continually
emits pairs of photons in two direc-
tions. As seen in the figure, one
photon goes toward an observer
named Alice, while the other goes
toward Bob. 

First, imagine that the photons
emitted by S1 are always polarized
in the horizontal direction.
Mathematically, we say that each
photon is in the pure state denoted
by the ket |H〉, that is, the “represen-
tative” of the state Schrödinger
referred to in the quotation on the
opposite page. Because the photons
are paired, the combined state of the

two photons is denoted |HH〉, where
the first letter refers to Alice’s pho-
ton and the second to Bob’s.

Alice and Bob want to measure
the polarization state of their
respective photons. To do so, each
uses a rotatable, linear polarizer, a
device that has an intrinsic trans-
mission axis for photons. For a
given angle φ between the photon’s
polarization vector and the polariz-
er’s transmission axis, the photon
will be transmitted with a probabili-
ty equal to cos2φ. (See the box
“Photons, Polarizers, and
Projection” on page 76.) Formally,
the polarizer acts like a quantum-
mechanical projection operator Pφ
selecting out the component of the
photon wave function that lines up
with the transmission axis. We say
that the polarizer “collapses” the
photon wave function to a definite
state of polarization. If, for exam-
ple, the polarizer is set to an angle θ
with respect to the horizontal, then
a horizontally polarized photon is
either projected into the state |θ〉
with probability cos2θ or absorbed
with probability 1 – cos2θ = sin2θ.
The bizarre aspect of quantum
mechanics is that the projection
process is probabilistic.The fate of
any given photon is completely 
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unknown. Furthermore, any informa-
tion about the photon’s previous
polarization state is lost.

Getting back to the experiment,
we assume that Alice and Bob’s polar-
izers are always aligned in the same
way: When Alice sets her polarizer to
a certain angle, she communicates her
choice to Bob, who uses the same 
setting. Behind each polarizer is a
detector. In our experiment, Alice and
Bob rotate their polarizers to a certain
angle with respect to the horizontal
and record whether they detect a 
photon. Then, they repeat the proce-
dure for different polarizer settings. 
If Alice looks only at her own data 
(or Bob looks only at his), she can
determine the polarization state of the
photons emitted by the source—see
Figure 2(a). But Alice and Bob can
also make a photon-per-photon 
comparison of their data and deter-
mine the probability that they have the

same result, that is, they can examine
the photon–photon correlations. 

Suppose Alice has her polarizer 
oriented to transmit horizontally 
polarized photons. In that case, each
photon coming to her from S1 will be
transmitted, and her detector will
“click,” indicating a photon has
arrived. Subsequent communication
with Bob would reveal that he also
detected each photon, so at this 
polarizer setting, there is a perfect 
correlation between Alice’s detection
of a photon and Bob’s. Similarly,
by rotating the polarizer to the vertical
position, the two would again discover
a perfect correlation, namely, neither
party would detect his or her photons.

The correlation changes when Alice
and Bob have their polarizers oriented,
say, at +45° to the horizontal. In that
case, the photon sent to Alice has a
50 percent chance of passing through
her polarizer, and independently, the

photon sent to Bob has a 50 percent
chance of passing through his. 
The probability is therefore 25 percent
that both Alice and Bob detect a 
photon, 25 percent that neither detects
a photon, and thus 50 percent that they
obtain the same result. 

The correlation function G is 
shown in Figure 2(a′). It is equal 
to the product of the independent 
probabilities for detecting a photon
[(cos2θ)A × (cos2θ)B], plus the prod-
uct of the probabilities for not detecting
one [(sin2θ)A × (sin2θ)B], where sub-
scripts A and B are for Alice and Bob,
respectively. Thus, Alice and Bob
deduce that the two photons are 
independent of each other and the 
wave function is in fact separable:
|HH〉 = |H〉|H〉. In other words, the 
correlation is entirely consistent with
classical probability theory. The pho-
tons are classically correlated.

Now, consider performing the
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Figure 1. A Simple Two-Photon Correlation Experiment  
In this experiment, a source emits pairs of photons: One photon is going to Alice and the other to Bob. Each photon passes
through a linear polarizer on its way to its respective detector. Both Alice and Bob’s polarizers are rotatable and can be
aligned to any angle with respect to the horizontal, but Bob’s is always kept parallel to Alice’s. For a given polarizer setting,
Alice and Bob record those instances when they have the same results, that is, when both detect photons or when they
don’t. The figure shows the source emitting two horizontal photons in the state |Ψ〉 = |HH〉. The experiment can be performed
with other sources to examine differences between other two-photon states. (Picture of Bob is courtesy of Hope Enterprises, Inc.)
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Figure 2. Quantum States, Polarization, and Correlation 
The three sets of graphs show the results of the three experiments discussed in the text. In each case, the leftmost graph shows
the probability that Alice alone detects a photon and reveals information about the net polarization state of her photon. The right-
most graph shows the probability that Alice and Bob have the same result, which reveals information about the two-photon state.

(a) S1 emits photons in the pure
state |HH〉. Alice measures a cos2θ
function for her polarization data
and deduces that photons coming
to her are horizontally polarized.
(A different linear polarization
would shift the curve to the left or
right.) (a′) We define the correla-
tion function G as the probability
that both Alice and Bob detect a
photon, plus the probability that
neither detects a photon. For this
source, G is completely consis-
tent with classical probability 
theory for independent events;
that is, the correlation function 
is the product of the detection
probability of each photon in 
the pair.

(b) The source S2 emits photons
in the partially mixed state
1/2(|HH〉〈HH| + |VV〉〈VV|). Photons
from this source do not have a 
net polarization. Alice receives at
random either an |H〉 or a |V〉 pho-
ton, so the sum of her measure-
ments averages to a 50 percent
detection probability independent
of angle. (b′) The correlation func-
tion G, however, is the same as 
in (a), revealing that the photons
in each pair are independent of
each other and have polarization
H or V. Therefore, the two photons
exhibit the same classical corre-
lations seen in (a).

(c) The source S3 emits photons
in the maximally entangled state
1/√2(|HH〉 + |VV〉). Unlike the 
photons in the mixed state,
each photon is unpolarized.
Nevertheless, if Alice and Bob
align their polarizers the same
way, they always get the same
result independent of angle.
(c′) Polarization measurements of
the two photons are 100 percent
correlated. The photons exhibit
“quantum” correlations.
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Probability that Alice (or Bob) detects a photon: p+ = cos2θ. 
Probability that Alice (or Bob) does not detect a photon: p– = sin2θ.  

For independent photons: G = GHH = p+
A × p+

B + p–
A × p–

B = cos4θ + sin4θ.

For this mixed state, 
G = 1/2(GHH + GVV) = GHH .



experiment with a second source S2
that has a 50 percent chance to emit
two horizontally polarized photons
|HH〉 and a 50 percent chance to emit
two vertically polarized photons |VV〉.
This type of source emits photons in a
mixed state, which cannot be written
as a single “ket.” Instead, a mixed
state must be analyzed in terms of
several kets, each representing a par-
ticular, distinct pure state that has a
probability associated with it. Making
a measurement on a mixed state is

equivalent to probing an ensemble 
of pure states. The likelihood of 
measuring a particular pure state is
given by the appropriate probability.
(More-detailed, mathematical descrip-
tions of pure and mixed quantum
states are found in the box “Pure,
Entangled, or Mixed?” above.) 

The output of S2 is random (either
|HH〉 or |VV〉), so Alice receives at
random either an |H〉 or a |V〉 photon.
Because the probability of detecting
|H〉 is 1/2 cos2θ, and the probability of

detecting |V〉 is 1/2 sin2θ, Alice has a
50 percent chance of detecting a pho-
ton regardless of how she sets her
polarizer. The same is true for Bob.
Each observer, therefore, deduces that
the photons coming from S2 have no
net polarization. But as seen in
Figure 2(b′), the correlation function
tells a different story. In fact, the cor-
relation function for this source is
identical to the one obtained for S1
because, in both cases, the individual
photons leave the source in definite
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A pure state is a vector in a system’s Hilbert space. For
example, the most general, pure two-photon polarization
state can be written as 

|ψpure〉 = α|HH〉 + β|HV〉 + γ |VH〉 + δ |VV〉  . (1)

This state is specified by the four probability amplitudes α,
β, γ, and δ (expressed by four complex numbers or eight
real numbers) although these parameters are subject to two
constraints. The first is that the mean-square amplitudes
must equal unity, that is,

|α |2 + |β |2 + |γ |2 + |δ |2 = 1  . (2)

The second relates to the fact that the overall phase of a
wave function has no physical relevance. The net result of
these constraints is that any pure two-photon state depends
on only six independent real numbers. 

In general, however, any physical system contains a greater
or lesser degree of randomness and disorder, and one must
adapt the formalism of quantum mechanics to take this 
randomness into account. We do so by averaging over 
the fluctuations. It is convenient to represent states as 
density operators, or density matrices, formally defined as 

ρ = |ψ〉〈ψ |  , (3)

where the overbar denotes an ensemble average over the
randomness. All the measurable properties of the state are
determined by ρ. 

The density matrix must be used when representing mixed
states, which can be thought of as probabilistic combina-

tions of pure states. Mathematically, the density matrix
can always be decomposed into an incoherent sum over
pure states,

ρ = Σipi|ψi〉〈ψi|  , (4)

where each |ψi〉 is a pure state and pi are probabilities 
with values that lie between 0 and 1 and whose sum is 1.
In general, this decomposition is not unique. To 
characterize mixed states, one uses mean values and 
classical coherences; that is, one must specify the four
mean-square amplitudes (subject to the constraint 
|α |2 + |β |2 + |γ |2 + |δ |2 = 1) and the six independent 
classical complex correlations α∗β—–

, α∗γ—–
, and so on. 

For example, the source S2 mentioned in the text emits a
partially mixed state that is 50 percent |HH〉 and 50 per-
cent |VV〉, so that 

ρmix = 0.5 |HH〉〈HH| + 0.5 |VV〉〈VV|  , (5)

or in matrix form

(6)

This state is neither pure nor completely random; it is 
partially mixed. 

We next consider whether quantum states involving two 
or more systems (for example, two photons), are separable 

ρmix
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
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   .
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polarization states. For S1, the polar-
ization information is “carried” indi-
vidually by each photon. For S2,
the polarization information is carried
by the photon pairs. By examining the
correlations, Alice and Bob can
deduce that information. 

A different situation occurs for a
source S3 that emits pairs of photons
in the state |Φ+〉 = 1/√2 (|HH〉 + |VV〉).
Like the mixed state from S2, this
state is a combination of two horizon-
tally polarized photons and two verti-

cally polarized photons. Unlike the
mixed state, |Φ+〉 is a coherent, quan-
tum mechanical superposition: A prob-
ability amplitude is associated with
each component, |HH〉 and |VV〉, and
the two components have a fixed phase
relationship. An important property of
this particular state is that we can
rotate the axes of polarization (H and
V) and not change the state’s essential
properties.

The state |Φ+〉 is a fully entangled
quantum state. It cannot be factorized,

or separated, into a part describing one
of the photons and a part describing
the other. The two photons are inextri-
cably linked to each other and their
properties are always correlated. 
A measurement of one of the photons
makes the two-photon state instantly
disappear, and the remaining photon
assumes a definite state that is perfectly
correlated with the measured photon.
Neither photon carries definite infor-
mation by itself—all the information is
carried in the joint two-photon state.
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or entangled. If the state is separable and pure, it can be
written (in some basis) as a product of the states of the indi-
vidual systems, that is, as 

|ψ〉 = |ψA〉 ⊗ |ψB〉  , (7)

where ⊗ denotes the tensor product. The state |ψ1〉 = |HH〉 is
one such product of pure states and can be written as 

|ψ1〉 = |HA〉 ⊗ |HB〉  . (8)

Another example is the state 

|ψ〉 = (|HH〉 + |HV〉 + |VH〉 + |VV〉)/2  , (9)

which can be written as the product state 

|ψ〉 = 1/√2(|H〉 + |V〉)A ⊗ 1/√2 (|H〉 + |V〉)B  . (10)

A third example is the matrix ρmix on the opposite page,
which represents a separable mixed state. 

In contrast, if there is no way to write the two-photon state
as a direct product of states, the state is said to be entangled.
This definition leads to a quantity called concurrence, which
is defined for the general pure state |ψpure〉 by

C = 2|αδ – βγ |  . (11)

If and only if C is zero is the state separable. If C is equal to
unity (its maximum value), the state is maximally entangled. 

For example, consider any one of the four Bell states 

|Φ±〉 = 1/√2(|ΗΗ〉 ± |VV〉)  , and 

|Ψ±〉 = 1/√2(|HV〉 ± |VH〉)  . (12)

These states are a basis for the two-photon Hilbert space,
and linear combinations of the four states can be used to
represent any two-photon state. If we compare, say, |Φ+〉
with the general state |ψpure〉, we have α = δ = 1/√2, and
β = γ = 0. Thus C = 1, and this Bell state is maximally
entangled (as are the other three). 

The value of C provides a good metric for the amount
of entanglement in a pure two-qubit system.
Equivalently, some researchers use C2 (a quantity known
as the tangle) to characterize the degree of entanglement. 

The concurrence can also be defined for mixed states,
although the definition is much more complicated.
Indeed, calculating the concurrence for mixed states of
more than two qubits is currently a hot topic of research. 

In the everyday world, it is common to ascribe two (or
more) variables to the same object (for example, a hot,
sweet cup of coffee). Similarly, quantum states are
described by the two characteristics discussed above,
so that it is possible to have a pure entangled state,
a pure separable state, a mixed separable state, or
something in between, such as a partially mixed,
partially entangled state.



Thus, when Alice and Bob repeat
the experiment using the source S3,
the correlation is 100 percent regard-
less of polarizer orientation (assuming
Bob’s polarizer is always set the same
way as Alice’s). Figure 2(c) illustrates
the striking difference between the
classical correlations of the photons
generated by the sources S1 and S2
and the nonclassical correlations
exhibited by entangled photons.

To better understand the correlation
curve shown for |Φ+〉, consider that
quantum mechanics allows us to
express that state in any basis; that is,
|Φ+〉 = 1/√2 (|XX〉 + |YY〉), where |X〉 is
an arbitrary linear-basis state and |Y〉
is the orthogonal-basis state. Suppose
Alice has her polarizer set to +45°. In
the diagonal (+45/–45) basis, the
entangled state will be |Φ+〉 =
1/√2 (|+45,+45〉 + |–45,–45〉). If Alice
detects her photon (a 50–50 proposi-
tion), then Bob’s photon will collapse
to the |+45〉 state, and he will detect
his photon as well. Likewise, if Alice
doesn’t detect her photon, Bob won’t
detect his. The same deductions can
be made for any polarizer setting.  

According to quantum mechanics,
the correlation occurs regardless of
the distance separating the two pho-
tons. For example, suppose one of two
entangled photons from the state |Φ+〉
is sent to Alice, who “stores” it in 
her laboratory at Los Alamos,
New Mexico. The other photon is sent
to Bob, who is in orbit about the star
α-Centauri, nearly 4 light-years away.
After some time, Alice performs 
a measurement on her photon and
determines that it is |H〉. Her measure-
ment selects the |HH〉 part of the state
|Φ+〉 and eliminates the |VV〉 part so
that Bob’s photon is necessarily in 
the state |H〉. If, instead, Alice has
determined that her photon was |+45〉,
the state of Bob’s photon will be
instantly collapsed to |+45〉 as well. In
other words, the state of Bob’s photon
has been nonlocally influenced by
Alice’s measurement. By nonlocal, we

mean that the correlation between
Alice and Bob’s measurements occurs
even if there is not enough time for a
light signal (or any signal) to propa-
gate between the two experimentalists.
This is not to say that special relativity
has been violated: Because Alice 
cannot predetermine the outcome of
her measurement, she cannot use the
nonlocal quantum correlations to send
any information to Bob. In fact, entan-
glement can never be used to send 
signals faster than the speed of light.
Nonetheless, Bob’s photon “knows”
the outcome of Alice’s measurement. 

Nonlocality was the central point of
a famous argument raised by Albert
Einstein, Boris Podolsky, and Nathan
Rosen in 1935, now known as the
EPR paradox. The three physicists dis-
agreed with the Copenhagen interpreta-
tion of quantum mechanics, according
to which the state of a quantum system
is indeterminate until it is projected
into a definite state as a result of a
measurement. Einstein, Podolsky, and
Rosen argued that even unmeasured
quantities corresponded to definite 
“elements of reality.” The quantum
state only appeared to be indeterminate
because some of the parameters that
characterize the system were unknown
and unmeasurable. These local parame-
ters, or “hidden variables,” determined
the outcome of the experiment. 

In 1964, John Bell showed that the
correlations between measured prop-
erties of any classical two-particle 
system would obey a mathematical
inequality, but the same measured cor-
relations would violate the inequality
if the two particles were an entangled
quantum system. Experiments could
therefore determine if nature exhibited
nonlocal features. Following the

development of laboratory sources of
entangled photons, experimental tests
of Bell’s inequality were pursued with
vigor. The results to date suggest that
the observed photon correlations can-
not be explained by any local hidden-
variable theory,1 and most physicists
agree that quantum mechanics is truly
a nonlocal theory. 

Entanglement and 
Quantum Information 

Entanglement, a measurable prop-
erty of quantum systems, can be
exploited for specific goals. Here, we
present three potential applications, all
of which have been shown to work as
proof-of-principle demonstrations in
the laboratory. 

Quantum Cryptography. Consider
two bank managers, Alice and Bob,
who want to have a secret conversa-
tion. If they are together in the same
room, they can simply whisper dis-
cretely to each other, but when Alice
and Bob are in their respective cross-
town offices, their best chance for
secret communication is to encrypt
their messages. 

A generic, classical encryption 
protocol would begin when Alice and
Bob convert their messages to sepa-
rate binary streams of 0s and 1s.
Encryption (locking up the messages)
and decryption (unlocking the mes-
sages) are then performed with a set
of secret “keys” known only to the
two bankers. Each key is a random
string of 0s and 1s that is as long as
the binary string comprising each
message. To encrypt, Alice (the
sender) sequentially adds each bit of
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1 There were two loopholes to the EPR tests. The first stemmed from the fact that 
the detectors were not efficient enough. Consequently, the observed correlations could
have been the result of some new physics that did not require nonlocal interactions. 
The second loophole stemmed from the researchers’ inability to choose rapidly and 
randomly a basis for photon measurement. This inability allowed for a potential 
communication conspiracy between Alice and Bob’s systems. Both of these loopholes
have recently been closed but, so far, not in the same experiment.



the key to each bit of her message,
using modulo 2 addition (0 + 0 = 0,
0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0).
She then sends the encrypted message to
Bob, who decrypts it simply by repeat-
ing the operation, that is, by performing
a sequential, bit-by-bit modulo 2 addi-
tion of the key to the message. 

This type of encryption protocol,
known as a one-time pad, is currently
the only provably secure protocol. But
the one-time pad is effective only if
Alice and Bob never reuse the key,
and more obviously, if the key remains
secret. A potential eavesdropper, Eve,
cannot be allowed to glean any part of

the bit stream that makes up the key.
Therein lies a central problem of cryp-
tography: How can secret keys be cre-
ated and then securely distributed?
The nonlocal correlations of entangled
photons can play a role in this regard.
(One can also exploit the properties of
nonentangled photons in cryptographic
schemes. See the article “Quantum
Cryptography” on page 68.)

In the entangled-state quantum
cryptography scheme, Alice and Bob
perform an experiment similar to the
one described in the first section of
the paper. They use a source S3 that
emits entangled photons in the general

state |Φ+〉 = 1/√2 (|XX〉 +|YY〉), where
|X〉 is an arbitrary linear-basis state
and |Y〉 is the orthogonal-basis state.
One photon goes to Alice and the other
to Bob. In this protocol, however,
either banker can choose—at random
and independent of each other—to use
a half-wave plate (HWP) to rotate
photon polarization by a set amount.
The bankers then detect the photon in
the H/V basis using a polarizing beam
splitter, which transmits horizontally
polarized photons and reflects verti-
cally polarized photons (see Figure 3).
Detection of a horizontally polarized
photon is recorded as a 0; of a verti-

Entangled-photon source 

PBS
H-detector V-detector

Bob

Alice

(1)  +〉 = 1/√// 2 (√√ X,X 〉 + Y,Y 〉)

(2)  '+〉 √√2 (√√ (X + 45),X 〉 + (Y + 45),Y 〉)

(4)  B〉 – 5 〉
(3)  A〉 H 〉

HWP

1

1

0

0

ΦA

Φ+
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Figure 3. Quantum Cryptography Using Entangled Photons

Alice and Bob can use the properties of
entangled photons to create a pair of
identical cryptographic keys. (1) The
source emits entangled photons in a
maximally entangled state |Φ〉 = 1/√2(|XX〉
+ |YY〉), where |X〉 is an arbitrary linear-
basis state and |Y〉 = |X + 90〉 is the
orthogonal-basis state. One photon goes
to Alice and the other to Bob. (2) Alice
chooses at random either to let her pho-
ton pass or to insert a half-wave plate
(HWP), which will rotate her photon by
+45°. The latter choice changes the rela-
tive orientation between the two photons
by +45°. In the case shown, she chooses
to rotate her photon. The new entangled
state is |Φ′〉. (3) Alice uses a polarizing

beam splitter (PBS) to measure her pho-
ton in the H/V basis. This optical element
transmits horizontally polarized photons
and reflects vertically polarized photons,
and her unpolarized photon can collapse
to either a horizontal or vertical polariza-
tion with equal probability. In this case, it
collapses to a horizontal polarization.
Alice records a bit value of 0. (5) Bob’s
photon was entangled with Alice’s, so as
a result of her measurement, his photon
assumed the definite polarization state 
|H – 45〉 = |–45〉. If Bob makes the same
choice as Alice and inserts his HWP, he
will rotate his photon’s polarization by
+45° and into a horizontal polarization.
His photon will register in the H-detector,

and he will record a bit value of 0. If he
makes the opposite choice and doesn’t
rotate his photon, the photon polarized
at –45° has an equal probability of going
to either detector (bit value either 0 or 1).
As seen in Table I on the next page,
whenever Bob and Alice make the same
choice, they keep the bit because their
bit values coincide. If they make oppo-
site choices, they discard the bit since
the values are not correlated. Alice and
Bob can construct an identical sequence
of random bits—a cryptographic key—
simply by declaring their sequence of
choices. The discussion can be public
because the bit values are never
revealed.



cally polarized photon, as a 1. 
After a sufficient number of meas-

urements (that number is dictated by
the length of the key), Alice and Bob
have a public discussion, during
which they reveal whether they insert-
ed the HWP before each measure-
ment. At no time do they reveal the
actual measurement results. Whenever
Alice and Bob make the same choice
(50 percent of the time), they know
from the properties of entangled pho-
tons that they will have completely
correlated results. By contrast, if one
of them uses the HWP and the other
doesn’t, they will discard the results
because their measurements would be
completely uncorrelated (see Table I).
Following this public discussion, each
banker will be able to privately con-
struct the same random string of 0s
and 1s—an ideal key for cryptography.

What about the eavesdropper Eve?
She is completely foiled in her
attempts to know the secret key.
Certainly, she cannot tap the photon
line, as she might with conventional,
classical communications. A single,
indivisible quantum object—namely,
a photon—is the conveyor of infor-
mation in this cryptographic proto-
col. If Eve steals Bob’s photon (a
“denial-of-service” attack), the pho-
ton’s information never becomes part
of the key. Thus, although a wiretap

would reduce the rate of the trans-
mission, it would not jeopardize the
security of the key. 

Eve can try to intercept the photon,
measure it, and send another one to
Bob. But any measurement Eve would
make to determine the photon’s 
polarization state would necessarily
perturb the photon and collapse the
entangled state. The photon she sends
to Bob would therefore be classically
correlated with Alice’s photon.
Consequently, Eve’s intervention
would necessarily induce additional
errors into Bob’s key. 

This last point is significant.
Unlike their theoretical counterparts,
the encryption keys created by an
actual quantum cryptography system
initially have a small fraction of
errors, because real equipment is
always less than perfect. To make
sure their key is secure, Alice and
Bob ascribe all errors to Eve and
then use this “bit error rate” to esti-
mate the maximum amount of infor-
mation available to the eavesdropper.
They then use a privacy amplification
scheme (discussed in the cryptogra-
phy article on page 68) to reduce
Eve’s knowledge of the secret key to
less than one bit. 

But the bit error rate alone can lead
to a false sense of security. If nonentan-
gled photons with a definite polariza-

tion are sent to Bob, it is conceivable
that some other degree of freedom may
also be coupled to the polarization
state. For example, if separate lasers
are used to produce the two polariza-
tion states, the photons from each laser
may have slightly different timing
characteristics or frequency spectra.
Such a difference would in principle
allow an eavesdropper to distinguish
between photons without disturbing
the polarization state and, hence,
without affecting the bit error rate. 

When the photons are entangled,
however, any leakage of information
to other degrees of freedom can be
shown to automatically manifest itself
in the error rate detected by Alice and
Bob. In other words, any degree of
freedom with which the polarization
might be coupled will cause notice-
able effects on the polarization corre-
lations. Therefore, using only the
detected error rates, one can set an
upper limit on the information avail-
able to an eavesdropper, even one
who is not directly measuring the
polarization of the photons, and then
use privacy amplification to eliminate
that information.

As a last resort, Eve may think of
“cloning” Alice’s photon. She could
measure the clone while allowing the
original to continue on to Bob, thus
completely covering her tracks. But she
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Table I. Constructing a Cryptographic Key with Entangled Photons

First Receiver
(Alice)

Second Receiver
(Bob)

Angle of
Rotation

(°)

Detector Bit
Value

Polarization to
Second Receiver

Angle of
Rotation

(°)

Detector Bit
Value

Communication
Results

0 H 0 H 0 H 0 Keep bit

0 V 1 V 0 V 1 Keep bit

0 H 0 H    +45 H or V 0 or 1 Discard bit

0 V 1 V    +45 H or V 0 or 1 Discard bit

   +45 H 0    –45° 0 H or V 0 or 1 Discard bit

   +45 V 1    +45° 0 H or V 0 or 1 Discard bit

   +45 H 0    –45°    +45 H 0 Keep bit
   +45 V 1    +45°    +45 V 1 Keep bit



is again foiled by quantum mechanics.
According to the no-cloning theorem,
it is impossible to make a copy of a
photon in an unknown state while
simultaneously preserving the original.
(See the box “The No-Cloning
Theorem” on page 79.) Eve is clearly
out of business.

Teleportation. In 1993, Charles
Bennett of IBM, Yorktown Heights,
and his colleagues proposed a
remarkable experiment with 
entangled particles, namely, the 
“teleportation” of a pure quantum
state from one location to another. 

Charlie wants to send his friend
Bob a photon in an arbitrary, pure

quantum state |ψ〉 = α |H〉 + β |V〉. He
enlists the aid of Alice, who happens
to run the Teleportation Laboratory
shown in Figure 4. Inside the lab, a
source S3 is emitting a pair of entan-
gled photons, one of which goes off
to Bob. The other photon is input into
Alice’s “teleporter.” Charlie is
instructed to send his photon into the
teleporter as well.

Alice then performs a special joint
measurement of the polarization state
of the two photons in the teleporter.
She relays the result to Bob, who 
subsequently performs a simple trans-
formation of the polarization state of
his photon. As if by magic, the state
of Bob’s photon is transformed into

the state of Charlie’s original photon. 
Mathematically, this magic is

described as follows. The three-
photon initial state (that is, Charlie’s
photon plus the two entangled pho-
tons) can be represented as 

|ψ0〉 = (α |H〉 + β |V〉)C
× 1/√2(|HH〉 + |VV〉)A,B , (1)

where the subscripts C, A, and B refer
to Charlie’s, Alice’s, and Bob’s pho-
tons, respectively. But |ψ0〉 can also
be represented as a superposition of
states, each constructed in the follow-
ing way: Charlie and Alice’s photons
are represented by one of the Bell
states |Φ±〉 = 1/√2 (|ΗΗ〉 ± |VV〉) and 
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Entangled-photon source

Entangled photons To Bob

To Bob

Alice’s “Teleporter”
(Bell state analyzer)

Charlie’s
unknown
photon

(a) Before Bell-State Measurement

(b) After Bell State Measurement

(c) After Classical Communication

Delay
cavity

Optical
elements

Bob’s photon is 
projected into 
a pure state

Bob’s photon assumes 
the same polarization 

state as Charlie’s

Alice relays results 
to Bob

Classical information 

Classical information 
Bob selects 

optical elements

Figure 4. Quantum State
Teleportation 
(a) Alice’s teleportation lab consists of
an entangled photon source and a Bell
state analyzer (the teleporter). One
entangled photon goes to Bob and the
other to the teleporter. Charlie sends a
photon of unknown polarization state
into the teleporter. (b) Alice performs a
joint polarization measurement of the
two photons in the teleporter and
relays the result to Bob using two clas-
sical bits of information. The photon
going to Bob is projected into a pure
state as a result of Alice’s measure-
ment. (c) Upon receiving Alice’s classi-
cal information, Bob performs a simple
transformation on his photon, such as
a rotation of the polarization vector. He
duplicates the polarization state of
Charlie’s photon without knowing any-
thing about its original state.



|ψ±〉 = 1/√2(|ΗV〉 ± |VH〉),

and Bob’s photon is represented as a
photon in a pure state. Thus,

|ψ0〉 = 1/2{|Φ–〉C,A (α|H〉 – β|V〉)B

+ |Φ+〉C,A (α|H〉 + β|V〉)B

+ |Ψ–〉C,A (–β|H〉 + α|V〉)B

+ |Ψ+〉C,A (β|H〉 + α|V〉)B}  .   (2)

Technically speaking, this repre-
sentation is possible because the Bell
states are a basis for the two-photon
Hilbert space and any state of two
photons can be represented as a linear
superposition of these states. It is
important to point out that Alice’s
photon remains entangled with Bob’s.
Teleportation relies on Alice’s ability
to perform a joint polarization meas-
urement that explicitly projects the 
two photons in the teleporter into one
of the four Bell states. Once Alice
completes her measurement, Bob’s
photon (which is totally correlated to
Alice’s) will assume the corresponding
pure state. For example, if the Bell
state measurement produces the result
|Ψ–〉C,A, then Bob’s photon would be
projected into the pure state 
|ψ〉 = (–β |H〉 + α |V〉)B. By using a
simple optical element, Bob can
rotate the polarization state of his
photon by 90° and transform it into
the state |ψ′〉 = (α |Η〉 + β |V〉)B, that
is, the original input state. Provided
Alice can specify which Bell state
was measured (a specification that
requires two bits of classical infor-
mation), Bob can always choose an
appropriate optical element to effect
the proper rotation.

In a series of groundbreaking exper-
iments conducted at the University of
Innsbruck, Austria, Anton Zeilinger

and coworkers were the first to demon-
strate quantum teleportation. The group
is now able to determine two of the
four Bell states unambiguously (the
other two states give the same experi-
mental signature2) and prove for those
cases that the state of Charlie’s photon
could indeed be transferred to Bob’s. 

Several points should be made
about quantum teleportation. First,
during the entire procedure, neither
Alice nor Bob has any idea what the
values are for the parameters α and β
that specify Charlie’s photon. The ini-
tial, arbitrary pure state remains
unknown. Second, teleportation is 
not cloning. The original state of
Charlie’s photon is necessarily
destroyed by Alice’s measurement,
so the photon that Bob ends up with 
is still one of a kind. 

Finally, hopeful sci-fi fans may be
a little disappointed by this realization
of teleportation. Unlike the TV show
“Star Trek,” in which Captain Kirk
could be transported body and soul
from the starship Enterprise to the
surface of an alien planet,3 here only
certain information about the photon
is transferred to a photon in some 
faraway location. Because photons
have numerous degrees of freedom in
addition to their polarization, the orig-
inal and the teleported photons are
two different entities. And it goes
without saying that an even simpler
way for Charlie to send his quantum
state to Bob would be to dispatch the
original photon directly to him. 

Nevertheless, teleportation remains
an interesting application of quantum
state entanglement. Furthermore,
researchers have discussed how it
might form the basis of a distributed
network of quantum communication
channels and how this basic informa-

tion protocol might be useful for
quantum computing. 

Quantum Microscopy and
Lithography. The general topic of
quantum metrology involves capitaliz-
ing on the ultrastrong correlations of
entangled systems to make measure-
ments more precisely than would be
possible with classical tools. The two
main photon-based applications under
investigation are quantum microscopy
and quantum lithography.

At present, two-photon microscopy
is widely used to produce high-
resolution images, often of biological
systems. However, the classical light
sources (lasers) used for the imaging
have random spreads in the temporal
and spatial distributions of the pho-
tons, and the light intensity must be
very high if two photons are to inter-
sect within a small enough volume and
cause a detectable excitation. The high
intensity can damage the system under
investigation. Because the temporal
and spatial correlations may be much
stronger between members of an
entangled photon pair, one could con-
ceivably get away with much weaker
light sources, which would be much
less damaging to the systems being
observed. Moreover, entangled-photon
sources may also enable obtaining
enhanced spatial resolution.

Lithography, in which a pattern is
optically imaged onto some photoresist
material, is the primary method of 
manufacturing microscale or nanoscale
electronic devices. An inherent limita-
tion of this process is that details smaller
than a wavelength of light cannot be
written reliably. However, quantum 
state entanglement might circumvent
this limitation. Under the right circum-
stances, the interference pattern formed
by beams of entangled photon pairs can
have half the classical fringe spacing. 

Quantum lithography requires 
two beams of photons, which we 
will call A and B, but in this case,
the type of entanglement is different
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2 Distinguishing between the four Bell states is still an unsolved technical problem. It
requires a strong nonlinear interaction between two photons, which is extremely difficult
to achieve in practice. 
3 “Teleportation” (though it was not explicitly called that) was supposedly introduced in
this TV show because the producer, Gene Roddenberry, wished to save the expense of
simulating the landing of a starship on a planet.



from the one discussed in the previous
sections. What is needed is a coherent
superposition consisting of the state in
which two photons are in beam A
while none are in B and the state in
which no photon is in beam A while
two photons are in B. Such number-
entangled states can be made in the

laboratory, and the predictions about
fringe spacings have been verified.
However, other obstacles must be over-
come in order to surpass current classi-
cal-lithography techniques. Researchers
continue to explore the potential of this
ideawith the hope of achieving a viable
commercial technology. 

Creating and Measuring
Entangled States

If quantum state entanglement 
is such a remarkable property
because it allows one to perform
secret communications, teleport
states, or test the nonlocality of 
quantum mechanics, one naturally
wonders how to make entangled
states. Currently, scientists can create 
entangled states of particles in a 
controlled manner by using several
technologies such as ion traps, cavity
quantum electrodynamics (QED),
and optical down-conversion. Here,
we will concentrate on the optical
realization. 

Crystals of a certain chemical
structure, such as beta-barium borate
(BBO), have the property of optical
nonlinearity, which means that the
polarizability of these crystals
depends on the square (or higher
powers) of an applied electric field.
The practical upshot of this property
is that, when passing through such a
crystal, a single-parent photon can
split (or down-convert) into a pair of
daughter photons. The probability
that this event occurs is extremely
small; on average, it happens to only
one out of every 10 billion photons! 

When down-conversion does
occur, energy and momentum are
conserved (as they must be for an
isolated system). The daughter pho-
tons have lower frequencies (longer
wavelengths) than the parent photon
and emerge from the crystal on oppo-
site sides of a cone that is centered
about the direction traveled by the
parent. For what is known as Type I
phase matching, the daughters
emerge from a specifically oriented
BBO crystal with identical polariza-
tions that are aligned perpendicular
to the parent polarization—see
Figure 5(a). Because each photon is
in a definite state of polarization, the
two photons are not in an entangled
state but are classically correlated.

Number 27  2002  Los Alamos Science  63

Quantum State Entanglement

(a)

Daughter
photons

Parent
photon

BBO Crystal

(b)

Entangled
daughter
photons

Parent
photon

Crossed BBO Crystals

Figure 5. Entangled-Photon Source
(a) For a given orientation of the beta-barium borate (BBO) crystal, a horizontally

polarized parent photon produces a pair of vertically polarized daughters.

The daughters emerge on opposite sides of an imaginary cone. The cone’s axis is

parallel to the original direction taken by the parent photon. The two daughter 

photons are not in an entangled state. Reorienting the BBO crystal by 90° will 

produce a pair of horizontally polarized daughters if a vertically polarized pump

beam is used. (b) Passing a photon polarized at +45° through two crossed BBO

crystals can produce two photons in an entangled state. Because of the

Heisenberg uncertainty principle, there is no way to tell in which crystal the parent

photon “gave birth,” and so a coherent superposition of two possible outcomes

results: a pair of vertically polarized photons or a pair of horizontally polarized

photons. The photons are in the maximally entangled state |Φ+〉 = 1/√2(|HH 〉 + |VV 〉).



(The crystal acts like the source S1
described earlier.)

To create photons in the entangled
state, one can use two crystals that
are aligned with their axes of sym-
metry oriented at 90° to each other,
as shown in Figure 5(b). With
crossed crystals, two competing
processes are possible: The parent
photon can down-convert in the first
crystal to yield two vertically polar-
ized photons (|VV〉), or it can down-
convert in the second to yield two
horizontally polarized photons
(|HH〉). It is impossible to distinguish
which of these processes has
occurred. Thus, the state of the 
daughter photons is a coherent 
quantum-mechanical superposition of
the states that would arise from each
crystal alone; the crossed crystals

produce photons in the state 
|Ψout〉 = 1/√2(|ΗΗ〉 + |VV〉), which is
maximally entangled.4

Figure 6 shows how this basic
source can be adapted to produce any
pure quantum state of two photons by
placing rotatable half- and quarter-
wave plates (which can be used to
transform the polarization state of a
single photon) before the crystal and in
the paths of the two daughter photons.
To create more general quantum

states—mixed states—a long birefrin-
gent crystal can be used to delay one
polarization component with respect to
the other. If the relative delay is longer
than the coherence time of the photons,
the horizontal and vertical components
have been effectively decohered; that
is, the phase relationship between the
different states is destroyed.
Researchers are still discovering how
to combine sources and polarization-
transforming elements to create all
possible two-photon quantum states.

Characterizing Entanglement:
The Map of Hilbert Space

As discussed in the box on page 56,
a mixed state of two photons  (or in
general, a mixed state of two qubits)

PBS

HWP
Beam stop

Prism

Ar
+

laser

Entangled-photon  
source 

QWP

Decoherers

State Selector Tomographic Analyzer Detectors

Filter Lens

Aperture
Single-
photon
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Figure 6. Creating and Measuring Two-Photon Entangled States 
(a) The “parent” photons are created in an argon ion laser and are linearly polarized
with a polarizing beam splitter (PBS). The half-wave plate (HWP) rotates the polar-
ization state before the photon enters the entangled-photon source. The entangled
photons produced diverge as they exit. Each photon’s polarization state can be
altered at will by the subsequent HWP and quarter-wave plate (QWP). The decoher-
ers following the state selection allow us to produce (partially) mixed photon states.
The optical elements (QWP, HWP, and PBS) in the tomographic analyzer allow us to
measure each photon in an arbitrary basis, for example in H/V or +45/–45.
Combining the measurements on both photons allows us to determine the quantum
state. (b) In the photo, Paul Kwiat is shown with the two-photon entangled source 
at Los Alamos.

4 In an alternative approach known as
“Type II phase matching,” only one crys-
tal is needed to create the entangled state.
The crystal has a different orientation,
and each of the daughter photons emerges
from the crystal on one of two possible
exit cones. Entangled photons created by
this approach were used in the first
demonstration of quantum teleportation. 

(a)

(b)



is represented by a 4 × 4 density
matrix, which is described by 15 inde-
pendent parameters (15 real numbers).
To determine the independent parame-
ters, we make 15 coincidence 
measurements on the ensemble of
photon pairs emitted from the source.
Each measurement is similar to the
one used in the simple experiment
described at the start of this article.
The measurement may be made with
the tomographic analyzer shown in
Figure 6. Using such a system, we
were able to determine the density
matrices of many types of states. 
An example is shown in Figure 7. 

Whereas 15 numbers fully describe
a two-photon mixed state, the density
matrix for N photons needs 4N – 1  
real numbers. Thus, the density 
matrix of a 4-photon state contains

255 parameters and requires 255 sepa-
rate measurements just to characterize
the state. Note that, if each parameter
is allowed to assume one of, say,
10 possible values, those 4 photons can
be in any of 10255 distinct quantum
states! This number of states is many
orders of magnitude greater than the
total number of particles in our 
universe. The mathematical space 
in which the quantum states rest 
(the Hilbert space) is unfathomably
large, and in order to have any hope 
of navigating it, one needs to introduce 
a simpler representation for quantum
states. 

Two characteristics of central
importance for quantum information
processing are the extent of 
entanglement and the degree of 
purity of an arbitrary state. A quantity

called the von Neumann entropy 
has been introduced to characterize 
the degree of puritya. (See the box
“Characterizing Mixed States” on 
the next page.) However, for the 
analysis of two-photon states,
we found it easier to use a related
quantity, known as the linear entropy.
When the linear entropy equals zero,
the state is pure. When it reaches 
its maximum value of 1, the state is
completely random. 

Measuring the entanglement of a
mixed state is more complicated and,
in general, is an unsolved research
problem when more than two qubits
are involved. Any mixed quantum state
can be thought of as an incoherent
combination of pure states: The system
is in a number of possible pure states,
each of which has some probability
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(a)  Real—Theoretical (b)  Imaginary—Theoretical

(c)  Real—Measured (d)  Imaginary—Measured
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Figure 7. Density Matrices
Theoretical and experimental density
matrices for the entangled state
|Φ+〉 = 1/√2 (|HH〉 + |VV〉) are illustrated
here. Both real and imaginary parts of
the matrix are shown. The value of each
matrix element is derived from the
results of thousands of two-photon 
correlation experiments (simulated
experiments for the theoretical matrix.)
The experimental matrix indicates that
our source can output a state close to a
maximally entangled one. Written out
“longhand,” the density matrix describ-
ing the state |Φ+〉 is

ρ = |Φ+〉〈Φ+|
= 1/2( |HH〉〈HH| + |VV〉〈VV|

+ |HH〉〈VV| + |VV〉〈HH| )  .

The first two terms, which lie on the
diagonal of the matrix (dashed line),
give the probability of the result (for
example, 50% HH and 50% VV). The
other two terms describe the quantum
coherence between the states |HH〉 and
|VV〉. For a classical mixed state (such
as the source S2 described in the text),
these off-diagonal terms in the density
matrix would equal zero. Notice that all
coefficients in this density matrix are
real, so that all terms in the imaginary 
part of the matrix should be zero.



between 0 and 1 associated with it
(rather than the complex numbers
defining the probability amplitudes
that specify a particular superposition
of pure states). A reasonable measure
of the entanglement of such a mixed
state is to take the average value of
the entanglement (for example, as
measured by the concurrence dis-
cussed in the box on this page) for all
those pure states. 

One must, however, use this proce-
dure carefully because the decomposi-
tion of the mixed state into an 
incoherent sum of pure states is not
unique. For this “average entangle-
ment” to make any sense as a measure
of entanglement of the mixed state,
one must use the decomposition for
which the average is a minimum. 
The square of this minimized quantity
is called the “tangle.” It has a value 
of zero for entirely unentangled,
separable states and of unity for com-
pletely entangled states. 

Figure 8 shows how those two
parameters—tangle and linear
entropy—can be used to create a
simplified map of Hilbert space for
two-photon states. The crosses 
(with error bars) are the states we
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Characterizing Mixed States

It is convenient to characterize the extent of entanglement and the degree
of purity of a mixed state using two derived parameters: the tangle and the
linear entropy. The linear entropy, which gives a measure of the purity of
the state, derives from the von Neumann entropy. The latter is given by the
formula S = –Tr{ρlog2(ρ)}, where ρ is the density matrix. Here Tr{M} is
the trace of a matrix (that is, the sum of terms on the diagonal) and log2 is
a logarithm base 2, which can be defined for matrices via a power series.
The von Neumann entropy is zero for a pure state. When the von Neumann
entropy has its maximum value (equal to the number of qubits), the state is
completely random, with no information or entanglement being present.
The linear entropy, defined for two qubits as SL = 4/3(1 – Tr{ρ2}), is simi-
lar to the von Neumann entropy, but it is easier to calculate. Specifically, it
equals 0 for a pure state and has a maximum value of 1 for completely 
random states. 

Characterizing the degree of entanglement is more difficult. Mathematically
speaking, if one decomposes the density matrix into an incoherent sum of 
pure states, that is, ρ = Σi pi |ψi〉 〈ψi|, where 0 ≤ pi ≤ 1 and ∑i pi = 1,
then the average entanglement is E

–
= ∑i piC(ψi) = 1, where C(ψi) is the

concurrence of the pure state |ψi〉 (defined in the box on page 56). It is very
important to find the decomposition for which E

–
takes its minimum possible

value; otherwise, one can infer a nonzero entanglement for states such as the
completely mixed state, which is certainly not entangled! Fortunately, the way
to do that decomposition has been worked out for two qubits. Characterizing
the degree of entanglement for three or more qubits remains an unsolved
research problem.
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Figure 8. The Map of Hilbert Space 
The amount of entanglement (or the
tangle) is plotted against the degree 
of purity (represented by the linear
entropy) for a multitude of two-photon
states created and measured at 
Los Alamos. Each state is represented
by a black spot with error bars.
The boundary line, which represents
the class of states that have the maxi-
mum possible entanglement for a given
value of the linear entropy, was first
determined theoretically but then 
confirmed by a numerical simulation 
of two million random density matrices.
Important states, such as those that are
maximally entangled or completely
mixed, are indicated. Efforts are under
way to create states that lie along 
the boundary line.



have created and measured experi-
mentally. Most display a high degree
of entanglement. States created by
other technologies can be plotted on
such a diagram as well. 

Conclusions

Entangled states arise naturally
whenever two or more quantum 
systems interact. In fact, one of the
prevalent theories of nature is that 
the universe is really one big, vastly
complicated entangled state, described
by the “wave function of the uni-
verse.” Despite their seeming ubiquity,
however, entangled states are not gen-
erally observed in the world at large.
Only relatively recently have scientists
developed the means to controllably
produce, manipulate, and detect this
most bizarre quantum phenomenon.
Initially, the fascination was limited to
experimental studies of the foundations
of quantum mechanics, especially the
notion of nonlocal “spooklike” influ-
ences (to quote Einstein). However,
even more recently, has come the real-
ization that entanglement could lead to
enhanced—sometimes vastly
enhanced—capabilities in the realm of
information processing.

This paper has discussed how
entangled states could be a key
resource in applications as diverse 
as cryptography, lithography, and
metrology because they enable feats
beyond those possible with classical
physics. In addition, the quest to 
create a quantum computer has
pushed entangled systems to the fore-
front of quantum research. Part of the
power of a quantum computer is that
it creates entangled states of N qubits
so that information can be stored and
processed in the 2N-dimensional qubit
space. Quantum algorithms have been 
developed that would manipulate 
the complex entangled state and make
use of the nonclassical correlations to
solve problems more efficiently than

could be done classically. Scientists
who work on developing quantum
computers are envisioning systems of
thousands of entangled qubits. 

We don’t know whether we will be
able to create or maintain such a com-
plex entangled state. At this point,
we won’t even claim to know whether 
we will fully understand that state if 
it is created. More research is needed
before those questions can be
answered. All that we can say now 
is that the once-hidden domain of
quantum entanglement has broken
into our classical world. �
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