
226 Los Alamos Science Number 27  2002

CI

CI

CI

H

13C1

13C2



Using quantum physics to represent and manipulate information makes possible
surprising improvements in the efficiency with which some problems can be
solved. But can these improvements be realized experimentally? If we consider

the history of implementing theoretical ideas about classical information and computa-
tion, we find that, initially, small numbers of simple devices were used to explore the
advantages and difficulties of information processing. For example, in 1933, Atanasoff
and his colleagues at the Iowa State College were able to implement digital calculations
using about 300 vacuum tubes (Zalta 2002). Although the device was never practical
because its error rate was too large, it was probably the first instance of a programmable
computer using vacuum tubes, and it opened the way for more stable and reliable
devices. Progress toward implementing quantum information processors is also initially
confined to limited capacity and error-prone devices. 

There are numerous proposals for implementing quantum information processing
(QIP) prototypes. To date, however, only three of them have been used to successfully
manipulate more than one qubit: cavity quantum electrodynamics (cavity QED), ion
traps, and nuclear magnetic resonance (NMR) with molecules in a liquid (or liquid-state
NMR). QIP devices are difficult to realize because of an intrinsic conflict between two
of the most important requirements: On the one hand, it is necessary for the device to be
well isolated from, and therefore interact only weakly with, its environment; otherwise,
the crucial quantum correlations on which the advantages of QIP are based are
destroyed. On the other hand, it is necessary for the different parts of the device to inter-
act strongly with each other and for some of them to be coupled strongly with the meas-
uring device, which is needed to read out “answers.” That few physical systems have
these properties naturally is apparent from the absence of obvious quantum effects in 
the macroscopic world. 

One system whose properties constitute a reasonable compromise between the two
requirements consists of the nuclear spins in a molecule in the liquid state. The spins,
particularly those with spin 1/2, provide a natural representation of quantum bits. 
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They interact weakly but reliably with each other, and the effects of the environment are
often small enough. The spins can be controlled with radio-frequency (rf) pulses and
observed with measurements of the magnetic fields they generate. Liquid-state NMR
has so far been used to demonstrate control of up to seven physical qubits. 

It is important to remember that the idea of QIP is less than two decades old, and,
with the notable exception of quantum cryptography, experimental proposals and efforts
aimed at realizing modern QIP began only in the last five years of the 20th century.
Increasingly advanced experiments are being implemented. But from an information
processing point of view, we are a long way from using quantum technology to solve an
independently posed problem not solvable on a standard personal computer—a typical
classical computer. In order to get to the point where such problems can be solved by
QIP, current experimental efforts are devoted to understanding the behavior of and the
methods for controlling various quantum systems, as well as ways of overcoming their
limitations. The work on NMR QIP has focused on the control of quantum systems by
algorithmically implementing quantum transformations as precisely as possible. Within
the limitations of the device, this approach has been surprisingly successful—thanks to
the many scientists and engineers who have perfected NMR spectrometers over the past
50 years. 

After a general introduction to NMR, we give the basics of implementing quantum
algorithms. We describe how qubits are realized and controlled with rf pulses, their
internal interactions, and gradient fields. A peculiarity of NMR is that the internal inter-
actions (given by the internal Hamiltonian) are always on. We discuss how they can be
effectively turned off with the help of a standard NMR method called refocusing.
Liquid-state NMR experiments are done at room temperature, leading to an extremely
mixed (that is, nearly random) initial state. Despite this high degree of randomness, it is
possible to investigate QIP because the relaxation time (the time scale over which useful
signal from a computation is lost) is sufficiently long. We explain how this feature leads
to the crucial ability of simulating a pure (nonrandom) state by using pseudopure states.
We discuss how the answer provided by a computation is obtained by measurement and
how this measurement differs from the ideal, projective measurement of QIP. We then
give implementations of some simple quantum algorithms with a typical experimental
result. We conclude with a discussion of what we have learned from NMR QIP so far
and what the prospects are for future NMR QIP experiments. For an elementary, device-
independent introduction to quantum information and definitions of the states and opera-
tors used here, see the article “Quantum Information Processing” on page 2 . 

Liquid-State NMR

NMR Basics. Many atomic nuclei have a magnetic moment, which means that, like
small bar magnets, they respond to and can be detected by their magnetic fields.
Although single nuclei are impossible to detect directly by these means with currently
available technology, if sufficiently many are available so that their contributions to the
magnetic field add, they can be observed as an ensemble. In liquid-state NMR, the
nuclei belong to atoms forming a molecule, a very large number of which are dissolved
in a liquid. An example is carbon-13-labeled trichloroethylene (TCE)—see Figure 1.
The hydrogen nucleus (that is, the proton) of each TCE molecule has a relatively strong
magnetic moment. When the sample is placed in a powerful external magnetic field,
each proton’s spin prefers to align itself with the field. It is possible to induce the spin
direction to tip off-axis by means of rf pulses, at which point the effect of the static field
is to induce a rapid precession of the proton spins. In this introduction, precession refers
to a rotation of a spin direction around the main axis, here the z-axis, as determined by
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the external magnetic field. The precession frequency ω is often called the Larmor fre-
quency and is linearly related to the strength B of the external field: ω = µB, where µ is
the magnetic moment. For the proton, the magnetic moment is 42.7 megahertz per tesla
(MHz/T), so at a typical field of B = 11.7 tesla, the precession frequency is 500 mega-
hertz. The magnetic field produced by the precessing protons induces oscillating currents
in a coil judiciously placed around the sample and “tuned” to the precession frequency,
allowing observation of the entire ensemble of protons by magnetic
induction. This is the fundamental idea of NMR. The device that applies
the static magnetic field and rf control pulses and that detects the magnet-
ic induction is called an NMR spectrometer—see Figure 2.

Magnetic induction by nuclear spins was observed for the first time
by Edward Purcell and coworkers (1946) and Felix Bloch (1946). This
achievement opened a new field of research, leading to many important
applications, such as molecular structure determination, dynamics stud-
ies both in the liquid and solid state (Ernst et al. 1994), and magnetic
resonance imaging (Mansfield and Morris 1982). The application of
NMR to QIP is related to methods for determining molecular structure
by NMR. Many of the same techniques are used in QIP, but instead of
using uncharacterized molecules, specific ones with well-defined nuclear
spins are synthesized. In this setting, one can manipulate the nuclear
spins as quantum information so that it becomes possible to experimen-
tally demonstrate the fundamental ideas of QIP. 

Perhaps the clearest example of early connections of NMR to infor-
mation theory is the spin echo phenomenon (Hahn 1950). When the stat-
ic magnetic field is not homogeneous (that is, it is not constant across the
sample), the spins precess at different frequencies, depending on their
location in the sample. As a result, the magnetic induction signal rapidly
vanishes because the magnetic fields produced by the spins are no longer
aligned and therefore do not add. The spin echo is used to refocus this
effect by inverting the spins, an action that effectively reverses their pre-
cession until they are all aligned again. Based on spin echoes, the idea of using nuclear
spins for (classical) information storage was suggested and patented by Arthur Anderson
et al. (1955) and Anderson and Erwin Hahn (1955). 

NMR spectroscopy would not be possible if it were not for relatively long “relax-
ation” times. Relaxation is the process that tends to realign the nuclear spins with the
field and randomize their phases, an effect that leads to complete loss of the information
represented in such a spin. In liquid state, relaxation times of the order of seconds are
common and attributed to the weakness of nuclear interactions and a fast averaging
effect associated with the rapid, tumbling motions of molecules in the liquid state. 

Currently, off-the-shelf NMR spectrometers are robust and straightforward to use.
The requisite control is to a large extent computerized, so most NMR experiments
involve few custom adjustments after the sample has been obtained. Given that the
underlying nature of the nuclear spins is intrinsically quantum mechanical, it is not sur-
prising that, soon after Shor’s discovery of the quantum factoring algorithm, NMR was
studied as a potentially useful device for QIP. 

A Brief Survey of NMR QIP. Concrete and workable proposals for using liquid-
state NMR for quantum information were first given by David Cory et al. (1997) and
Neil Gershenfeld and Isaac Chuang (1997). Three difficulties had to be overcome for
NMR QIP to become possible. The first was that the standard definitions of quantum
information and computation require that quantum information be stored in a single
physical system. In NMR, an obvious such system consists of some of the nuclear spins 
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Figure 1. Schematic of a Typical
Molecule (Trichloroethylene) 
Used for QIP
There are three useful nuclei for realizing qubits.
They are the proton (H) and the two carbons
(13C). The molecule is “labeled,” which means
that the nuclei are carefully chosen isotopes.
In this case, the normally predominant isotope
of carbon, 12C (a spin-zero nucleus), is replaced
by 13C, which has spin 1/2.
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in a single molecule. But it is not possible to detect single molecules with available
NMR technology. The solution that makes NMR QIP possible can be applied to other
QIP technologies: Consider the large collection of available molecules as an ensemble
of identical systems. As long as they all perform the same task, the desired answers can
be read out collectively. The second difficulty was that the standard definitions require
that readout take place by a projective quantum measurement of the qubits. From such a
measurement, one learns whether a qubit is in the state |�〉 or |�〉. The two measurement
outcomes have probabilities determined by the initial state of the qubits being used, and
after the measurement, the state collapses to a state consistent with the outcome. 
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Figure 2. Schematic of a Typical NMR Spectrometer (not to scale)
The main components of a spectrometer are the magnet, which is superconducting, and the console , which has the electronics
needed to control the spectrometer. The sample containing a liquid solution of the molecule used for QIP is inserted into the
central core of the magnet, where it is surrounded by the probe. The probe (shown enlarged to the right) contains coils for
applying the rf pulses and magnetic field gradients.
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The measurement in NMR is much too weak to determine the outcome and cause the
state’s collapse for each molecule. But because of the additive effects of the ensemble,
one can observe a (noisy) signal that represents the average, over all the molecules, of
the probability that |�〉 would be the outcome of a projective measurement. It turns out
that this so-called weak measurement suffices for realizing most quantum algorithms,
in particular those whose ultimate answer is deterministic. Shor’s factoring and 
Lov Grover’s search algorithms can be modified to satisfy this property. The final and
most severe difficulty was that, even though in equilibrium there is a tendency for the
spins to align with the magnetic field, the energy associated with this tendency is very
small compared with room temperature. Therefore, the equilibrium states of the mole-
cules’ nuclear spins are nearly random, with only a small fraction pointing in the right
direction. This difficulty was overcome by methods for singling out the small fraction
of the observable signal that represents the desired initial state. These methods were
anticipated in 1977 (Stall et al.) 

Soon after these difficulties were shown to be overcome or circumventable, two
groups were able to experimentally implement short quantum algorithms using NMR
with small molecules (Chuang et al. 1998, Jones et al. 1998). At present, it is considered
unlikely that liquid-state NMR algorithms will solve problems not easily solvable with
available classical computing resources. Nevertheless, experiments in liquid-state NMR
QIP are remarkable for demonstrating that one can control the unitary evolution of 
physical qubits sufficiently well to implement simple QIP tasks. The control methods
borrowed from NMR and developed for the more complex experiments in NMR QIP 
are applicable to other device technologies, enabling better control in general. 

Principles of Liquid-State NMR QIP

In order to physically realize quantum information, it is necessary to find ways of
representing, manipulating, and coupling qubits so as to implement nontrivial quantum
gates, prepare a useful initial state, and read out the answer. The next sections show how
to accomplish these tasks in liquid-state NMR. 

Realizing Qubits. The first step for implementing QIP is to have a physical system
that can carry quantum information. The preferred system for realizing qubits in liquid-
state NMR consists of spin-1/2 nuclei, which are naturally equivalent to qubits. The
nuclear-spin degree of freedom of a spin-1/2 nucleus defines a quantum mechanical
two-state system. Once the direction along the strong external magnetic field is fixed, its
state space consists of the superpositions of “up” and “down” states. That is, we can
imagine that the nucleus behaves somewhat like a small magnet, with a definite axis,
which can point either up (logical state |�〉) or down (logical state |�〉). By the superposi-
tion principle, every quantum state of the form |ψ0〉 = α|�〉 + β|�〉 with |α |2 + |β |2 = 1 is
a possible (pure) state for the nuclear spin. In the external magnetic field, the two logical
states have different energies. In quantum mechanics, this observation means that the
time evolution of |ψ0〉 is given by 

(1)

The constant ω is the precession frequency of the nuclear spin in the external magnet-
ic field in units of radians per second if t is in seconds. The frequency is proportional
to the energy difference ε between the up and down states: ω = 2πε/h, where h is
Planck’s constant. 
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Although a spin-1/2 nucleus’ state space is the same as that of a qubit, the precession
implies that the state is not constant. We would like the realization of a qubit to retain its
state over time when we are not intentionally modifying it. For this reason, in the next
section, the qubit state realized by the nuclear spin will be defined so as to compensate
for the precession. 

Precession frequencies for nuclear spins can vary substantially depending on the
nuclei’s magnetic moments. For example, at 11.7 tesla, the precession frequency for pro-
tons is 500 megahertz, and for carbon-13, it is 125 megahertz. These frequency differ-
ences are exploited in measurement and control to distinguish between the types of
nuclei. The effective magnetic field seen by nuclear spins also depends on their chemi-
cal environment. This dependence causes small variations in the spins’ precession fre-
quencies that can be used to distinguish, for example, the two carbon-13 nuclei in TCE:
The frequency difference (called the “chemical shift”) is 600 to 900 hertz at 11.7 tesla,
depending on the solvent, the temperature, and the TCE concentration. 

If we use the Pauli matrix σz, the time evolution can be expressed as |ψt〉 =
eiwσzt/2|ψ0〉. The operator ωσz/2 is the internal Hamiltonian (that is, the energy observ-
able, in units for which h/(2π) = 1) of the nuclear spin. The direction of the external
magnetic field determines the z-axis. Given a choice of axes, the idea that a single
nuclear spin 1/2 has a direction (as would be expected for a tiny magnet) can be made
explicit by means of the Bloch sphere representation of a nuclear spin’s state (refer to
Figure 3). The Pauli matrix σz can be thought of as the observable that measures the
nuclear spin along the z-axis. Observables for spin along the x- and y-axis are given by
the other two Pauli matrices, σx and σy. Given a state |ψ〉 = α|�〉 + β|�〉 of the nuclear
spin, one can form the density matrix |ψ〉〈ψ| and express it in the form 

(2)

The vector v = (αx, αy, αz) then is a point on the unit sphere in three-dimensional
space. Conversely, every point on the unit sphere corresponds to a pure state of the
nuclear spin. The representation also works for mixed states, which correspond to points
in the interior of the sphere. As a representation of spin states, the unit sphere is called
the Bloch sphere. Because quantum evolutions of a spin correspond to Bloch sphere
rotations, the Bloch sphere is a useful tool for thinking about one- and sometimes about
two-qubit processes. 

If we write the state as a density matrix ρ and expand it in terms of Pauli matrices,

(3)

the coefficients (x, y, z) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) of the Pauli matrices form 
the vector for the state. The angles θ and φ are the Euler angles, as shown in Figure 3. For a
pure state, this vector is on the surface of the unit sphere, and for a mixed state, it is inside
the unit sphere. The Pauli matrices are associated with spin observables in the laboratory
frame, so that all axes of the representation are meaningful with respect to real space. 

One-Qubit Gates. The second step for realizing QIP is to give a means for control-
ling the qubits so that quantum algorithms can be implemented. The qubits are controlled
with carefully modulated external fields to realize specific unitary evolutions called gates.
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Each such evolution can be described by a unitary operator applied to one or more qubits.
The simplest method for demonstrating that sufficient control is available is to show how
to realize a set of one- and two-qubit gates that is universal in the sense that, in principle,
every unitary operator can be implemented as a composition of gates (Barenco et al.
1995, DiVincenzo 1995, Lloyd 1995). 

One-qubit gates can be thought of as rotations of the Bloch sphere and can be imple-
mented in NMR with electromagnetic pulses. In general, the effect of a magnetic field
on a nuclear spin is to cause a rotation around the direction of the field. In terms of the
quantum state of the spin, the effect is described by an internal Hamiltonian of the form
H = (ωxσx + ωyσy + ωzσz)/2. The coefficients of the Pauli matrices depend on the mag-
netic field according to � = (ωx, ωy, ωz) = –µB, where µ is the nuclear magnetic
moment and B is the magnetic field vector. In terms of the Hamiltonian, the evolution of
the spin’s quantum state in the presence of the magnetic field B is therefore given by
|ψt〉 = e–iHt|ψ0〉 so that the spin direction in the Bloch sphere rotates around � with
angular frequency ω = |�|. 

In the case of liquid-state NMR, there is an external, strong magnetic field along 
the z-axis, and the applied electromagnetic pulses add to this field. One can think of
these pulses as contributing a relatively weak magnetic field (typically less than .001 of
the external field), whose orientation is in the xy-plane. One use of such a pulse is to tip
the nuclear spin from the z-axis to the xy-plane. To see how that can be done, assume
that the spin starts in the state |�〉, which points up along the z-axis in the Bloch sphere
representation. Because this state is aligned with the external field, it does not precess.
To tip the spin, one can start by applying a pulse field along the x-axis. Because the
pulse field is weak compared with the external field, the net field is still almost along
the z-axis. The spin now rotates around the net field. Since it started along z, it moves
only in a small circle near the z-axis. To force the spin to tip further, one changes 
the orientation of the pulse field at the same frequency as the precession frequency. 
This is called a resonant pulse. Because typical precession frequencies are hundreds 
of megahertz, such a pulse consists of rf electromagnetic fields. 

To better understand how resonant pulses work, it is convenient to use the “rotating
frame.” In this frame, we imagine that our apparatus rotates at the precession frequency
of the nuclear spin. In this way, the effect of the external field is removed. In particular,
in the rotating frame, the nuclear spin does not precess, and a resonant pulse’s magnetic
field looks like a constant magnetic field applied, for example, along the (–x)-axis of the
rotating frame. The nuclear spin responds to the pulse by rotating around the x-axis, as
expected: If the spin starts along the z-axis, it tips toward the (–y)-axis, then goes to 
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Figure 3. Bloch Sphere
Representation of a Qubit
State
The yellow arrow represents a
pure state |ψ〉 for the qubit or the
nuclear spin 1/2. The Euler angles
are indicated and determine the
state according to the formula 
|ψ〉 = cos(θ/2)|��〉 + eiφ sin(φ/2)|��〉.
The red arrow along the z-axis
indicates the orientation of 
the magnetic field and the vector
for |��〉.
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the (–z)-, to the y-, and finally back to the z-axis, all in the rotating frame (see Figure 4). 
The rotating frame makes it possible to define the state of the qubit realized by a

nuclear spin as the state with respect to this frame. As a result, the qubit’s state does not
change unless rf pulses are applied. In the context of the qubit realized by a nuclear
spin, the rotating frame is called the logical frame. In the following, references to the
Bloch sphere axes and associated observables are understood to be with respect to an
appropriate, usually rotating, frame. Different frames can be chosen for each nuclear
spin of interest, so we often use multiple independently rotating frames and refer each
spin’s state to the appropriate frame. 

Use of the rotating frame together with rf pulses makes it possible to implement all
one-qubit gates on a qubit realized by a spin-1/2 nucleus. To apply a rotation around the
x-axis, a resonant rf pulse with effective field along the rotating frame’s (–x)-axis is
applied. This is called an x-pulse, and x is the “axis” of the pulse. While the rf pulse is
on, the qubit’s state evolves as e–iωxσxt/2. The strength (or power) of the pulse is charac-
terized by ωx, the nutation frequency. To implement a rotation by an angle of φ, the
pulse is turned on for a period t = φ/ωx. Rotations around any axis in the plane can be
implemented similarly. The angle of the pulse field with respect to the (–x)-axis is called
the phase of the pulse. It is a fact that all rotations of the Bloch sphere can be decom-
posed into rotations around axes in the plane. For rotations around the z-axis, an easier
technique is possible. The current absolute phase θ of the rotating frame’s x-axis is
given by θ0 + ωt, where ω is the precession frequency of the nuclear spin. Changing the
angle θ0 by –φ is equivalent to rotating the qubit’s state by φ around the z-axis. In this
sense, z-pulses can be implemented exactly. In practice, this change of the rotating
frame’s phase means that the absolute phases of future pulses must be shifted according-
ly. This implementation of rotations around the z-axis is possible because phase control
in modern equipment is extremely reliable so that errors in the phase of applied pulses
are negligible compared with other sources of errors. 

So far, we have considered just one nuclear spin in a molecule. But the rf fields are
experienced by the other nuclear spins as well. This side effect is a problem if only one
target nuclear spin’s state is to be rotated. There are two cases to consider depending on
the precession frequencies of the other, nontarget spins. Spins of nuclei of different iso-
topes, such as those of other species of atoms, usually have precession frequencies that
differ from the target’s by many megahertz at 11.7 tesla. A pulse resonant for the target
has little effect on such spins because, in the rotating frames of the nontarget spins, the
pulse’s magnetic field is not constant but rotates rapidly. The power of a typical pulse is
such that the effect during one rotation of the pulse’s field direction is insignificant and
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Figure 4. Single-Bit
Rotation around the 
x-Axis in the Rotating
Frame
An applied magnetic field
along the rotating frame’s 
(–x)-axis due to a resonant 
rf pulse moves the nuclear spin
direction from the z- toward the
(–y)-axis. The initial and final
states for the nuclear spin are
shown for a 90° rotation. If the
strength of the applied mag-
netic field is such that the spin
evolves according to the
Hamiltonian ωxσx /2, then it has
to be turned on for a time 
t = π/(2ωx) to cause the rotation
shown.
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averages to zero over many rotations. This is not the case for nontarget spins of the same
isotope. Although the variations in their chemical environments result in frequency dif-
ferences, these differences are much smaller, often only a few kilohertz. The period of a
1-kilohertz rotation is 1 millisecond, whereas so-called hard rf pulses require only tens
of microseconds (.00l millisecond) to complete the typical 90° or 180° rotations.
Consequently, in the rotating frame of a nontarget spin with a small frequency differ-
ence, a hard rf pulse’s magnetic field is nearly constant for the duration of the pulse. 
As a result, such a spin experiences a rotation similar to the one intended for the target.
To rotate a specific nuclear spin or spins within a narrow range of precession frequen-
cies, one can use weaker, longer-lasting “soft” pulses instead. This approach leads to 
the following strategies for applying pulses: To rotate all the nuclear spins of a given
species (such as the two carbon-13 nuclei of TCE) by a desired angle, apply a hard 
rf pulse for as short a time as possible. To rotate just one spin having a distinct preces-
sion frequency, apply a soft rf pulse of sufficient duration to have little effect on other
spins. The power of soft pulses is usually modulated in time (“shaped”) to reduce the
time needed for a rotation while minimizing crosstalk, a term that describes unintended
effects on other nuclear spins. 

Two-Qubit Gates. Two nuclear spins in a molecule interact with each other, as one
would expect of two magnets. But the details of the spins’ interaction are more compli-
cated because they are mediated by the electrons. In liquid state, the interaction is also
modulated by the rapid motions of the molecule. The resulting effective interaction is
called the J-coupling. When the difference of the precession frequencies between 
the coupled nuclear spins is large compared with the strength of the coupling, it is a
good approximation to write the coupling Hamiltonian as a product of the z-Pauli 
operators for each spin: HJ = Cσz

(1)σz
(2). This is the weak-coupling regime. 

With this Hamiltonian, an initial state |ψ0〉 of two nuclear-spin qubits evolves as 
|ψt〉 = e–iCσz(1)σz(2)t|ψ0〉, where a different rotating frame is used for each nuclear spin
to eliminate the spin’s internal evolution. (The use of rotating frames is compatible
with the coupling Hamiltonian because the Hamiltonian is invariant under frame 
rotations.) Because the Hamiltonian is diagonal in the logical basis, the effect of the
coupling can be understood as an increase of the (signed) precession frequency of the
second spin if the first one is up and a decrease if the first one is down (see Figure 5).
The changes in precession frequency for adjacent nuclear spins in organic molecules
are typically in the range of 20 to 200 hertz. They are normally much smaller for non-
adjacent nuclear spins. The strength of the coupling is called the coupling constant and
is given as the change in the precession frequency. In terms of the constant C used
above, the coupling constant is given by J = 2C/π in hertz. For example, the coupling
constants in TCE are close to 100 hertz between the two carbons, 200 hertz between
the proton and the adjacent carbon, and 9 hertz between the proton and the far carbon. 

The J-coupling and the one-qubit pulses suffice for realizing the controlled-not oper-
ation usually taken as one of the fundamental gates of QIP. A pulse sequence for imple-
menting the controlled-not in terms of the J-coupling constitutes the first quantum algo-
rithm discussed under “Examples of Quantum Algorithms for NMR.” A problem with
the J-coupling in liquid-state NMR is that it cannot be turned off when it is not needed
for implementing a gate. 

Turning off the J-Coupling. The coupling between the nuclear spins in a molecule
cannot be physically turned off. But for QIP, we need to be able to maintain a state in
memory and to couple qubits selectively. Fortunately, NMR spectroscopists solved this
problem well before the development of modern quantum-information concepts. The
idea is to use the control of single spins to cancel the interaction’s effect over a given
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period. This technique is called refocusing and requires applying a 180° pulse to one of
two coupled spins at the midpoint of the desired period. To understand how refocusing
works, consider again the visualization of Figure 5. A general state is in a superposition of
the four logical states of the two spins. By linearity, it suffices to consider the evolution
with spin 1 being in one of its two logical states, up or down, along the z-axis. Suppose
we wish to remove the effects of the coupling over a period of 2 milliseconds. To do so,
wait 1 millisecond. In a sequence of pulses, this waiting period is called a 1-millisecond
delay. The effect on spin 2 in its rotating frame is to precess counterclockwise if spin 1 is
up and clockwise for the same angle if spin 1 is down. Now, apply a pulse that rotates
spin 1 by 180° around the x-axis. This is called an inversion, or in the current context, a
refocusing pulse. It exchanges the up and down states. For the next 1 millisecond, the
effect of the coupling on spin 2 is to undo the earlier rotation. At the end of the second 
1-millisecond delay, one can apply another 180° pulse to reverse the inversion and recover
the initial state. The pulse sequence is depicted in Figure 6. 

Turning off couplings between more than two nuclear spins can be quite complicated
unless one takes advantage of the fact that nonadjacent nuclear spins tend to be relatively
weakly coupled. Methods that scale polynomially with the number of nuclear spins and
that can be used to selectively couple pairs of nuclear spins can be found in Debbie Leung
et al. (1999) and Jonathan Jones and Knill (1999). These techniques can be used in other
physical systems, where couplings exist that are difficult to turn off directly. An example
is qubits represented by the state of one or more electrons in tightly packed quantum dots. 

Measurement. To determine the answer of a quantum computation, it is necessary to
make a measurement. As noted earlier, the technology for making a projective measure-
ment of individual nuclear spins does not yet exist. In liquid-state NMR, instead of
using just one molecule to define a single quantum register, we use a large ensemble of
molecules in a test tube. Ideally, their nuclear spins are all placed in the same initial
state, and the subsequent rf pulses affect each molecule in the same way. As a result,
weak magnetic signals from, say, the proton spins in TCE add to form a detectable mag-
netic field called the bulk magnetization. The signal that is measured in high-field NMR
is the magnetization in the xy-plane, which can be picked up by coils whose axes are
placed transversely to the external field. Because the interaction of any given nuclear
spin with the coil is very weak, the effect of the coil on the quantum state of the spins is
negligible in most NMR experiments. As a result, it is a good approximation to think of
the generated magnetic fields and their detection classically. In this approximation, each
nuclear spin behaves like a tiny bar magnet and contributes to the bulk magnetization.
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Figure 5. J-Coupling Effect
In the weak-coupling regime
with a positive coupling con-
stant, the coupling between
two spins can be interpreted 
as an increase in precession
frequency of spin 2 when
spin 1 is up and a decrease
when spin 1 is down. The two
diagrams depict the situation 
in which spin 2 is in the plane.
The diagram on the left has
spin 1 pointing up along the 
z-axis. In the rotating frame of
spin 2, it precesses from the 
x-axis to the y-axis. The dia-
gram on the right has spin 1
pointing down, causing a 
precession in the opposite
direction of spin 2. Note that
neither the coupling nor the
external field changes the 
orientation of a spin pointing
up or down along the z-axis.
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As the nuclear spins precess, so does the magnetization. As a result, an oscillating cur-
rent is induced in the coil, provided it is electronically configured to be tuned to the pre-
cession frequency. By observing the amplitude and phase of this current over time, we
can keep track of the absolute magnetization in the plane and its phase with respect to
the rotating frame. This process yields information about the qubit states represented by
the state of the nuclear spins. 

To see how one can use bulk magnetization to learn about the qubit states, consider
the TCE molecule with three spin-1/2 nuclei used for information processing. The bulk
magnetizations generated by the protons and the carbons precess at 500 megahertz and
125 megahertz, respectively. The proton and carbon contributions to the magnetization
are detected separately with two coils tuned to 500 megahertz (proton magnetization)
and 125 megahertz (carbon magnetization). For simplicity, we restrict our attention to
the two carbons and assume that the protons are not interacting with the carbons. (It is
possible to actively remove such interactions by using a technique called decoupling.) 

At the end of a computation, the qubit state of the two nuclear spins is given by a
density matrix ρq. We can assume that this state is the same for each TCE molecule in
the sample. As we mentioned earlier, the density matrix is relative to logical frames for
each nuclear spin. The current phases for the two logical frames with respect to a rotat-
ing reference frame at the precession frequency of the first carbon are known. If we
learn something about the state in the reference frame, that information can be converted
to the desired logical frame by a rotation around the z-axis. Let ρ(0) be the state of the
two nuclear spins in the reference frame. In this frame, the state evolves in time as ρ(t)
according to a Hamiltonian H that consists of a chemical shift term for the difference in
the precession frequency of the second carbon and of a coupling term. To a good
approximation,

(4)

The magnetization detected in the reference x-direction at time t is given by 

(5)M t m tx x x( ) = ( ) +( )( )tr ρ σ σ( ) ( ) ,1 2

H z z z= +π σ π σ σ900 502 1 2Hz Hz( ) ( ) ( ) .
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Figure 6. Pulse Sequence
for Refocusing the
Coupling
The sequence of events is
shown with time running from
left to right. The two spins’ life-
lines are shown in blue, and 
the rf power targeted at each
spin is indicated by the black
line above. Pulses are applied
to spin 1 only, as indicated 
by the rectangular rises in 
rf power at 1 ms and 2 ms.
The axis for each pulse is given
with the pulse. The angle is
determined by the area under
the pulse and is also given
explicitly. Ideally, for pulses 
of this type, the pulse times 
(the widths of the rectangles)
should be zero. In practice, for
hard pulses, they can be as
small as ≈ .01 ms. Any σz

(1)σz
(2)

coupling’s effect is refocused
by the sequence shown so that
the final state of the two spins
is the same as the initial state.
The axis for the pair of refocus-
ing pulses can be changed to
any other axis in the plane.

Time (ms)
0 1 2

1

x
180

–x
180
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where tr(σ) denotes the trace, that is, the sum of the diagonal elements of the matrix σ.
Equation 5 links the magnetization to the Bloch sphere representation. The constant of
proportionality m depends on the size of the ensemble and the magnetic moments of the
nuclei. From the point of view of NMR, m determines a scale whose absolute size is not
relevant. What matters is how strong this signal is compared with the noise in the 
system. For the purpose of the following discussion, we set m = 1. 

We can also detect the magnetization My(t) in the y-direction and use this result
together with Mx(t) to form a complex number representing the planar magnetization. 

(6)

(7)

where we defined                                   

What can we infer about ρ(0) from observing M(t) over time? For the moment,
we neglect the coupling Hamiltonian. Under the chemical shift Hamiltonian 
HCS = π 900Hzσz

(2), M(t) evolves as

(8)

Thus, the signal is a combination of a constant signal given by the first spin’s contribu-
tion to the magnetization in the plane and a signal oscillating with a frequency of
900 hertz with amplitude given by the second spin’s contribution to the planar magneti-
zation. The two contributions can be separated by Fourier-transforming M(t), which
results in two distinct peaks, one at 0 hertz and a second at 900 hertz (refer to Figure 7).

To see how the coupling affects the observed magnetization, we rewrite the expres-
sion for M(t) to take advantage of the fact that the up-down states are invariant under the
full Hamiltonian. 

(9)

M t( ) = tr ρ t( )σ+
(1)( ) + tr ρ t( )σ+

(2)( )
= tr ρ t( )σ+

(1)111 11(2)( ) + tr ρ t( ) (1)σ+
(2)( )

= tr ρ t( )σ +
(1) e↑

(2)+ e↓
(2)( ) 

 
 
 + tr ρ t( ) e↑

(1) + e↓
(1)( )σ+

(2) 
 

 
 ,

M t( ) = tr e− iHCS t ρ 0( )eiHCS t σ+
(1) + σ+

(2)( )( )
= tr ρ 0( )eiHCS t σ+

(1) + σ+
(2)( )e− iHCS t( ) Use tr AB( )= tr BA( ).

= tr ρ 0( ) σ+
(1) + e iH CS tσ+

(2)e− iHCS t( )( ) HCS acts only on spin 2.

= tr ρ 0( ) σ+
(1) + e i2π900Hz tσ+

(2)( )( ) Multiply the matrices.

= tr ρ 0( )σ+
(1)( ) + tr ρ 0( )ei2π 900Hztσ+

(2)( ) . Thetrace is linear.

σ σ σ+ = + =








x yi

0 2

0 0
 .

M t M t iM t

t

x y( ) = ( ) + ( )

= ( ) +( )( )+ +tr ρ σ σ( ) ( ) ,1 2
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where 

Using a calculation similar to the one leading to Equation (8), the first term can be 
written as 

(10)

(11)

M1 t( ) = tr e−iHt ρ 0( )eiHtσ +
(1) e↑

(2) + e↓
(2)( ) 

 
 
 

= ei2π 50Hzt tr ρ 0( )σ+
(1)e↑

(2)( ) + e−i2π 50Hz t tr ρ 0( )σ+
(1)e↓

(2)( ) ,

e e↑ ↓=








 =











1 0

0 0

0 0

0 1
 and  .
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(a) The x-magnetization signal is shown as a function of
time for a pair of uncoupled spins with a relative chemical
shift of 900 Hz. The initial spin directions are along the 
x-axis. The signal (called the “free-induction decay”) decays
with a halftime of 0.0385 s because of simulated relaxation
processes. Typically, the halftimes are much longer. A short
one was chosen in order to broaden the peaks for visual
effect. (b) The spectrum, that is, the Fourier transform of the
combined x- and y-magnetization has peaks at frequencies
of 0 Hz (spin 1’s peak) and 900 Hz (spin 2’s peak) because

of the independently precessing pair of spins. (c) This
plot shows the x-magnetization signal when the two 

spins coupled as described in the text. (d) Shown here is
the spectrum for the signal in (c) obtained from combined 
x- and y-magnetization. Each spin’s peak from the previous
spectrum “splits” into two. The left and right peaks of each
pair are associated with the other spin being in the state 
|��〉 and |��〉, respectively. The vertical axis units are relative
intensity with the same constant of proportionality for the
two spectra.
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Figure 7. Simulated Magnetization Signals and Spectra 



and similarly for the second term, but with an offset frequency of 900 hertz because of
the chemical shift. It can be seen that the zero-frequency signal splits into two signals
with frequencies of –50 hertz and 50 hertz, respectively. The difference between the two
frequencies is the coupling constant. The amplitudes of the different frequency signals
can be used to infer the expectations of operators such as σ+

(1)e↑
(2), given by

tr (r(0)σ+
(1)e↑

(2)). For n spin-1/2 nuclei, the spectral peak of a nucleus splits into a
group of 2n–1 peaks, each associated with operators such as σ+

(a)e↑
(b)e↓

(c)e↓
(d)…. Later

in the article (see figure on page 249 ), we show a simulated peak group for a nuclear
spin coupled to three other spins. Expectations of the single-spin operators σx

(a) and
σy

(a) can be obtained from the real and imaginary parts of the total signal in a peak
group for a nucleus. The positions of the 2n–1 peaks depend on the couplings. If the
peaks are well separated, we can infer expectations of product operators with only one
σx or σy, such as σx

(a)σz
(b)11(c)σz

(d), by taking linear combinations with appropriate coef-
ficients of the peak amplitudes in a peak group. 

In addition to the unitary evolution due to the internal Hamiltonian, relaxation
processes tend to decay ρ(t) toward the equilibrium state. In liquid state, the equilibrium
state ρthermal is close to 11/N, where N is the total dimension of the state space. The dif-
ference between ρthermal and 11/N is the equilibrium “deviation” density matrix and has
magnetization only along the z-axis (see the section “The Initial State”). Because the
only observed magnetization is planar, the observed signal decays to zero as the state
relaxes to equilibrium. To a good approximation, we can write

(12)

where ρ′(t) has trace zero and evolves unitarily under the Hamiltonian. The effect of the
relaxation process is that M(t) has an exponentially decaying envelope, explaining the
conventional name for M(t), namely, the free induction decay (FID). Typical halftimes
for the decay are .1 to 2 seconds for nuclear spins used for QIP. A normal NMR obser-
vation consists of measuring M(t) at discrete time intervals until the signal is too small.
The acquired FID is then Fourier-transformed to visualize the amplitudes of the different
frequency contributions. The shape of the peaks in Figure 7 reflects the decay envelope.
The width of the peaks is proportional to the decay rate λ. 

For QIP, we wish to measure the probability p that a given qubit (say, qubit 1) is in
the state |�〉1. We have 1 – 2p = tr(ρσz

(1)), which is the expectation of σz
(1). We can

measure this expectation by first applying a 90° y-pulse to qubit 1 and thus changing
the state to ρ′. This pulse has the effect of rotating initial, unobservable z-magnetization
to observable x-magnetization. From M(t) one can then infer tr(ρ′σx

(1)), which is the
desired number. For the coupled pair of carbons, tr(ρ′σx

(1)) is given by the sum of the
real components of the amplitudes of the 50 hertz and the –50 hertz contributions to
M(t). However, the problem is that these amplitudes are determined only up to a scale. A
second problem is that the available states ρ are highly mixed (close to 11/N). The next
section discusses how to compensate for both problems. 

As a final comment on NMR measurement, note that the back reaction on the nuclear
spins due to the emission of electromagnetic energy is weak. This is what enables us to
measure the bulk magnetization over some time. The ensemble nature of the system gives
direct, if noisy, access to expectations of observables such as σz rather than a single
answer—� or �. For algorithms that provide a definite answer, having access only to
expectations is not a problem because it is easy to distinguish the answer from the noise.
However, using expectations can increase the need for quantum resources. For example,
Shor’s factoring algorithm includes a significant amount of classical postprocessing based

ρ ρλt
N

e tt( ) = + ′( ) + ( )−1
not observed ,
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on highly random answers from projective measurements. In order to implement the algo-
rithm in an ensemble setting, the postprocessing must be performed reversibly and integrat-
ed into the quantum computation to guarantee a definite answer. Postprocessing can be
done with polynomial additional quantum resources. 

The Initial State. Because the energy difference between the nuclear spins’ up and
down states is so small compared with room temperature, the equilibrium distribution of
states is nearly random. In the liquid samples used, equilibrium is established after l0 to
40 seconds if no rf fields are being applied. As a result, all computations start with the
sample in equilibrium. One way to think of this initial state is that every nuclear spin in
each molecule begins in the highly mixed state (1 – ε)11/2 + ε |�〉〈�|, where ε is a small
number (of the order of 10–5). This is a nearly random state with a small excess of the
state |�〉. The expression for the initial state derives from the fact that the equilibrium
state ρthermal is proportional to e–H/kT, where H is the internal Hamiltonian of the
nuclear spins in a molecule (in energy units), T is the temperature, and k is the Boltzman
constant. In our case, H/kT is very small, and the coupling terms are negligible.
Therefore,

(13)

(14)

(15)

where εl is half of the energy difference between the up and down states of the 
lth nuclear spin. 

Clearly, the available initial state is very far from what is needed for standard QIP.
However, it can still be used to perform interesting computations. The main technique is to
use available NMR tools to change the initial state to a pseudopure state, which for all
practical purposes, behaves like the initial state required by QIP. The technique is based on
three key observations. First, only the traceless part of the density matrix contributes to the
magnetization. Suppose that we are using n spin-1/2 nuclei in a molecule and the density
matrix is ρ. Then, the current magnetization is proportional to tr(ρ m̂), where m̂ is a trace-
less operator—see Equation (9). Therefore, the magnetization does not depend on the part
of ρ proportional to the identity matrix. A deviation density matrix for ρ is any matrix δ
such that δ – ρ = λll for some λ. For example, ε|�〉〈�| is a deviation for the equilibrium
state of one nuclear spin. We have

(16)

The second observation is that all the unitary operations used, as well as the nonunitary
ones to be discussed below, preserve the completely mixed state 11/2n.1 Therefore, all
future observations of magnetization depend only on the initial deviation. 

The third observation is that all the scales are relative. In particular, as will be
explained, the probability that the final answer of a quantum computation is � can be

tr tr

tr tr

tr

δ ρ λ

ρ

ρ .

m m

m m

m

( ) = +( )( )
= ( ) + ( )
= ( )

ˆ ˆ

ˆ

ˆ ˆ

e−H kT ≈ e−ε1σ z
(1 ) kT e−ε 2σ z

( 2 ) kT ... ,

e−ε1σ z
(1 ) kT ≈ 1 − ε1σ z

(1) kT , and

e−H kT ≈ 1

1

1 − ε1σ z
(1) kT − ε2σ z

(2) kT − ...  ,
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1 The intrinsic relaxation process does not preserve the completely mixed state. But its contribu-
tion is either negligible over the time scale of typical experiments or can be removed with the
help of subtractive phase cycling. 



expressed as the ratio of two magnetizations. It follows that one can arbitrarily rescale a
deviation density matrix. For measurement, the absolute size of the magnetizations is
not important; the most important issue is that the magnetizations are strong enough to
be observable over the noise. 

To explain the relativity of the scales and introduce pseudopure states for QIP, we begin
with one spin-1/2 qubit. Its equilibrium state has a deviation δ = ε|�〉〈�|. If U is the total
unitary operator associated with a computation, then δ is transformed to δ = εU|�〉〈�|U† .
For QIP purposes, the goal is to determine what the final probability ρ� of measuring |�〉 is,
given that |�〉 is the initial state. This probability can be computed as follows:

(17) (17)

(18) 

(19) (19)

(20)

Thus, the probability can be determined from the expectations of σz being measured 
for the initial and final states (in different experiments). This measurement yields the
quantities a = tr(δσz) = ε and a′= tr(δ ′σz)ε tr(U|�〉〈�|U†σz), respectively. The desired
answer is p� = (1 – (a/a′)) /2 and does not depend on the scale ε. 

The method presented in the previous paragraph for determining the probability that the
answer of a quantum computation is � generalizes to many qubits. The goal is to determine
the probability p� of measuring |�〉� in a measurement of the first qubit after a computation
with initial state |�…�〉. Suppose we can prepare the spins in an initial state with a devia-
tion δ = ε|�…�〉〈�…�|. A measurement of the expectations a and a′ of σz

1 for the initial
and final states then yields p�, as before, by the formula p� = (1 – (a/a′))/2. 

A state with deviation ε|ψ〉〈ψ| is called a pseudopure state because that deviation is
proportional to the deviation of the pure state |ψ〉〈ψ|. With respect to scale-independent
NMR observations and unitary evolution, a pseudopure state is equivalent to the corre-
sponding pure state. Because NMR QIP methods are scale independent, we now gener-
alize the definition of deviation density matrix: δ is a deviation of the density matrix ρ if
εδ = ρ + λll for some λ and ε. 

Among the most important enabling techniques in NMR QIP are the methods that can
be used to transform the initial thermal equilibrium state to a standard pseudopure state
with deviation |�…�〉〈�…�|. An example of how that can be done will be given as the
second algorithm in the section “Examples of Quantum Algorithms for NMR.” The basic
principle for each method is to create, directly or indirectly by summing over multiple
experiments, a new initial state as a sum ρ0 =∑iUiρthermalU

†
i, where the Ui are carefully

and sometimes randomly chosen (Cory et al. 1997, Gershenfeld and Chuang 1997, Knill
et al. 1998, Sharf et al. 2000) to ensure that ρ0 has a standard pseudopure deviation.
Among the most useful tools for realizing such sums are pulsed gradient fields. 

Gradient Fields. Modern NMR spectrometers are equipped with the capability of
applying a magnetic field gradient in any direction for a chosen, brief amount of time. 
If the direction is along the sample’s z-axis, then while the gradient is on, the field varies
as B(z) = B0 + γzB1, where B0 is the strong, external field and B1 is the gradient power.
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As a result of this gradient, the precession frequency of nuclear spins depends on their
positions’ z-coordinates. One of the most important applications of gradients is NMR
imaging because gradients make it possible to distinguish different parts of the sample. 

The effect of applying a z-gradient can be visualized for the situation in which there
is only one observable nuclear spin per molecule. Suppose that the initial deviation den-
sity matrix of each nuclear spin is σx in the rotating frame. After a gradient pulse of
duration t, the deviation of a nuclear spin at position z is given by e–iσzνzt/2σxe

iσzνzt/2 =
cos(νzt)σx + sin(νzt)σy, where the constant ν depends linearly on the strength of the gra-
dient and the magnetic moment of the nucleus—see Figure 8. The effect of the gradient
is a z-dependent change in phase. The coil used to measure planar magnetization inte-
grates the contribution to the magnetization of all the nuclei in the neighborhood of 
the coil. Assuming a coil equally sensitive over the interval between –a and a along 
the sample’s z-axis, the observed total x-magnetization is 

(21)

For large values of νt, Mx ≅ 0. In general, a sufficiently powerful gradient pulse elimi-
nates the planar magnetization. 

Interestingly, the effect of a a gradient pulse can be reversed if an opposite gradient
pulse is applied for the same amount of time. This effect is called a “gradient echo.” The
reversal only works if the second pulse is applied sufficiently soon. Otherwise, diffusion
randomizes the molecules’ positions along the gradient’s direction before the second
pulse. If the positions are randomized, the phase change from the second pulse is no
longer correlated with that from the first for any given molecule. The loss of memory 
of the phase change from a gradient pulse can be fine-tuned by variations in the delay
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Figure 8. Pulsed Gradient
Field along the z-Axis 
Initial x-magnetization is
assumed. A spin at z = 0 is not
affected, but the ones above
and below are rotated by an
amount proportional to z. As a
result, the local planar magneti-
zation follows a spiral curve.

Gradient



between the two pulses in a gradient echo sequence. This method can be used for 
applying a controllable amount of phase noise, which is useful for investigating the
effects of noise and the ability to correct for noise in QIP. 

If the gradient pulse is not reversed and the memory of the phase changes is lost, then
the pulse’s effect can be described as an irreversible operation on the state of the nuclear
spin. If the initial state of the nuclear spin in each molecule is ρ, then after the gradient
pulse, the spin state of a molecule at position z is given by ρ(z) = e–iσzνzt/2ρeiσzνzt/2.
Suppose that the positions of the molecules are randomized over the region that the coil
is sensitive to. Now it is no longer possible to tell where a given molecule was when the
gradient pulse was applied. As a result, as far as our observations are concerned, the
state of a molecule is given by ρ(z), where z is random. In other words, the state is indis-
tinguishable from

(22)

Thus, the effect of the gradient pulse is equivalent to the operation ρ → ρ′ as defined by
the above equation. This is an operation of the type mentioned at the end of the previous
section and can be used for making states such as pseudopure states. Note that, after the
gradients have been turned off, nuclei at different positions cannot be distinguished by
the measurement coil. It is therefore not necessary to wait for the molecules’ positions to
be randomized. 

So far, we have described the effects of gradient pulses on isolated nuclear spins in a
molecule. In order to restrict the effect to a single nuclear spin in a molecule, one can
invert the other spins between a pair of identical gradient pulses in the same direction.
This technique refocuses the gradient for the inverted spins. An example of how effects
involving multiple nuclear spins can be exploited is the algorithm for pseudopure state
preparation described in the section “Creating a Labeled Pseudopure State.”

Examples of Quantum Algorithms for NMR

We give three examples of algorithms for NMR QIP. The first is an NMR implemen-
tation of the controlled-not gate. The second consists of a procedure for preparing a 
type of pseudopure state. And the last shows how NMR can be used to investigate the
behavior of simple error-correction procedures. The first two examples are fundamental
to QIP with NMR. Realizations of the controlled-not are needed to translate standard
quantum algorithms into the language of NMR, and procedures for making pseudopure
states have to precede the implementation of many quantum algorithms. 

The Controlled-not. One of the standard gates used in quantum algorithms is the
controlled-not. The controlled-not gate (cnot) acts on two qubits. The action of cnot can
be described by “if the first qubit is |�〉, then flip the second qubit.” Consequently, the
effect of cnot on the logical states is given by the mapping

(23)
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As an operator, the controlled-not is given by

(24)

The goal is to derive a sequence of NMR operations that realize the controlled-not. As
discussed earlier (“Principles of Liquid-State NMR QIP”), the unitary operations imple-
mentable by simple NMR techniques are rotations e–iσu(a)θ/2 by θ around the u-axis,
where u is any direction in the plane (rf pulses), and the two-qubit operations
e–iσz(b)σz(c)φ/2 (the J-coupling). We call e–iσz(b)σz(c)φ/2 a rotation by φ around σz

(b)σz
(c). 

This terminology reflects the fact that such rotations and their effects on deviation 
density matrices can be understood by a generalization of the Bloch sphere picture
called the product operator formalism introduced by Sørensen et al. (1983). 

To implement the controlled-not using NMR techniques, one can decompose the gate
into a sequence of 90° rotations around the main axes on each of the two qubits, and a
90° rotation around σz

(1)σz
(2). One way to find a decomposition is to first realize that the

two-qubit 90° rotation e–iσz(1)σz(2)π/4 is equivalent to a combination of two gates, each
conditional on the logical state of qubit 1. The first gate applies a 90° rotation around
the z-axis (e–iσz(2)π /4) to qubit 2 conditional on qubit l’s state being |�〉1. The second
applies the –90° rotation eiσz(2)π/4 to qubit 2 conditional on qubit l’s state being |�〉1. By
following the two-qubit rotation with a –90° rotation around the z-axis (eiσz(2)π /4) on
qubit 2, the total effect is to cancel the rotation if qubit 1 is in state |�〉1; if qubit 1 is in
state |�〉1, the rotations add to a –180° rotation eiσz(2)π /2 = iσz

(2)
on qubit 2. If we pre-

cede this sequence with e–iσy(2)π/4 and follow it by eiσy(2)π/4 (this operation is called con-
jugating by a –90° y-rotation), the overall effect is a conditional –iσx

(2) operation. Note
how the conjugation rotated the operation’s axis according to the Bloch sphere rules.
The controlled-not is obtained by eliminating the –i with a 90° z-rotation on qubit 1.
That is, the effect of the complete sequence is e–iπ/4|�〉1

1〈�| + e–iπ/4|�〉2
2〈�|σx

(2), which is
the controlled-not up to a global phase. The decomposition thus obtained can be repre-
sented as a quantum network with rotation gates, as shown in Figure 9. The correspon-
ding NMR pulse sequence implementation is shown in Figure 10.

The effect of the NMR pulse sequence that implements the controlled-not can be
visualized for logical initial states with the help of the Bloch-sphere representation of
the states. Figure 11 shows such a visualization for two initial states. 

The effects of the pulse sequence for the controlled-not can be shown with the Bloch
sphere (Figure 11) only if the intermediate states are products of states on each qubit.
Things are no longer so simple if the initial state of the spins is 1/√2(|�〉 + |�〉) |�〉 =
1/√2(|��〉 + |��〉), for example. This is representable as spin l’s arrow pointing along the
x-axis, but the J-coupling leads to a superposition of states (a maximally entangled state)
no longer representable by a simple combination of arrows in the Bloch sphere. 

Creating a Labeled Pseudopure State. One way to realize the standard pseudopure
state starting from the equilibrium density matrix ρthermal is to eliminate the observable
contributions due to terms of ρthermal different from |�…�〉〈�…�|. There are several dif-
ferent methods of accomplishing this task. For example, one can perform multiple
experiments with different preprocessing of the equilibrium state so that signals from
unwanted terms average to zero (temporal averaging), or one can use gradients to
remove the unwanted terms in one experiment (spatial averaging). 

In this section, we show how to use spatial averaging to prepare a so-called labeled
pseudopure state on two nuclear spins. In general, instead of preparing the standard
pseudopure state with deviation |�…〉〈�…| on n spin-1/2 nuclei, one can prepare a

cnot = + = +( ) + −( )(  )� � � �
1
1

1
1 2 1 1 2 2σ σ σ σx z z x

( ) ( ) ( ) ( ) .
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Figure 10. Pulse Sequence for Realizing the Controlled-not 
The control bit is spin 1 and the target is spin 2. The pulses are shown with the representa-
tion introduced in Figure 6. The z-pulses (shown in green) are virtual, requiring only a change
of reference frame. The placement of the z-pulses between the rf pulses is immaterial
because they commute with the coupling that evolves in between. The delay between the two
rf pulses is 1/(2J) (5 ms if J = 100 Hz), which realizes the desired two-qubit rotation by inter-
nal evolution. The –90° y-rotation is actually implemented with a 90° pulse with axis –y. The
resulting rotation has the desired effect up to a global phase. The pulse widths are exagger-
ated and should be as short as possible to avoid errors due to coupling evolution during the
rf pulses. Alternatively, techniques can be used that compensate for some of these errors
(Knill et al. 2000).

Figure 9. Quantum Network for Implementing the Controlled-not with 
NMR Operations
The conventions for depicting gates are as explained in the article “Quantum Information
Processing” on page 2. The two one-qubit z-rotations can be implemented by a change in the
reference phase of the rotating frame without any rf pulses being applied.
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Figure 11. States
Corresponding to the
Controlled-not Pulse
Sequence 
The two columns (a) and 
(b) show the evolution of 
the qubit states during the
controlled-not pulse
sequence. The blue and red
arrows represent spin 1 and
2, respectively. The configu-
rations in rows 1 to 4 are
shown (1) at the beginning
of the sequence, (2) after
the 90° y-rotation, (3) after
the J-coupling (but before
the z- and y-pulses),
and (4) at the end of the
sequence. The conditional
effect is realized by the sec-
ond spin’s pointing down 
at the end of the second
column. The effect of the 
J-coupling causing the evo-
lution from 2 to 3 is best
understood as a conditional
rotation around the z-axis
(forward by 90° if the first
spin is up; backward, if it is
down).
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labeled pseudopure state with deviation σx
(1)|�…〉〈�…| on n + 1 spins. This state is

easily recognizable with an NMR observation of the first spin: Assuming that all the
peaks arising from couplings to other spins are resolved, the first spin’s peak group has
2n peaks, corresponding to which logical states the other spins are in. If the current state
is the labeled pseudopure state just mentioned, then all the other spins are in the logical
state |�〉, which implies that, in the spectrum, only one of the peaks of the first spin’s
peak group is visible (see Figure 12). 

The labeled pseudopure state can be used as a standard pseudopure state on n qubits.
Observation of the final answer of a computation is possible by observing spin 1,
provided that the coupling to the answer-containing spin is sufficiently strong for the
peaks corresponding to its two logical states to be well separated. For this purpose,
the couplings to the other spins need not be resolved in the peak group. Specifically, to
determine the answer of a computation, the peaks of the spin 1 peak group are separated
into two subgroups, the first (second) containing the peaks associated with the answer-
containing spin being in state |�〉 (|�〉), respectively. Comparing the total signal in each 
of the two peak subgroups gives the relative probabilities of the two answers (� or �).

The labeled pseudopure state can also be used to investigate the effect of a process
that manipulates the state of one qubit and requires n additional initialized qubits.
Examples include experimental verification of one-qubit error-correcting codes as
explained in the next section. 

For preparing the two-qubit labeled pseudopure state, consider the two carbon nuclei
in labeled TCE with the proton spin decoupled so that its effect can be ignored. A “tran-
sition” in the density matrix for this system is an element of the density matrix of the
form |ab〉〈cd|, where a, b, c, and d are � or �. Let ∆(ab, cd) = (a – c) + (b – d), where in
the expression on the right, a, b, c, and d are interpreted as the numbers 0 or 1, as appro-
priate. Applying a pulsed gradient along the z-axis evolves the transitions according to
|ab〉〈cd| → ei∆(ab,cd)νz|ab〉〈cd|, where ν is proportional to the product of the gradient
power and pulse time and z is the molecule’s position along the z-coordinate. For exam-
ple, |��〉〈��| has ∆ = 0 and is not affected whereas |��〉〈��| acquires a phase of e–i2νz.
There are only two transitions, |��〉〈��| and |��〉〈��|, whose acquired phase has a rate of
∆ = ±2 along the z-axis. These transitions are called 2-coherences because ∆ = ±2. The
idea is to first recognize that these transitions can be used to define a labeled pseudopure
“cat” state (see below), then to exploit the 2-coherences’ unique behavior under the 
gradient in order to extract the pseudopure cat state, and finally to decode to a standard
labeled pseudopure state. Note that the property that 2-coherences’ phases evolve at
twice the basic rate is a uniquely quantum phenomenon for two spins. No such effect is
observed for a pair of classical spins. 

The standard two-qubit labeled pseudopure state’s deviation can be written as 
ρstdx

= σx
(1)1/2(11 + σz

(2)). We can consider other deviations of this form where the 
two Pauli operators are replaced by a pair of different commuting products of Pauli
operators. An example is

(25)ρ σ σ σ σcat x x z zx
= ( ) +( )( ) ( ) ( ) ( ) ,1 2 1 21

2
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where we replaced σx
(1) by σx

(1)σx
(2) and σz

(2) by σz
(1)σz

(2). As announced, the two
Pauli products commute. We will show that there is a simple sequence of 90° rotations
whose effect is to decode the deviations σx

(1)σx
(2) → σx

(1) and σz
(1)σz

(2) → σz
(2), thus

converting the state ρcatx to ρstdx
. The state ρcatx can be expressed in terms of the transi-

tions as follows:

(26)

It can be seen that ρcatx consists only of 2-coherences. Another such state is

(27)

(28)

ρcaty
= σ x

(1)σy
( 2)( ) 1

2
11 + σ z

(1)σ z
(2 )( )

= −i �� �� + i �� ��  .

ρcatx
= +�� �� �� �� .
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Figure 12. Labeled
Pseudopure State
Spectrum vs Peak Group
(a) This spectrum shows the
peak group of a simulated
nuclear spin coupled to three
other spins with coupling con-
stants of 100 Hz, 60 Hz, and
24 Hz. The simulation parame-
ters are the same as in
Figure 7. Given above each
peak is the part of the initial
deviation that contributes to
the peak. The spin labels have
been omitted. Each contribut-
ing deviation consists of σx on
the observed nucleus followed
by one of the logical (up or
down) states (density matri-
ces) for each of the other
spins. The notation is as
defined after Equation 9.
(b) This spectrum shows 
what is observed if the initial
deviation is the standard
labeled pseudopure state.
This state contributes only 
to the rightmost peak, as this
peak is associated with the
logical |��〉 states on the spins
not observed.
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Suppose that one can create a state that has a deviation of the form ρ = αρcatx +
βρrest such that ρrest contains no 2-coherences or 0-coherences. After a gradient pulse is
applied, the state becomes

(29)

where ρrest(z) depends periodically on z with spatial frequencies of ±ν, not ±2ν or 0. 
We can then decode this state to 

(30)

(31)

If one now applies a gradient pulse of twice the total strength and opposite orienta-
tion, the first term is restored to αρstdx

, but the second term retains nonzero periodicities
along z. Thus, if we no longer use any operations to distinguish among different mole-
cules along the z-axis or if we let diffusion erase the memory of the position along z,
then the second term is eliminated from observability by being averaged to 0. The
desired labeled pseudopure state is obtained. Zero-coherences during the initial gradient
pulse are acceptable provided that the decoding transfers them to coherences different
from 0 or 2 during the final pulse in order to ensure that they also average to 0. A pulse
sequence that realizes a version of the above procedure is shown in Figure 13. 

We can follow what happens to an initial deviation density matrix of σz
(1) as the net-

work of Figure 13 is executed. We use product operators with the abbreviations I = 11,
X = σx, Y = σy, Z = σz and, for example, XY = σx

(1)σy
(2). At the checkpoints indicated 

in the figure, the deviations are the following:

(32)

Except for a sign, the desired state is obtained. The rightmost term is eliminated after
integrating over the sample or after diffusion erases memory of z. 

This method for making a two-qubit labeled pseudopure state can be extended to
arbitrarily many (n) qubits by exploiting the two n-coherences, which are the transitions
with ∆ = ±n. An experiment implementing this method can be used to determine how
good the available quantum control is. The quality of the control is determined by a
comparison of two spectral signals: Ip, the intensity of the single peak that shows up in
the peak group for spin 1 when observing the labeled pseudopure state, and I0, the inten-
sity of the same peak in an observation of the initial deviation after applying a 90° pulse

ρ α ρ ρ β ρ

α σ σ σ β ρ

= ( ) + ( )(  ) + ′ ( )

( ) + ( )(  ) +( ) + ′ ( )

cos sin

cos sin .( ) ( ) ( )

2 2

2 2
1

2
1 1 1

vz vz z

vz vz z

x  y

x y z

std std rest

rest=

α cos 2vz( )ρcat x
+ sin 2vz( ) ρcat y( )  +  β ρrest z( ) ,
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Checkpoints
 1 ZI
 2 XI
 3 YZ
 4 YX ∝

YX + XY + YX – XY
 5 cos(2νz)(YX + XY) + sin(2νz)(YY – XX) + YX – XY
 6 cos(2νz)(YZ + XY) + sin(2νz)(YY –XZ) + YZ – XY
 7 cos(2νz)(–XI + XY) + sin(2νz)(YY – YI) + –XI – XY
 8 cos(2νz)(–XI – XZ) + sin(2νz)(–YZ – YI) + –XI + XZ
9 –X(I + Z) –(cos(–2νz)X + sin(–2νz)Y)(I – Z)  .+



to rotate σz
(1) into the plane. We performed this experiment on a seven-spin system and

determined that Ip/I0 = .73 ± .02. This result implies a total error of 27 ± 2 percent.
Because the implementation has 12 two-qubit gates, an error rate of about 2 percent per
two-qubit gate is achievable for nuclear spins in this setting (Knill et al. 2000). 

Quantum Error Correction for Phase Errors. Currently envisaged scalable quan-
tum computers require the use of quantum error correction to enable relatively error-
free computation on a platform of physical systems that are inherently error prone. For
this reason, some of the most commonly used subroutines in quantum computers will
be associated with maintaining information in encoded forms. This observation moti-
vates experimental realizations of quantum error correction to determine whether ade-
quate control can be achieved in order to implement these subroutines and to see in a
practical setting that error correction has the desired effects. Experiments to date have
included realizations of a version of the three-qubit repetition code (Cory et al. 1998)
and of the five-qubit one-error-correcting code (the shortest possible such code)—see
the article “Quantum Information Processing” on page 2. In this section, we discuss the
experimental implementation of the former. 

In NMR, one of the primary sources of error is phase decoherence of the nuclear
spins due to both systematic and random fluctuations in the field along the z-axis. At
the same time, using gradient pulses and diffusion, phase decoherence is readily
induced artificially and in a controlled way. The three-bit quantum repetition code (see
the article “Introduction to Quantum Error Correction” on page 188) can be adapted to
protect against phase errors to first order. Define |+〉 = 1/√2 (|�〉 + |�〉) and |–〉 =
1/√2 (|�〉 – |�〉). The code we want is defined by the logical states

(33)

It is readily seen that the three one-qubit phase errors σz
(1), σz

(2), and σz
(3) and “no

error” (11) unitarily map the code to orthogonal subspaces. It follows that this set of

�
L

= + + + , and  �
L

 =  − − − . 
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Figure 13. Realizing a 
Two-Qubit Labeled
Pseudopure State 
The network is shown above
the pulse sequence realizing it.
A coupling constant of 100 Hz
is assumed. Gradients are indi-
cated by spirals in the network.
The gradient strength is given
as the red line in the pulse
sequence. The doubling of the
integrated gradient strength
required to achieve the desired
“echo” is indicated by a dou-
bling of the gradient pulse time.
The numbers above the quan-
tum network are checkpoints
used in the discussion below.
The input state’s deviation is
assumed to be σz

(1). This devia-
tion can be obtained from the
equilibrium state by applying a
90° rotation to spin 2 followed
by a gradient pulse along
another axis to remove σz

(2).
Instead of using a gradient
pulse, one can use phase
cycling, which involves per-
forming two experiments, the
second having the sign of the
phase in the first y-pulse
changed, and then subtracting
the measured signals.
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errors is correctable (for a full discussion, see the article “Introduction to Error
Correction” on page 188). The simplest way to use this code is to encode one qubit’s
state into it, wait for some errors to happen, and then decode to an output qubit. Success
is indicated by the output qubit’s state being significantly closer to the input qubit’s state
after error correction. Without errors between encoding and decoding, the output state
should be the same as the input state, provided that the encoding and decoding proce-
dures are implemented perfectly. Therefore, in this case, the experimentally determined
difference between input and output gives a measurement of how well the procedures
were implemented. 

To obtain the phase-correcting repetition code from the standard repetition code, we
apply Hadamard transforms or 90° y-rotations to each qubit. The quantum network
shown in Figure 14 was obtained in this fashion from the network given in the article on
error correction.

To determine the behavior and the quality of the implementation for various σz-error
models in an actual NMR realization, one can use as initial states labeled pseudopure
states with deviations σu|��〉〈��| for u = x, y, z. Without error, the total output signal on
spin 1 along σu for each u should be the same as the input signal. Some of the data
reported by Cory and coworkers (1998) are shown in Figure 15.

Work on benchmarking error-control methods using liquid-state NMR is continuing.
Other experiments include the implementation of a two-qubit code with an application
to phase errors (Leung et al. 1999) and the verification of the shortest nontrivial noise-
less subsystem on three qubits (Viola et al. 2001). The latter demonstrates that, for some
physically realistic noise models, it is possible to store quantum information in such a
way that it is completely unaffected by the noise. 

Discussion

Overview of Contributions to QIP. Important issues in current experimental efforts
toward realizing QIP are to find ways of achieving necessary quantum control and to
determine whether sufficiently low error rates are possible. Liquid-state NMR is the
only extant system (as of 2002) with the ability to realize relatively universal manipula-
tions on more than two qubits—restricted control has been demonstrated in four ions
(Sackett et al 2000). For this reason, NMR serves as a useful platform for developing
and experimentally verifying techniques for QIP and for establishing simple procedures
for benchmarking information-processing tasks. The cat state and the various error-
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Figure 14. Quantum
Network for the Three-Qubit
Phase-Error-Correcting
Repetition Code
The bottom qubit is encoded
with two controlled-nots and
three y-rotations. In the experi-
ment, either physical or con-
trolled noise is allowed to act.
The encoded information is
then decoded. For the present
purposes, it is convenient to
separate the decoding proce-
dures into two steps: The first is
the inverse of the encoding pro-
cedure; the second consists of
a Toffoli gate that uses the error
information in the syndrome
qubits (the top two) to restore
the encoded information.
The Toffoli gate in the last step
flips the output qubit condition-
ally on the syndrome qubits’
state being |����〉. This gate can be
realized with NMR pulses and
delays by using more sophisti-
cated versions of the implemen-
tation of the controlled-not.
The syndrome qubits can be
“dumped” at the end of the pro-
cedure. The behavior of the 
network is shown for a generic
state in which the bottom qubit
experiences a σz error.
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correction benchmarks (Knill et al. 2000, Knill et al. 2001) consist of a set of quantum
control steps and measurement procedures that can be used with any general-purpose QIP
system to determine, in a device-independent way, the degree of control achieved. The
demonstration of error rates in the few percent per nontrivial operation is encouraging.
For existing and proposed experimental systems other than NMR, achieving such error
rates is still a great challenge. 

Prior research in NMR, independent of quantum information, has proved to be a rich
source of basic quantum-control techniques useful for physically realizing quantum
information in other settings. We mention four examples. The first is the development of
sophisticated shaped-pulse techniques that can selectively control transitions or spins
while being robust against typical errors. These techniques are finding applications to
quantum control involving laser pulses (Warren et al. 1993) and are likely to be very
useful when using coherent light to accurately control transitions in atoms or quantum
dots, for example. The second is the recognition that there are simple ways in which
imperfect pulses can be combined to eliminate systematic errors such as those associated
with miscalibration of power or side effects on off-resonant nuclear spins. Although
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(a) The molecule used in the experiment is shown here.
(b) The bar graph shows fidelities for explicitly applied
errors. The fidelities f (technically, the entanglement fideli-
ties) are an average of the signed ratios fu of the input to the
output signals for the initial deviations σu|����〉〈����| with u = x,
y, z. Specifically, f = 1/4(1 + fx + fy + fz). The reduction from 1
of the green bars (showing fidelity for the full procedure) is
due to errors in our implementation of the pulses and from
relaxation processes. The red bars are the fidelity for the out-
put before the last error-correction step, and they contain the
effects of the errors. (c) The graph shows the fidelities for
the physical relaxation process. Here, the evolution con-
sisted of a delay of up to 1000 ms. The red curve is the
fidelity of the output qubit before the final Toffoli gate that 

corrects the errors based on the syndrome. The green curve
is the fidelity of the output after the Toffoli gate. The effect of
error correction can be seen by a significant flattening of the
curve because correction of first-order (that is, single) phase
errors implies that residual, uncorrected (double or triple)
phase errors increase quadratically in time. The green curve
starts lower than the red one because of additional errors
incurred by the implementation of the Toffoli gate. The
dashed curves are obtained by simulation using estimated
phase relaxation rates with halftimes of 2 s (proton), 0.76 s
(first carbon) and 0.42 s (second carbon). Errors in the 
data points are approximately 0.05. (For a more 
thorough implementation and analysis of a three-qubit
phase-error-correcting code, see Sharf et al. 2000).
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many of these techniques were originally developed for such problems as accurate inver-
sion of spins, they are readily generalized to other quantum gates (Levitt 1982,
Cummins and Jones 1999). The third example is decoupling used to reduce unwanted
external interactions. For example, a common problem in NMR is to eliminate the inter-
actions between proton and labeled carbon nuclear spins in order to observe decoupled
carbon spins. In this case, the protons constitute an external system with an unwanted
interaction. To eliminate the interaction, it is sufficient to invert the protons frequently.
Sophisticated techniques for ensuring that the interactions are effectively turned off
independent of pulse errors have been developed (Ernst et al. 1994). These techniques
have been greatly generalized and shown to be useful for actively creating protected
qubit subsystems in any situation in which the interaction has relatively long correlation
times (Viola and Lloyd 1998, Viola et al. 1999). Refocusing to undo unwanted internal
interactions is our fourth example. The technique for turning off the coupling between
spins that is so important for realizing QIP in liquid-state NMR is a special case of
much more general methods of turning off or refocusing Hamiltonians. For example,
a famous technique in solid-state NMR is to reverse the dipolar coupling Hamiltonian
using a clever sequence of 180° pulses at different phases (Ernst et al. 1994, page 48).
Many other proposed QIP systems suffer from such internal interactions while having
similar control opportunities. 

The contributions of NMR QIP research extend beyond those directly applicable to
experimental QIP systems. It is due to NMR that the idea of ensemble quantum compu-
tation with weak measurement was introduced and recognized as being, for true pure
initial states, as powerful for solving algorithmic problems as the standard model of
quantum computation. (It cannot be used in settings involving quantum communication.)
One implication is that, to a large extent, the usual assumption of projective measure-
ment can be replaced by any measurement that can statistically distinguish between the
two states of a qubit. Scalability still requires the ability to reset qubits during the com-
putation, which is not possible in liquid-state NMR. Another interesting concept emerg-
ing from NMR QIP is that of computational cooling (Schulman and Vazirani 1998),
which can be used to efficiently extract initialized qubits from a large number of noisy
qubits in initial states that are only partially biased toward |�〉. This is a very useful tool
for better exploiting otherwise noisy physical systems. 

The last example of interesting ideas arising from NMR studies is the one-qubit model
of quantum computation (Knill and Laflamme 1998). This is a useful abstraction of the
capabilities of liquid-state NMR. In this model, it is assumed that initially, one qubit is in
the state |�〉 and all the others are in random states. Standard unitary quantum gates can
be applied, and the final measurement is destructive. Without loss of generality, one can
assume that all qubits are reinitialized after the measurement. This model can perform
interesting physics simulations with no known efficient classical algorithms. On the other
hand, with respect to oracles, it is strictly weaker than quantum computation. It is also
known that it cannot faithfully simulate quantum computers (Ambainis et al. 2000).

Capabilities of Liquid-State NMR. One of the main issues in liquid-state NMR QIP
is the highly mixed initial state. The methods for extracting pseudopure states are not
practical for more than 10 (or so) nuclear spins. The problem is that for these methods,
the pseudopure state signal decreases exponentially with the number of qubits prepared
while the noise level is constant. This exponential loss limits the ability to explore and
benchmark standard quantum algorithms even in the absence of noise. There are in fact
ways in which liquid-state NMR can be usefully applied to many more qubits. The first
and less practical is to use computational cooling for a (unrealistically) large number of
spins to obtain less mixed initial states. Versions of this technique have been studied and
used in NMR to increase signal to noise (Glaser et al. 1998). The second is to use the
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one-qubit model of quantum computation instead of trying to realize pseudopure states.
For this purpose, liquid-state NMR is limited only by relaxation noise and pulse control
errors, not by the number of qubits. Noise still limits the number of useful operations,
but nontrivial physics simulations are believed to be possible with less than 100 qubits
(Lloyd 1996). Remarkably, a one-qubit quantum computer can efficiently obtain a 
significant amount of information about the spectrum of a Hamiltonian that can be 
emulated on a quantum computer (Knill and Laflamme 1998, Somma et al. 2002,
Miquel et al. 2002). Consequently, although QIP with molecules in liquid state cannot
realistically be used to implement standard quantum algorithms involving more than
about 10 qubits, its capabilities have the potential of exceeding the resource limitations
of available classical computers for some applications.

Prospects for NMR QIP. There are many more algorithms and benchmarks that can
be usefully explored using the liquid state NMR platform. We hope to soon have a 
molecule with ten or more useful spins and good properties for QIP. Initially, this 
molecule can be used to extend and verify the behavior of existing scalable benchmarks.
Later, experiments testing basic ideas in physics simulation or more sophisticated 
noise-control methods are likely. 

Liquid-state NMR QIP is one of many ways in which NMR can be used for quantum
information. One of the promising proposals for quantum computation is based on phos-
phorus embedded in silicon (Kane 1998) and involves controlling phosphorus nuclear
spins using NMR methods. In this proposal, couplings and frequencies are controlled
with locally applied voltages. Universal control can be implemented with rf pulses. It is
also possible to scale up NMR QIP without leaving the basic paradigms of liquid-state
NMR while adding such features as high polarization, the ability to dynamically reset
qubits (required for scalability), and much faster two-qubit gates. One proposal for
achieving this goal is to use dilute molecules in a solid-state matrix instead of molecules
in liquid (Cory et al. 2000). This approach may lead to pure-state quantum computation
for significantly more than ten qubits. 

NMR QIP has been a useful tool for furthering our understanding of the experimental
challenges of quantum computation. We believe that NMR QIP will continue to shed
light on important issues in physically realizing quantum information. �
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Glossary

Bloch sphere. A representation of the state space of a qubit using the unit sphere in 
three dimensions. See Figure 3 in the main text of the article.

Crosstalk. In using physical control to implement a gate, crosstalk refers to unintended 
effects on qubits not involved in the gate. 

Decoupling. A method for turning off the interactions between two sets of spins. In 
NMR, this task can be achieved if one applies a rapid sequence of refocusing pulses

to one set of spins. The other set of spins can then be controlled and observed as if inde-
pendent of the first set. 
Deviation of a state. If ρ is a density matrix for a state and ρ = α11 + βσ, then σ is a 

deviation of ρ. 
Ensemble computation. Computation with a large ensemble of identical and 

independent computers. Each step of the computation is applied identically to the 
computers. At the end of the computation, the answer is determined from a noisy 
measurement of the fraction p� of the computers whose answer is “��” The amount of 
noise is important for resource accounting: To reduce the noise to below ε requires 
increasing the resources used by a factor of the order of 1/ε2. 

Equilibrium state. The state of a quantum system in equilibrium with its environment. 
In the present context, the environment behaves like a heat bath at temperature T, and
the equilibrium state can be written as ρ = e–H/kT/Z, where H is the effective internal 
Hamiltonian of the system and Z is determined by the identity trρ = 1. 

FID. Free induction decay. To obtain a spectrum on an NMR spectrometer after having 
applied pulses to a sample, one measures the decaying planar magnetization induced 
by the nuclear spins as they precess. The x- and y-components Mx(t) and My(t) of the 
magnetization as a function of time are combined to form a complex signal M(t) = 
Mx(t) + iMy(t). The record of M(t) over time is called the FID, which is Fourier-
transformed to yield the spectrum. 

Inversion. A pulse that flips the z-component of the spin. Note that any 180° rotation 
around an axis in the xy-plane has this effect. 

J-coupling. The type of coupling present between two nuclear spins in a molecule in the
liquid state.

Labeled molecule. A molecule in which some of the nuclei are substituted by less 
common isotopes. A common labeling for NMR QIP involves replacing the naturally 
abundant carbon isotope 12C, with the spin-1/2 isotope 13C. 

Larmor frequency. The precession frequency of a nuclear spin in a magnetic field. It 
depends linearly on the spin’s magnetic moment and the strength of the field. 

Logical frame. The current frame with respect to which the state of a qubit carried by a 
spin is defined. There is an absolute (laboratory) frame associated with the spin 
observables σx, σy, and σz. The observables are spatially meaningful. For example,
the magnetization induced along the x-axis is proportional to tr(σx|ψ〉〈ψ|), where |ψ〉 
is the physical state of the spin. Suppose that the logical frame is obtained from the 
physical frame by a rotation by an angle of θ around the z-axis. The observables for 
the qubit are then given by σx

(L) = cos(θ)σx + sin(θ)σy, σy
(L) = cos(θ)σy – 

sin(θ)σz, and σz
(L) = σz. As a result, the change to the logical frame transforms the 

physical state to a logical state according to |φ〉L = eiσzθ /2|ψ〉. That is, the logical 
state is obtained from the physical state by a –θ rotation around the z-axis. 
A resonant logical frame is used in NMR to compensate for the precession induced 
by the strong external field. 

Magnetization. The magnetic field induced by an ensemble of magnetic spins. 
The magnitude of the magnetization depends on the number of spins, the extent of 
alignment, and the magnetic moments. 
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Nuclear magnetic moment. The magnetic moment of a nucleus determines the strength
of the interaction between its nuclear spin and a magnetic field. The precession 
frequency ω of a spin-1/2 nucleus is given by µB, where µ is the nuclear magnetic 
moment and B the magnetic field strength. For example, for a proton, µ = 42.7 Mhz/T. 

NMR spectrometer. The equipment used to apply rf pulses to and observe precessing 
magnetization from nuclear spins. Typical spectrometers consist of a strong,
cylindrical magnet with a central bore in which there is a “probe” that contains coils 
and a sample holder. The probe is connected to electronic equipment for applying rf 

currents to the coils and for detecting weak oscillating currents induced by the 
nuclear magnetization. 
Nuclear spin. The quantum spin degree of freedom of a nucleus. It is characterized by 

its total spin quantum number, which is a multiple of 1/2. Nuclear spins with spin 1/2
are two-state quantum systems and can therefore be used as qubits immediately.

Nutation. The motion of a spin in a strong z-axis field caused by a resonant pulse. 
Nutation frequency. The angular rate at which a resonant pulse causes nutation of a 

precessing spin around an axis in the plane.
One-qubit quantum computing. The model of computation in which one can initialize 

any number of qubits in the state where Qubit 1 is in the state |�〉1 and all the other 
qubits are in a random state. One can then apply one- and two-qubit unitary quantum 
gates and make one final measurement of the state of Qubit 1 after which the system
is reinitialized. The model can be used to determine properties of the spectral density 
function of a Hamiltonian, which can be emulated by a quantum computer (Knill and
Laflamme 1998). 

Peak group. The spectrum of an isolated nuclear spin consists of one peak at its 
precession frequency. If the nuclear spin is coupled to others, this peak “splits,” and 
multiple peaks are observed near the precession frequency. The nuclear spin’s peak 
group consists of these peaks.

Precession. An isolated nuclear spin’s state can be associated with a spatial direction 
with the help of the Bloch sphere representation. If the direction rotates around 
the z-axis at a constant rate, we say that it precesses around the z-axis. The motion 
corresponds to that of a classical top experiencing a torque perpendicular to both the 
z-axis and the spin axis. For a nuclear spin, the torque can be caused by a magnetic 
field along the z-axis. 

Projective measurement. A measurement of a quantum system determined by a 
complete set of orthogonal projections whose effect is to apply one of the projections
to the system (“wave function collapse”) with a probability determined by the 
amplitude squared of the projected state. Which projection occurred is known after 
the measurement. The simplest example is that of measuring Qubit q in the logical 
basis. In this case, there are two projections, namely, P� = |�〉q

q〈�| and P� = |�〉q
q〈�|. 

If the initial state of all the qubits is |ψ〉, then the probabilities of the two 
measurement outcomes o and � are po = 〈ψ|P�|ψ〉 and p� = 〈ψ|P�|ψ〉, respectively. 
The state after the measurement is P� � |ψ〉/√p� for outcome � and P� = |ψ〉/√p� for 
outcome �.

Pseudopure state. A state with deviation given by a pure state |ψ〉〈ψ|.
Pulse. A transient field applied to a quantum system. In the case of NMR QIP, pulses 

are rotating magnetic fields (rf pulses) whose effects are designed to cause specific 
rotations of the qubit states carried by the nuclear spins. 

Radio-frequency (rf) pulse. A pulse resonant at radio frequencies. Typical frequencies 
used in NMR are in this range. 
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Refocusing pulse. A pulse that causes a 180° rotation around an axis in the plane. 
A typical example of such a rotation is e–iσxπ /2 = –iσx, which is a 180° x-rotation.

Resonant rf pulse. A pulse whose field oscillates at the same frequency as the 
precession frequency of a target nuclear spin. Ideally, the field is in the plane,
rotating at the same frequency and in the same direction as the precession. However,
as long as the pulse field is weak compared with the precession frequency (that is,
by comparison, its nutation frequency is small), the nuclear spin is affected only by 
the corotating component of the field. As a result, other planar components can be 
neglected, and a field oscillating in a constant direction in the plane has the same 
effect as an ideal resonant field.

Rotating frame. A frame rotating at the same frequency as the precession frequency of 
a spin. 

Rotation. In the context of spins and qubits, a rotation around σu by an angle θ is an 
operation of the form e–iσuθ/2. The operator σu may be any unit combination of 
Pauli matrices that defines an axis in three space. In the Bloch sphere representation,
the operation has the effect suggested by the word “rotation.”

Spectrum. In the context of NMR, the Fourier transform of an FID.
Weak measurement. A measurement involving only a weak interaction with the 

measured quantum system. Typically, the measurement is ineffective unless an 
ensemble of these quantum systems is available so that the effects of the interaction 
add up to a signal detectable above the noise. The measurement of nuclear 
magnetization used in NMR is weak in this sense. 
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