
The fact that the occurrence of symmetries in a physical system generally implies
the existence of conserved quantities and that these symmetries can be exploited
to ease the understanding of the system’s behavior is a well-known lesson in

physics. The notion of a noiseless subsystem (NS) (Knill et al. 2000) captures this 
lesson in the context of quantum information processing (QIP), where the challenge is to
protect information against the detrimental effects of noise. The link between symme-
tries, conserved quantities, and NS was discussed at length on page 216 of the article
“Introduction to Error Correction”. The essential message is that, by encoding informa-
tion into an abstract subsystem that corresponds to a preserved degree of freedom,
noiselessness is guaranteed even if errors still evolve the overall system’s state. 

Here, we focus on the NS of three spin-1/2 particles introduced in the above-
mentioned article (see page 201), along with a discussion of the error-correcting 
properties of this NS. The physical system is composed of three qubits, subjected to a
“far-field” interaction with the environment, whereby the latter couples to the qubits
without distinguishing among them. The resulting collective-noise model involves all
possible error operators that are symmetric under permutation of the three particles and
is specified in terms of the error generators Ju = (σu

(1) + σu
(2) + σu

(3))/2, where u = x, y,
z. By recalling the meaning of the single-spin Pauli operators σu

k, the observable Ju
represents the projection of the total spin angular momentum J along the u-axis.
Because the total-spin observable J2 = J · J commutes with the error generators and z
defines the quantization axis, the eigenvalues j and jz of J2 and Jz, respectively, provide
useful quantum numbers to label basis states for the three particles. 
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Figure 1. Molecular Structure
of 13C-Labeled Alanine 
The diagram shows the three 
carbon-13 (13C) spins used as
qubits in the noiseless subsystem 
experiment as well as the relevant 
J-couplings between those qubits.



The NS of interest resides in the four-dimensional subspace H1/2 of the states carrying
total angular momentum j = 1/2 and having a total z-component jz = ±1/2. However, spec-
ifying j and jz does not suffice for completely labeling the states in H1/2: An additional
quantum number is needed for removing the two-dimensional degeneracy that remains.
Physically, this degeneracy simply means that there are two distinct paths for obtaining 
a total angular momentum j = 1/2 out of three elementary 1/2 angular momenta:

Let the additional quantum number l = 0, 1 label the two possible routes in the above
diagram. Because collective noise does not distinguish among the individual spins and
the final eigenvalue j is the same for both paths, the noise can neither distinguish the
realized value of l nor change that value. This conserved quantum number can be 
directly related to the eigenvalues sz = ±1 of the σz

(NS) observable of a noiseless qubit,
sz = 2l – 1. In general, noiseless qubit operators will remain invariant under rotations.
The simplest scalars under the rotations are the dot products s12 = σ(1) · σ(2),
s23 = σ(2) · σ(3), and s31 = σ(3) · σ(1). 

Thus, σu
(NS) observables for the noiseless qubit, where u = x, y, z, can be constructed

by combining s12, s23, s31, and the identity into three operators that “behave like” the
Pauli matrices (Viola et al. 2001a). A good choice is given by σx

(NS) = 1/2(11 + s23),
σy

(NS) = √3/6(s31 – s12), and σz
(NS) = iσy

(NS)σx
(NS), where projection onto the rele-

vant H1/2 subspace is understood. Note that the action corresponding to σx
(NS) is simply

a permutation exchanging the last two spins. (For an alternative construction of the NS
observables, see the article “Introduction to Error Correction,” page 216.) Identifying the
NS through its observables is equivalent to identifying it through the explicit state space
correspondence given in Equation (28) of the above-mentioned article. 

The experimental implementation of the three-qubit NS (Viola et al. 2001b) was 
performed with liquid-state NMR techniques. The three spin-1/2 carbon nuclei of 
carbon-13-labeled alanine were used as qubits (Figure 1). The information to protect
is an arbitrary one-qubit state, |ψ〉 = a|�〉 + b|�〉, where a and b are arbitrary complex 
amplitudes, and 〈ψ|ψ〉 = 1. This information is initially stored in spin 3, meaning 
that the three carbon spins are initialized in a pseudopure state corresponding to 
|�〉1|�〉2|ψ〉3 = |��ψ〉 = a|���〉 + b|���〉. A unitary transformation Uenc encodes this
input state into a superposition of the two basis states in H1/2 with j = 1/2 and jz = –1/2.
That is,

Uenc|��ψ〉 ↔ a|↓〉 · |�〉 + b|↓〉 · |�〉 = |↓〉 · |ψ〉 , (1)

where the subsystem representation of Equation (28) has been used.
The three qubits remain stored in the NS memory for a fixed evolution period tev,

during which errors can occur. In a given set of experiments, these errors are designed to
implement a desired collective-noise process Ecoll described by a set of error operators
{Ea}. Because of their collective nature, these errors affect only the syndrome subsys-
tem in the pair. Finally, following the evolution period, the unitary transformation Udec
decodes a generic noisy state Ea(|↓〉 · |ψ〉) in H1/2 back to the computational basis. 
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This procedure has the effect of returning the quantum state |ψ〉 onto qubit 2 upon dis-
carding (“tracing over”) spins 1 and 3,

Tr1,3{Udec[Ecoll(|↓〉〈↓| · |ψ〉〈ψ|)]U–1
dec} = |ψ〉2〈ψ| . (2)

Figure 2 is a sketch of the quantum network for the experiment. 
During the delay period between encoding and decoding, we use gradient diffusion

techniques to engineer a desired collective-noise process. In order to fully explore the
robustness properties of information encoded in the NS, we applied various error models
corresponding to noise along a single axis (see Figure 3), as well as more complicated
double- and triple-axis noise processes obtained by “cascading” the action of error mod-
els along different spatial directions, in sequence, within a single evolution period (see
Table I). To quantify the accuracy of the implemented NS in preserving the quantum
data |ψ〉, we experimentally extracted the entanglement fidelity Fe of the overall process
(including encoding, decoding, and engineered noise during storage), where Fe = 1
implies perfect preservation. 

Our results in Figure 3 and Table I indicate that, as expected, the effects of the
applied noise increase exponentially as a function of noise strength for unencoded (UN)
information but are largely independent of noise strength for information encoded in the
NS. That independence demonstrates that the NS functions as an “infinite-distance”
quantum error-correcting code for arbitrary collective errors. On the other hand, the Fe
is always about the same and less than 1 in all the NS experiments. The constant 
reduction in fidelity is suggestive of errors introduced during encoding and decoding
manipulations, as well as of noise due to natural noncollective relaxation processes 
during the whole experiment. � 
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Figure 2. Logical Quantum
Network 
The diagram shows a logical
quantum network for the three-
qubit NS experiment. The logi-
cal manipulations were
translated into sequences of
radio-frequency pulses and
delays, and complete pulse
programs for Uenc and Udec
resulted from the compilation
of the partial pulse programs
for individual gates. The pulses
were designed to ensure self-
refocusing of all the unwanted
J-coupling and chemical-shift
evolutions.
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Table I. Entanglement Fidelities for Engineered Collective Noise along Two
and Three Axes

Quantum Process Entanglement Fidelity (Fe)

Qzx
UN 0.24

Q00
NS 0.70

Qzx
NS 0.70

Qzy
NS 0.70

Q000
NS 0.67

Qyzx
NS 0.66

Q stands for the one-qubit processes implemented during each run.

Superscripts tell whether the system has been encoded or not.

Subscripts zx, zy, and yzx are for the axes along which noise processes with maximum
achievable strength were applied in cascade. Subscripts 00 and 000 indicate that no noise
was applied.

Two subscripts indicate shorter delay periods than three subscripts.

Statistical uncertainties in all Fe values are approximately 2%.

0 10 20 30

1.0

0.8

0.6

0.4

E
nt

an
gl

em
en

t f
id

el
ity

 (
F

e)

Noise strength 1/  (s–1)

Fe = A1 exp(–tev/τ) + B
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F e = A1 exp(–tev//t) + B

A1 B Quantum Process

0.51 ± 0.04 0.43 ± 0.03   �� UN, y-axis noise

0.03 ± 0.03 0.64 ± 0.02   �� NS-encoded, y-axis noise

0.03 ± 0.03 0.62 ± 0.02   • NS-encoded, z-axis noise

Figure 3. Entanglement
Fidelities for Engineered
Collective Noise along a
Single Axis
The fidelity of UN information
subjected to engineered collec-
tive noise along the y-axis (red)
decreases exponentially with
noise strength τ–1 whereas the
fidelity of NS-encoded informa-
tion subjected to collective
noise along either the y-axis
(green) or the z-axis (black)
remains almost constant inde-
pendent of noise strength.
In each case, noise was applied
for a fixed evolution period tev
of approximately 44 ms.
The flatness of the curve inter-
polating the NS data demon-
strates the behavior of the NS
as an infinite-distance quantum
error-correcting code for 
single-axis collective errors of
arbitrary strength. The smooth
fits to the data are derived from
the exponential and parameters
displayed under the figure.
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