
Plutonium 
Condensed-Matter Physics

A survey of theory and experiment
A. Michael Boring and James L. Smith

90 Los Alamos ScienceNumber 26  2000



Systems like to be in the
lowest-energy state, but
plutonium metal has 

trouble getting there. It has
many states close to each other
in energy but dramatically 
different in structure, and so a
portion of a sample can change
its structure and density in 
response to minor changes in its
surroundings. We probably have
yet to see a sample near room
temperature that has reached true
equilibrium. This metastability
and its huge effects are part of
the story of the strange proper-
ties of plutonium metal, alloys,
and metallic compounds, and
they are extremely important if
we want to leave nuclear
weapons untouched for decades.

Here, we will put plutonium
metal in perspective by compar-
ing it to the other actinides and
to other metals in the periodic

table of the elements. Plutonium
has many unusual properties. 
Instead of having the cubic
structure found in familiar 
metals, its ground state has a
very low symmetry monoclinic
structure with 16 atoms in 
the unit cell. Its instability is 
legendary among metallurgists—
plutonium goes through six 
distinct crystallographic phases
when heated to its melting point
under atmospheric pressure. 
One of those phases is the face-
centered-cubic δ-phase, which
can be stabilized down to rela-
tively low temperatures by alloy-
ing it with a tiny amount of 
gallium metal. The δ-phase is 
itself a tremendous puzzle, hav-
ing an unusually low density, 
as well as a negative thermal-
expansion coefficient; that is,
δ-plutonium contracts when
heated. Below room temperature,
plutonium continues to display

anomalous properties. In particu-
lar, it has an unusually high 
resistivity and an elevated spe-
cific heat, suggesting novel inter-
actions and correlations among
its electrons. Because they are
probably the root for much of
plutonium’s unusual behavior,
we will bring up these unusual
electron correlations in connec-
tion with both high- and 
low-temperature phenomena.
Figure 1 shows plutonium 
sitting at the crossover of many
properties. As we survey those
properties, we will consider 
the following questions: Is pluto-
nium fundamentally different
from other metals? Do we need
an entirely new theory to explain
its behavior?

Definitive answers must 
await better and more-complete
experimental data leading to 
a full theory of plutonium and
its compounds. We show, 
however, that the two underlying
concepts of modern theories of
metals, the one-electron 
“band-structure” approach and
the correlated-electron approach,
are relevant to plutonium. 
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Moreover, many ground-state properties
of plutonium can be predicted from
modern one-electron band theory. Other
problems remain to be solved. As you
read this and other papers in this vol-
ume, you will learn not only about the
successes but also about the ongoing
mysteries that place plutonium at a
frontier of condensed-matter physics.

The f Electrons and the Role of
Narrow Conduction Bands. All met-
als, including plutonium, are held to-
gether by the electronic, or chemical,
bonding between the conduction elec-
trons and the positively charged ion
cores that constitute the crystal lattice.
Conduction electrons are not localized
at individual lattice sites. Instead, they
are itinerant and travel almost freely
through the crystal. They are the “glue”
that binds the ions together. We do not
think of glue as moving around, so
metals are a bit tougher conceptually
than other solids. Nevertheless, it is
possible to calculate the specific bands
of energy levels that are occupied by
the conduction electrons. The structure
of those bands determines many proper-
ties of metals.

In pure plutonium and other light
actinides, the conduction electrons 
include not only the s, p, and d valence
electrons, as in the transition metals,
but also the valence electrons unique to
the actinides, namely, those in the 5f
valence shell. Each plutonium atom has
five 5f electrons to contribute to bond-
ing. However, the roles of those 5f
electrons in the various solid phases of
pure plutonium metal and in its metallic
compounds and alloys seem to vary.
The 5f electrons can be localized (or
bound) at lattice sites, in which case
they do not contribute to the bonding,
or they can occupy a narrow conduc-
tion band and contribute to the glue.
Pinning down the exact interactions and
correlations among the electrons that
lead to this variability between localiza-
tion and itinerancy is currently the sub-
ject of intense studies. 

For decades, scientists thought that
the pointed shape (angular variation) of

f-electron atomic orbitals and the likeli-
hood that those orbitals would form di-
rectional bonds were the source of the
anomalies in plutonium metal. That
concept was used for solids because it
worked so well for molecules and mol-
ecular complexes. In fact, when you
read the articles on actinide chemistry,
you will see the importance of the
shape of f orbitals for those molecular
systems. In this article, however, we
explain how modern band-structure cal-
culations of plutonium in its low-sym-
metry ground state (the α-phase) have
led to a less atomic-like view of at least
some of its properties. Those calcula-
tions demonstrate that, for plutonium,
as for other metals, it is the energy
bands that determine such ground-state
(T = 0) properties as the cohesive ener-
gy, the stability of the crystal structure,
and the elastic properties. Furthermore,
plutonium’s very low symmetry crystal
structure in the ground state can be
traced to a very particular feature of its
energy bands—its dominant conduction
band, the one that contributes the most
to holding the metal together, is the
rather narrow f electron band. 

In the latter half of the article, we
examine the phase instabilities in pure
plutonium, as the metal is heated, and
their possible origin in f-electron 
narrow-band behavior. We then intro-
duce the low-temperature properties that
place plutonium among the correlated-
electron materials. Finally, we discuss
the exotic “heavy-fermion behavior” of
cerium and light actinide compounds
because, if we can understand these 
extremely narrow band materials, we
may understand plutonium. In general,
the low-temperature behavior of 
correlated-electron materials including
plutonium appears to be dominated by
as yet unexplained interactions involv-
ing their narrow-band electrons. For that
reason, the ground states, which in more
typical materials are either magnetic or
superconducting, are often not well 
determined and certainly not understood
for these materials.

Every few years, condensed-matter
physicists find a material with a new

ground state that challenges accepted
paradigms, and the community turns its
attention to this new challenge. But there
is also a compelling need to keep work-
ing on plutonium: This metal presents
some of the most puzzling behaviors of
all the elements, and those behaviors
bear on the national security mission of
the Los Alamos National Laboratory.
Although theory can be done anywhere,
plutonium cannot be measured at most
laboratories, and so we, at Los Alamos,
are working on experiment and theory
with renewed intensity.

The ideas in our survey of plutonium
range in acceptance from firm science
to outright speculation. We will try to
make clear which is which, but we 
include both in order to cover our 
deepest understanding of this complex
element efficiently and, we hope, 
with more interest. 

Basic Properties of Metals

For the most part, metals form in a
crystalline state. Unlike amorphous or
glassy materials, the atoms in a crystal
are arranged in a periodic (repeating)
array of identical structural units known
as unit cells. The repetition in space
means that metals have translational
symmetry, and this symmetry underlies
all metallic behaviors. Most theoretical
models of metals are tractable because
they exploit the translational symmetry.
For example, even with modern com-
puters, one cannot calculate the elec-
tronic structure of a piece of wood 
because it has no underlying symmetry.
The translational symmetry of crys-
talline solids (not just metals) leads to
electron wave functions (or Bloch
states) that have that same translational
symmetry up to a phase factor. These
wave functions are macroscopic, 
extending over the entire crystal lattice,
and they serve as the solid-state equiva-
lents of molecular orbitals. That is, just
as electrons in molecular orbitals are
the glue that bond atoms into a mole-
cule, electrons in Bloch states are the
glue that bond atoms into a crystal. 
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The big difference between molecular 
orbitals and Bloch states lies in their
numbers: In a molecule, there are only
a few molecular orbitals, but there are
on the order of 1023 Bloch states.
Therefore, one does not focus on 
individual Bloch states (it is difficult 
to choose a particular one) but on aver-
ages over these states, such as the 
density-of-states functions discussed 
in the next section. 

Formation of Energy Bands. When
light metallic elements, such as lithium
or sodium, condense into the solid
state, they typically have cubic struc-

tures at room temperature, and the elec-
trons from their atomic valence shells
become conduction electrons traveling
almost freely through the lattice. That
is, these valence electrons occupy 
one-electron Bloch states, and they are
therefore responsible for bonding the
solid. The allowed energies of those
Bloch states form a broad band of 
energy levels. In a metal, this energy
band is a conduction band because it 
is only partially filled. Because many
empty states are available, the conduc-
tion electrons with the highest energies
respond to low-energy thermal and
electrical excitations as if they were 

a gas of free particles. 
Figure 2 illustrates band formation

and the formation of Bloch states in
sodium. The top of the figure shows
that, when two sodium atoms are
brought together, their 3s-electron wave
functions (orbitals) overlap, and the 
valence electrons feel a strong electrosta-
tic pull from both atoms (depicted as the
double-well electrostatic potential). 
The atomic orbitals combine to form
molecular orbitals that may bind the two
atoms into a diatomic molecule. The sin-
gle atomic energy level splits into two:
one lower in energy, or bonding, and the
other higher in energy, or antibonding.
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Figure 1. Plutonium at a Crossover in Electronic Properties 
This figure summarizes some of the unusual electronic properties of plutonium, stemming from the dominant role of its narrow 

5f band. Along one diagonal, plutonium stands midway between simple metals, whose conduction electrons are essentially uncorre-

lated and exhibit free-electron behavior, and heavy-fermion materials, whose conduction electrons exhibit very strong correlati ons

leading to extremely high effective masses. Along the other diagonal, plutonium stands at the crossover between materials whose

itinerant broad-band electrons form superconducting ground states and magnetic materials, whose fully localized electrons (infin itely

narrow-band) form local moments and magnetic ground states. Along the horizontal line, plutonium and other correlated-electron

narrow-band materials are distinguished from the elements on either side through their high resistivity and specific heat, high 

density of states at the Fermi energy, and enhanced electronic mass.



The energy difference between these two
levels is proportional to the amount of
overlap of the two s-electron atomic 
orbitals, and the molecular orbitals
(wave functions) corresponding to 
the bonding and antibonding energy 
levels are sum and difference, respec-
tively, of the atomic orbitals. 

Similarly, when N atoms are brought
close together to form a perfect crystal
(bottom of Figure 2), a single valence

electron sees the periodic electrostatic
potential due to all N atoms. Its wave
function (Bloch state) is now a combi-
nation of overlapping 3s wave functions
from all the atoms and extends over the
entire volume occupied by those atoms.
As in the molecular case, that wave
function can be a bonding state or an
antibonding state. The original atomic
valence levels generalize to a band of
very closely spaced energy levels, half
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Figure 2. The Formation of an 
Energy Band in Sodium 
The figure shows the transformation of

electronic structure when two sodium

atoms are brought into close proximity

and when numerous atoms condense to

form sodium metal. (a) When two sodium

atoms are brought together to form a 

diatomic molecule, the atomic wave func-

tion for the 3s valence electron changes

into two molecular wave functions—one

is bonding ( ϕB) and the other antibonding

(ϕA)—corresponding to the sum and the

difference of the 3s atomic wave func-

tions, respectively. The single potential

well of the isolated sodium atom with 

its 3s-valence energy level and its core

energy levels becomes a double-welled

potential, with bonding (B) and antibond-

ing (A) molecular energy levels replacing

the valence energy level. Finally, 

the energy level diagram shows the 3s

atomic energy level becoming molecular

energy levels A and B, which correspond

to the molecular wave functions ϕA and

ϕB, respectively. (b) When N atoms are

brought together, the 3s radial wave func-

tion becomes a Bloch state made up of a

3s atomic wave function at each atomic

site modulated by a plane wave. The sin-

gle potential well becomes a periodic 

potential well with core level states at

atomic sites and the energy levels of the

Bloch (conduction electron) states above

the potential wells. The energy level dia-

gram shows the original 3s level becom-

ing a band of N very closely spaced 

energy levels, whose width is approxi-

mately equal to the energy difference 

between levels A and B in the diatomic

molecule. That energy difference or band-

width is proportional to the amount of

overlap between atomic wave functions

from neighboring sites. In sodium metal,

the 3s conduction band is only half full,

and the highest occupied state at 

T = 0 is denoted by EF, the Fermi 

energy. Also shown is the number of 

energy levels per unit energy, or the 

density of states, for this s-electron 

conduction band.

(a)

(b)



of them bonding and half of them anti-
bonding, and the width of the energy
band is approximately equal to the 
energy split between the bonding and
antibonding energy levels in the 
diatomic molecule. This broad band
forms whether the crystal is an insula-
tor, a metal, or a semiconductor. 

Because in a macroscopic sample
the number of levels in the energy band
is large (approximately 1023) and the
spacing between those levels is small,
we can consider the electron energies to
be a continuous variable. We describe
the number of electron energy levels
per unit energy in terms of a density of
states that varies with energy. Because
each electron must have at least a
slightly different energy (the Pauli 
exclusion principle), electrons fill up

the energy levels one by one, in order
of increasing energy.

A Bloch state, or the three-
dimensional extended wave function of
a valence electron in a solid, is repre-
sented in Figure 2 in one dimension. 
In this example, the 3s valence electron
wave function of sodium appears at
every atomic site along a line of sodium
atoms, but its amplitude is modulated
by the plane wave e

ik∑r
. As we men-

tioned before, this general form for a
Bloch state in a solid emerges from the
requirement of translational invariance.
That is, the electron wave function in a
given unit cell must obey the Bloch
condition uk(r + Tn) = uk(r), where Tn
is a set of vectors connecting equivalent
points of the repeating unit cells of the
solid. It must therefore be of the form

Ψk(r) = e
ik·r

uk(r), where a plane wave
with wave vector k modulates the atom-
ic wave function in a solid. The wave
vector k, or the corresponding crystal
momentum p = hk, is the quantum num-
ber characterizing that Bloch state, and
the allowed magnitudes and directions
of k reflect the periodic structure of 
the lattice. Similar Bloch states exist in
all crystalline materials, and their occu-
pation by valence electrons is what
binds the atoms into a single crystal. 

The electronic structure gets more
complicated in metals containing more
than one type of valence electron. For
example, Figure 3 shows that multiple
overlapping bands are created when the
conduction electrons in a solid originate
from, say, the s, p, d, and f valence 
orbitals of an atom, as in the light 
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the Light Actinides 
(a) Illustrated here are the multiple 

energy bands that form in going from a

single actinide atom to a solid. Multiple

bands always form when an atom has

more than one valence electron. Note

that the s and p bands are much wider

than the d band, which is much wider

than the f band. Also, because the s, p,

d, and f states overlap in energy, they

can hybridize with each other. That is,

any Bloch state with wave vector k(Ψk)

can be a linear combination of states

from the different bands with that same wave vector. Finally, the density-of-states functions show that the narrow f band domin ates

at the Fermi energy because it is so much narrower than the other bands and therefore has many more states at that energy. 

(b) The energy bands, one-electron energies as a function of wave vector k, are shown for cerium. The very narrow f bands at 

the Fermi energy are shown in red. The spd bands are broad. States with the same symmetry cannot cross the Fermi energy level.

We therefore show by dashed lines how the spd bands would connect if no f bands of like symmetry were present.

6

4

2

0

–2

–4

E
ne

rg
y 

(e
V

)

EF

spd

spd

spd

spd

spdf admixture

f bands

L X

Wave vector in high-symmetry directions (k )

KΓ Γ

(a)

(b)



actinides. The width of each band 
increases from left to right, as the inter-
atomic distance decreases and the over-
lap of the wave functions increases.
Also, the s and p bands are always
wider (span a wider energy range) than
the d band, which in turn is always
wider than the f band. The overlapping
bands in Figure 3 imply that the Bloch
functions with a given quantum number
(wave vector) k could be linear combi-
nations of states originating from the s,
d, p, and f atomic orbitals. In other
words, the Bloch states could be “hy-
bridized” states containing many angu-
lar-momentum components, in contrast
to atomic orbitals that contain only one
angular-momentum component.
Figure 3 also shows the density of
states D(ε) resulting from this multi-
band structure. Note that the f states
outnumber all the others at the Fermi
energy EF, which is defined as the
highest energy level occupied by a con-
duction electron at the absolute lowest
energy of the metal (T = 0). Later,
when we discuss cohesion, we will
show that these f states dominate the
bonding of plutonium in the ground
state (or α-phase), primarily 
because there are five f electrons per
atom and only one d electron per atom
occupying the Bloch states and partici-
pating in bonding. (There are, of
course, two electrons in s and p bands
but they contribute little to the bond-
ing.) For that reason, we refer to the
narrow f band in plutonium as the dom-
inant band. Because narrow bands 
correspond to small overlaps of wave
functions, these f band electrons may
be easily pushed toward localization 
by various effects, in which case they
do not contribute to bonding. 

If an energy sub-band is filled (elec-
trons occupy all its energy levels), 
the solid is an insulator. If a band is
only partially filled, the solid is a metal.
Thus, in a metal there are many empty
states close in energy to the occupied
states, and so the electrons can easily
change their motion (energy) in 
response to small temperature and 
electromagnetic perturbations.

The Free-Electron Model and 
Departures from It. Beyond contribut-
ing to bonding, conduction electrons
are also thermally excited. In simple
broad-band metals such as potassium
and copper, the free-electron model de-
scribes these low-energy excitations. In
that model, the electrons occupying the
Bloch states in the conduction band are
treated as a gas of identical free parti-
cles. That is, the periodic electrostatic
potential seen by the conduction elec-
trons and the interactions and correla-
tions among the electrons have no ex-
plicit role. However, the model does
account for the conduction electrons
obeying the Pauli exclusion principle,
and therefore at T = 0, they fill in the
conduction band in order of increasing
energy up to the Fermi energy EF. If
we draw the energy states in the three-
dimensional space defined by the crys-
tal momentum hk, as in Figure 3(b),
then EF traces a surface in momentum
space (or k-space) known as the Fermi
surface. In the free-electron model,
each state corresponds to an electron
with crystal momentum p = hk and
with kinetic energy given by the free-
particle formula, ε = (hk)

2
/2me. 

For a gas of free particles heated
from absolute zero to a temperature T,
classical statistical mechanics would
predict that, on the average, the kinetic
energy of each particle would increase
by an amount kBT. But because of the
exclusion principle, the electrons re-
spond differently. Only those conduc-
tion electrons occupying states within
kBT of the Fermi level EF can be heat-
ed (by phonon scattering) because only
they can access states not occupied by
other electrons (see Figure 4). The
number of electrons that participate in
properties such as electrical conduction
and electronic heat capacity decreases
to a fraction T/TF of the total number of
conduction electrons in the metal (here,
the temperature at the Fermi surface TF
is defined by the relation kBTF = EF).
At room temperature, T/TF is about
1/200 in most metals. Thus, replacing
the classical Maxwell-Boltzmann statis-
tics with the Fermi-Dirac quantum sta-

tistics implied by the exclusion princi-
ple has a profound impact on the elec-
tronic properties of metals. 

The factor T/TF shows up explicitly
in the low-temperature specific heat of
a metal. In general, the specific heat is
the sum of a lattice vibrational term
(proportional to T3), which is due to the
thermal excitation of the ions, and an
electronic term γT, which is due to the
thermal excitation of the electrons. The
classical coefficient of the electronic
term is γ = NkB, but because of the ex-
clusion principle, it becomesγ =
NkBT/TF, and only electrons near the
Fermi energy can be heated. Thus, in
simple metals obeying the free-electron
model, γ is inversely proportional to TF,
or equivalently,EF, and therefore 
proportional to the rest mass of the 
free electron, me. Later, when we 
discuss the low-energy excitations in
correlated-electron materials including
plutonium, we show that the conduction
electrons depart from free-particle 
behavior. They behave more like the
strongly interacting particles of a liquid,
more like a Fermi liquid. Because the
interactions slow down the electrons,
the effective mass of the electrons 
appears larger, and it shows up as an
increase in the value of γ over that 
predicted by the free-electron model.
Thus, low-temperature specific-heat
measurements reveal the strength of 
the electron-electron correlations in a
metal and therefore provide a major
tool for identifying unusual metals. 

Electrical resistivity at low tempera-
tures tells us about the quality of the
metal. In a perfect crystal, electrical 
resistance would be zero at the classical
T = 0 because the noninteracting con-
duction electrons, acting as waves,
would move through the perfect lattice
unimpeded. Above T = 0, the thermal
excitations of lattice vibrations
(phonons) make the lattice imperfect
and scatter the electrons. The electrical
resistance increases linearly with tem-
perature, as will be shown later in this
article. In general, anything that 
destroys the perfect translational invari-
ance of the crystal lattice will scatter
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electrons. Foreign atoms, lattice vacan-
cies, more-complicated defects such as
stacking faults, and finally, magnetic
moments in an array without the full
symmetry of the lattice can scatter elec-
trons. Many of these imperfections are
temperature independent and lead to a
finite limiting resistance as T = 0 is 
approached. Hence, this limit is used 
as a measure of the quality of metal 
samples, for which the lowest residual
resistance signifies the most perfect
sample. We will show that correlated-
electron materials often have 
anomalously high resistivities and 
very small or zero magnetic moments
at low temperatures. 

Models of Conduction 
Electrons

We have suggested that the electro-
static forces holding the metal together
can be considered averaged forces 
between the ions and conduction elec-
trons and that these forces can be
modeled by a periodic electrostatic 

potential. On the other hand, once a
metal is formed, its conduction elec-
trons (approximately 1023 per cubic
centimeter) can act collectively or in a
correlated manner, giving rise to what
is called quasiparticle or free-electron
behavior (not determined by averaged
electrostatic forces) and to collective
phenomena such as superconductivity
and magnetism. 

These two seemingly opposing
views of conduction electrons and their
behavior in solids first appeared in the
scientific literature in 1937 and 1957.
John Slater (1937) proposed calculating
the electronic states—the energy bands
in Figures 2 and 3(b)—of solids by the
same self-consistent method that had
been applied so successfully to describ-
ing the electronic states of atoms and
molecules. In this method, one treats
electrons as independent particles and
calculates the average Coulomb forces
on a single electron. The other electrons
and all the ions in the solid are the
source of these Coulomb forces on one
electron. This calculation, repeated for
all the electrons in the unit cell, leads to

a charge distribution from which the
electrostatic potential seen by the elec-
trons can be obtained as a solution of
Poisson’s equation. Using the new elec-
trostatic potential, one then repeats the
calculations for each electron until 
the charge density (distribution of elec-
trons) and the crystal potential (forces
on the electrons) have converged to
self-consistent values. Slater’s approach
led to all the modern electronic-band-
structure calculations commonly labeled
one-electron methods. These one-elec-
tron band-structure methods are adapta-
tions of the familiar Hartree-Fock meth-
ods that work so well for atoms and
molecules. They were put on a more
rigorous footing through Walter Kohn’s
development of density functional theo-
ry (DFT). For his achievement, Kohn
became one of the recipients of the
1998 Nobel Prize in Chemistry. 

Lev Landau (1957) took a different
view and argued that the collective mo-
tion of electrons in a solid’s conduction
band was very different from the motion
of electrons in atomic or molecular 
orbitals. He pointed out that particles in
the conduction band act as if they were
nearly free even though the individual
electrons are subject to strong Coulomb
forces. Landau’s way out of this para-
dox was to argue that the effect of the
electrons’ correlated motions from 
mutual interactions in the solid was to
“clothe” themselves, which screens their
charge. In heuristic terms, a conduction
electron is very much like an onion with
many layers. When the electromagnetic
force is weak, the interaction penetrates
only a few layers, and the electron 
appears to be clothed. When the force
becomes stronger, however (as in the
ejection of conduction electrons by pho-
tons in photoemission experiments), the
interaction penetrates many more layers
until the bare electron with its Coulomb
force becomes visible, as it does in 
the one-electron models. 

And yet, the conserved quantum
numbers characterizing the single-
particle states of the clothed elec-
trons—such as spin, momentum, 
and charge—are unchanged by the 
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(a) The solid line is the density of single-particle states for a free-electron gas plotted
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band participate in bonding, whereas only those with energies near the Fermi energy

contribute to low-energy excitations, such as specific heat, and conduct electricity. 



orbital A or B, and so can electron 2. Second, the electrons

have to obey the Pauli exclusion principle, which means that

the total wave function for the two electrons has to be 

antisymmetric, and that antisymmetry implies that the Hamil-

tonian must contain an exchange term. This exchange term

is what separates the Hartree-Fock calculations of many-

electron atoms from the original Hartree calculations of 

those atoms. 

When the exchange term was included in the calculation of

an electron gas, it was found that around each electron, there

is a “hole,” or depression, in the probability of finding another

electron close by. The accompanying figure shows the 

“exchange” hole, which is the probability of finding an electron

of the same spin near a given electron. That probability is

one-half the value it would have without the exchange term.

This exchange hole demonstrates that the electron motion is

correlated, in the sense that electrons with the same spin

cannot get close to each other. In the 1930s, Wigner 

performed similar calculations for electrons of opposite spins,

which led to a “correlation” hole (very

similar to the exchange hole) for the

probability of finding an electron of

opposite spin near a given electron.

The picture of an exchange hole and

a correlation hole around each 

electron is a great visual image of

electron correlations in solids. Modern

one-electron calculations include

these correlations in an average way

because these terms can be calculated from the average

electron density around a given electron. 

Having given a physical basis for the need to include elec-

tron correlations, we now refer to the modern usage of 

the phrase. Any theory that includes interactions beyond the

one-electron method is now considered a correlated-electron

theory. Likewise, any solid (metal, insulator, and so on) that

exhibits behavior not explained by either the free-electron

model or the one-electron band model is considered a 

correlated-electron system. If the properties of a solid devi-

ate strongly from the predictions of free-electron or band

models, that solid is called a strongly correlated system. 

Figure 1 in the main text shows examples of such systems. 
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Electron correlations are always mentioned in discussions of

electronic structure or excitations, but their physical origin is not

always explained. Here, we will give a simple argument for the

need to include electron correlations. We will also give some

examples of such correlations.

Assume that we have a container of electrons (no ions) that

are noninteracting and that we can remove the container and

turn on the interactions. At that point, the electron cloud will 

expand indefinitely because of the Coulomb repulsion between

the electrons. No correlations are needed to describe this mo-

tion of free electrons. Note that the term free-electron behavior

as applied to conduction electrons really means that the elec-

trons act like neutral particles (no charge) that obey Fermi-

Dirac statistics—that is, they act like Landau’s quasiparticles.

Now suppose that we have a container with an equal number

of ions and electrons and that the ions are on closely spaced

lattice sites, as in a real solid. Again, we remove the container

and turn on the interactions. We assume that our electrons

are in random positions and their de

Broglie wavelengths are greater than

the ion spacings when the interactions

are turned on. In this case, the elec-

trons’ motion is much more complex

because the electrons are simultane-

ously attracted to the ions and repelled

from each other. To minimize the total

energy of the system, the electrons

must minimize the electron-electron 

repulsion while maximizing the electron-ion attraction, and 

the way to minimize the Coulomb repulsion is for them to stay

as far from each other as possible. Below, we will demon-

strate how electrons are kept apart in real calculations, 

and the reader will thus get a feel for what we mean by 

electron correlations. 

We will first consider the helium atom, which has two occupied

atomic orbitals—one for each electron. Helium was the first

many-electron system for which a quantum mechanical calcu-

lation was attempted. In developing a model that would predict

the observed spectral lines of helium, physicists discovered

two unanticipated properties of the electrons. First, the two

electrons are indistinguishable—that is, electron 1 can be in
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interactions. This argument led Landau
to propose a one-to-one correspondence
between the interacting and noninteract-
ing systems. That is, the number of en-
ergy levels in the interacting system
(labeled by the conserved quantum
numbers of the noninteracting system)
and the number of elementary excita-
tions (or clothed particles) in the inter-
acting system would be the same as
those in the noninteracting system. The
clothed electrons, called quasiparticles,
with their physical properties modified,
would then interact very weakly and
thus have almost-free-particle behavior.

Landau’s original argument 
was meant to explain the nearly-
free-electron behavior seen in the con-
duction electrons in simple metals, in
the atoms in liquid helium-3, and in the
protons and neutrons in nuclear matter.
Later, scientists realized that the same
conceptual framework could be applied
to small-energy electronic excitations of
solids in which the conduction electrons
do not exhibit nearly-free-electron 
behavior but behave more like a liquid.
For this reason, the Landau method can
be considered a correlated-electron
method. Landau’s genius was to recog-
nize that these correlations did not have
to be calculated directly. Instead, one
could assume that the correlations were
built into the behavior of the quasiparti-
cles, which could therefore no longer

be identified as electrons. The small de-
viations of those quasiparticles from
free-particle behavior were the sign of
residual interactions, and the effects of
those interactions on the quasiparticle
behavior could be determined directly
from experimental data. The downside
of this theory is that the measurable pa-
rameters are not easily derived from
first-principles calculations, and so their
meaning is not always clear. 

Although the one-electron band 
theories and the correlated-electron 
theories seem incompatible, we have
learned that both are correct and that
their relevance depends on the energy
and time scale used to view the conduc-
tion electrons. We also know that all
theories of conduction electrons must
include clothing, or correlations. The
one-electron methods include averaged
correlations, which produce an aver-
aged exchange hole and correlation
hole around each electron (these terms
are defined in the box “Standard Elec-
tron Correlations vs Correlated-Electron
Materials”). For higher energies and
longer times, such as those involved in
bonding, these one-electron methods
work well because the averaged corre-
lations dominate the behavior of the
electrons. For low-energy excitations,
spin and charge fluctuations become
more important than averaged values,
and the Landau method, which incorpo-

rates these fluctuations in the behavior
of the quasiparticles, becomes more
useful. 

Models for Correlated-Electron
Materials. Until 1980, we had these
two general methods for calculating
phenomena involving higher and lower
energies, and they worked quite well—
except for some isolated systems. But,
in the early 1980s, we began finding
new metallic materials, the heavy-
fermion and mixed-valence materials,
whose behavior was as anomalous as
that of the light actinides. Resistivities,
specific heats, magnetic susceptibilities,
electron masses, and other low-energy
excitations were different in different
materials of the same class and had
strange temperature dependencies.
Some of these anomalies had been seen
before, but they seemed isolated. 
Almost every new material appeared 
to exhibit odd behaviors that could not
be explained by one-electron models 
or the Landau treatment. 

We now recognize that the central
feature of all these materials, including
plutonium, is the presence of a domi-
nant, narrow conduction band. We also
recognize that the exotic behavior of
these materials has a common source:
the spin and charge fluctuations associ-
ated with the low-energy excitations in
those narrow bands. As indicated 

Table I. Solid-State Excitations

Excitation Excitation Energy Typical Theoretical Method

Photoemission 20–1500 eV One-electron/many-electron

Band formation 2–10 eV One-electron

Cohesion 2–10 eV One-electron

Phase stability 1–25 meV One-electron

Elastic constants 1–25 meV One-electron

Magnetic moments (band) 1–25 meV One-electron

Magnetic moments (local) 1–25 meV One-electron

dHvA signals 0.1 meV One-electron/many-electron

Resistivity 0.1 meV One-electron/many-electron

Specific heat (at low temperature) 0.1 meV One-electron/many-electron

Magnetic ordering 0.1 meV Many-electron

Superconductivity 0.01–0.1 meV Many-electron
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before, narrow bands mean that the
wave functions from different atoms are
barely overlapping, and the electrons
are thus bordering on being localized.
These materials are now collectively
called correlated-electron materials, and
those with the most extreme behavior
are the heavy fermions. (In the late
1980s, another class of materials was
discovered, namely, high-temperature
superconductors. Although they are
complicated and interesting, high-
temperature superconductors are not
narrow-band materials. Their exotic 
behavior is therefore unrelated to that
of plutonium.)

Along with the discovery of corre-
lated-electron materials came a new
class of many-electron models to 
describe the exotic behaviors of those
materials. The Kondo, Hubbard, and
Anderson models are among them.
These models stand between the 
one-electron methods and the Landau
method in the sense that they can be
used to add electron-electron interac-
tions (correlations) to either the semi-
clothed electrons of one-electron 
theory or to the quasiparticles of the
Landau theory. Originally, the Kondo
and Anderson models were invented to
solve specific mysteries in materials
containing impurities, and they can be
generically classed as two-electron
“impurity” models. That is, they intro-
duce interactions between pairs of
electrons, one localized on an impurity
atom and one in a conduction band. 

Unfortunately, these impurity mod-
els break the translational invariance of
the crystal lattice.  To become applica-
ble to correlated-electron systems, these
models must allow translational invari-
ance to be restored. In the standard 
approach, the localized (or “almost 
localized”) f electrons become the im-
purity, and one postulates a lattice of
couplings between conduction electrons
and the f electrons, which are either 
located at every lattice site or distrib-
uted randomly among the sites. In prin-
ciple, translational symmetry makes
these extended impurity models soluble,
but in practice, the models present

enormous calculational difficulties, and
progress in solving them has been slow. 

Energy Scales of Electronic 
Phenomena. Table I lists solid-state
excitations or effects, along with the
energy scale and theory most applicable
for each effect. Effects for relatively
high energies—2 to 10 electron-volts
(eV)—include the ground-state crystal
structures, as well as the particular
bonding energies and stability of those
structures. Those properties are mod-
eled with one-electron methods as are
the elastic constants, which are among
the effects for moderate energies—1 to
25 milli-electron-volts (meV). Low-
energy (0.1 meV) excitations and phe-
nomena such as resistivity, magnetic 
ordering, and specific heat can be 
described by either one-electron or
many-electron models, whereas the very
low energy (0.1 to 0.01 meV), collective
electronic ground states such as super-
conductivity and magnetism can only be

described by many-electron models. 
Not all phenomena in solids, 

however, can be fully treated by a single
approach. For example, the de Haas–
van Alphen (dHvA) effect1, as seen in
heavy-fermion materials, requires both.
The oscillations can be explained by
one-electron theories, whereas the very
heavy electron masses are explained only
by correlated-electron theories. Another
example is provided by the spectra 
obtained from photoemission experi-
ments, which are performed at relatively
high energies but for short times. Pho-
toemission spectra measure the one-
electron density of states predicted from
one-electron methods, but because of the
short time, spin and charge fluctuations
may add small features to the overall
spectra (see the article “Photoelectron
Spectroscopy of α- and δ-Plutonium” on
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Figure 5. The Metallic Radii of the Actinide Elements in the Ground State 
The metallic radius is half the average distance between the atoms in the solid. The

line follows the smoothly varying metallic radii of the simple trivalent actinide metals,

whose f electrons are localized and therefore nonbonding. The metallic radii of the

light actinides—thorium through plutonium—fall on a parabolic curve below the triva-

lent line, showing the contribution of the f electrons in the bonding, that is, in pulling

the atoms closer together.
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1The dHvA effect is the oscillation in magnetic
susceptibility at low temperatures, as an applied
magnetic field changes.



page 168). Clearly, we need both theo-
retical techniques to explain the proper-
ties of metallic plutonium and its com-
pounds.

To convey an overall picture of the
actinide metals, we first discuss their
bonding properties, for which we use
one-electron methods. Later in the arti-
cle, when we look at phase instabilities
and other lower-energy phenomena, we
will need arguments and concepts from
correlated-electron theories.

Cohesion in the Light 
Actinides—Similarity with 

the Transition Metals

Our discussion of the bonding prop-
erties in the actinides focuses on the
role of the 5f valence electrons. The 5f
electrons in the light actinides (thorium
through plutonium) are itinerant, just
like the 5d electrons in the transition
metals, participating in the bonding of
the solid and affecting most of the
high-energy properties such as cohe-
sion, crystal structure, and elastic prop-
erties. In contrast, the heavy-actinide
metals (americium through lawrencium)
have localized (atomic-like as opposed
to itinerant) 5f electrons, and they are
thus the true counterpart to the rare-
earth metals. (The presence of localized
magnetic moments in both the lan-
thanides and the heavy actinides is a 
direct sign that f electrons are localized.) 

Figure 5 is a plot of the metallic
radii of the actinides, and it gives 
explicit evidence for the bonding 
behavior of the 5f electron series in 
the ground state. Notice that the light
actinides have smaller metallic radii
(therefore, higher densities) than the
heavy actinides. The reason is that 
the f electrons in the light actinides
contribute to the bonding. Also, 
the metallic radius of the light actinides
gets smaller with increasing atomic
number (Z) because each additional
f electron per atom pulls the atoms
closer together. This trend stops at
americium. The metallic radii of the
heavy actinides are all about the same,

and that value is larger than that for 
the radii of the light actinides because
the localized 5f electrons have no effect
on bonding. 

Ironically, before the Manhattan
Project, when thorium and uranium
were the only actinides whose physical
properties were known, these metals
were thought to belong to a 6d metal
series to be placed below hafnium and
tungsten in the periodic table of the ele-

ments. The similarities between thorium
and uranium and the 5d transition met-
als were the cause for this misconcep-
tion. After McMillan and Abelson 
discovered neptunium in 1940 and after
the discoveries of plutonium, americium,
and curium during the Manhattan Pro-
ject, measurements of atomic spectra
showed that the valence electrons in
this ever-lengthening series were filling
a 5f shell and not a 6d shell of atomic
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Figure 6. One-Electron and Friedel Model Results for the Cohesive 
Energies of the d and f Series
The calculated cohesive energies per atom of the 3d metals (dots) are equal to the cal-

culated difference between the binding energy of an isolated atom (excluding atomic

valence-electron coupling) and the binding energy of an atom in its solid. For peda-

gogical reasons, in these LDA one-electron calculations, the metals were assumed to

be in the fcc crystal structure. (The cohesion of the other structures differs by up to

10% from that of the fcc phase.) The Friedel model predicts a parabolic curve for the

3d metals. This simplified model of bonding assumes that the density of states in the 

d band of the transition metals is constant over its width. The model also assumes

that the d electrons fill the energy band in order of increasing energy: First the bond-

ing d states are filled, which increase the binding, and then the antibonding d states,

which decrease the binding. Thus, maximum stability is reached when the band is half

full. (Refer to the article “Actinide Ground-State Properties” on page 128 for a more 

detailed discussion of this model.) The LDA one-electron results agree with the predic-

tions of the Friedel model. We show only the parabolic curves for the 3d, 4d, and 5d

elements and for the light actinides. The cohesive energies of the light actinides look

similar to those of the transition metals—that is, they show increased bonding as the 

f shell is being filled.



orbitals. These 5f electrons were 
expected to be localized in the solid
state, like the 4f electrons of the rare
earths. Long after the Manhattan 
Project, the pendulum swung back, as
scientists realized that the similarities
between the light actinides and the 5d
transition-metal elements meant that the
5f electrons in those early actinides did
indeed form a conduction band. 

The cohesive energy per atom hold-
ing a crystal together is defined as the
difference between the electrostatic
binding energy per isolated atom (ignor-
ing coupling among electrons) and the
total internal (electrostatic binding) 
energy per atom in a crystal. Both bind-
ing energies, and thus the cohesive 
energy, are calculated self-consistently
by one-electron methods. Figure 6
shows the one-electron predictions for
the cohesive energy per atom of 3d
transition metals in a hypothetical face-
centered-cubic (fcc) structure (dots) and
the Friedel model predictions for the 3d,
4d, 5d, and 5f elements (parabolic
curves). The Friedel Model, a simplified
model of bonding, assumes that the
d electrons are conducting and are fill-
ing an energy band in order of increas-
ing energy: first, the bonding d states,
which increase the amount of binding,
and then the antibonding d states, 
which decrease that amount. Note that
the Friedel model predictions for the 
3d elements fit the results from quan-
tum mechanical one-electron calcula-
tions quite well. And the bonding in 
the 4d and 5d metals is greater than that
in the 3d metals because 4d and 5d
electronic states have a greater radial
extent (more overlap) than 3d states 
(a feature not obtained from the simple
Friedel model). The cohesive energies
of the light actinides look similar. 
That is, they show increased bonding
with the filling of the beginning of 
the 5f shell. However, the parabolic
trend in the early actinides ends at
americium because the 5f electrons are
no longer contributing to bonding. 

Similarly, the lattice constants
(length of the edge of the basic cubes
in a cubic crystal structure) tend to 

decrease as one goes across the first
half of all the d and the 5f series, again 
indicating that each additional electron
increases the bonding or cohesion. 
Recall that metallic radii also decrease
parabolically across the early part of
the 5f series, as revealed in Figure 5.

Plutonium and the Universal
Bonding Curve of Metals

The parabolic trend in cohesion and
lattice constant extends to the bulk
modulus, which is the average elastic
(or spring) constant of the solid. The
bulk modulus thus gives the strength of

the restoring forces, or interatomic
forces, that bind the solid together as
the ion cores vibrate about their equi-
librium positions. For most metals, the
bulk modulus, the cohesive energy, and
the lattice constant can be related to
each other through the “universal bond-
ing curve.” We will show next that plu-
tonium fits this curve as well. 

First developed as a parameterized
equation, the bonding curve is a plot of
pressure (cohesive force per unit area)
on an atom vs the distance between the
atoms. Figure 7 shows the bonding
curve for potassium metal calculated
from one-electron band-structure calcu-
lations in the atomic-sphere approxima-
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Figure 7. The Bonding Curve for Potassium
The plot shows LDA one-electron calculations of the bonding curve for potassium in

the fcc structure, which is the change in cohesive energy per atom, dε/dx , as isolated

potassium atoms at infinite separation are brought together to form a solid. We plot

this quantity as PΩ (pressure times volume or force times length) vs the separation 

between atoms (or lattice constant a). The shaded area under the bonding curve is 

the cohesive energy to bond the atom in the solid. To compress the bonding curve, 

the horizontal axis is a logarithmic scale x = ln(a/a0). Equilibrium occurs when 

dε/dx = P = F/A = 0, at which point a = a0 and x = 0 (the dashed line in the figure). 

The bulk modulus (average elastic constant) is given by the slope of the curve at 

equilibrium (that is, at x = 0 and dε/dx = 0). At the minimum in the curve, the attractive

forces between the atoms are the greatest. Those forces weaken as the atoms move

together until they vanish at the equilibrium separation.



tion (the electrostatic potential around
each lattice site is assumed to be spher-
ical). Here, the bonding forces are for
atoms arranged in an fcc structure, and
they are plotted as a function of x, the
natural log of the lattice spacing a nor-
malized by a0. At very large interatom-
ic distances, the atoms are isolated, and
the pressure on any atom is zero. As
the atoms approach each other, their
electronic wave functions overlap, and
there is an attraction, or pressure, that
pulls them together. Finally, they reach
equilibrium at the lattice constant a0,
where again the pressure on the atoms
is zero. In Figure 7, the cohesive ener-
gy is the area between the bonding
curve and the line indicating zero pres-
sure; the equilibrium lattice spacing is
at x = 0 (or a = a0), the value at which
the bonding curve crosses the zero
pressure line; and the bulk modulus is
the slope of the bonding curve at this
equilibrium spacing. Remember that
this curve represents the forces on an
atom in the solid. Therefore, the mini-
mum in the curve is the lattice constant
at which the attractive force between
the atoms is the greatest. As the atoms
move closer together, the attractive
force becomes weaker and vanishes at
the equilibrium lattice constant a0. 

We will next illustrate that there is
only one bonding curve for all metals,
including plutonium. We first calculate
the bonding curve for molybdenum 
because, among metals, it has the
largest cohesion. We then plot all other
metals on this curve, by drawing the
zero pressure line for each metal so that
the area between that line and the bond-
ing curve is equal to its cohesive ener-
gy. The results, shown in Figure 8 for
several metals, reveal the following 
relationships: First, if the cohesion of
one metal is greater than that of another,
then its lattice constant is smaller. Next,
the bonding curve becomes steeper as
the interatomic distances get smaller
(see the part of the curve to the left of
the maximum force point). This means
that the tangent to the curve (bulk mod-
ulus) becomes larger as one moves up
the curve. So, if the cohesion of one

metal is larger than that of another, its
bulk modulus will be larger. This uni-
versal bonding applies to all metals in
the periodic table. When considering
cohesion and bulk modulus, we can see
that plutonium and the other light 
actinides fit the universal curve just 
like any other metal. We note that plu-
tonium and the light actinides have 
relatively small bulk moduli because
they have large lattice parameters,
which, as we shall see, are due to the
electrons in the s and p bands and are
consistent with the universal curve. 

More exact calculations of bonding
in plutonium are now available and are
presented in the article “Actinide

Ground-State Properties” (page 128),
but a few general remarks are in order.
Those modern calculations, as well as
the ones we presented above, are based
upon the local density approximation
(LDA) of the DFT approach to band-
structure calculations. But in contrast to
our simplified, pedagogical approach,
Wills and Eriksson have performed
full-potential calculations (that is, no
constraints are put on the form of the
crystal potential), so that all types of
crystal structures can be handled. Their
modern calculations are fully relativistic
(as were our pedagogical calculations),
which is necessary for crystals with
high Z-number atoms. For example, a
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Figure 8. A Universal Bonding Curve 
LDA one-electron calculations of the bonding curves for potassium, copper, plutoni-

um, and molybdenum in fcc structures are overlaid on the same curve. The horizontal

axis for each metal is placed at zero pressure for that metal, and the area between

that axis and the curve gives the correct cohesive energy per atom. (The dotted curve

for copper shows that, in this construction, we are ignoring the large distance tails of

the bonding curve for each element.) A number of relationships are apparent in this

figure. As the cohesive energy increases from one metal to the next, the P = 0 axis

moves up, and the equilibrium lattice constant a0 decreases (moves to the left). At the

same time that a0 moves to the left, the force curve at a0 becomes steeper, and the

bulk modulus, which is the tangent to the curve at a0, increases. So, if the cohesion of

one metal is larger than that of another, its lattice constant will be smaller and its bulk

modulus will be larger.



nonrelativistic calculation of the pluto-
nium atom gives a wrong ordering of
the s, p, d, and f valence levels. 

One of the expected connections 
between electronic-structure calcula-
tions based on one-electron methods
and experiment has been provided by
the values for the energy levels of the
one-electron states, which can be mea-
sured by photoemission experiments. In
the atomic case, for example, it has been
proved that the energy eigenvalues of
the one-electron Hartree-Fock equations
(see the box on page 98) are equal to the
electron-removal, or ionization, energies
(Koopman’s theorem), which are 
directly measurable quantities. Unfortu-
nately, when those atomic eigenvalues
are calculated with the LDA, they do not
have the same physical meaning. 
Instead, they are equal to the removal
energies plus a small calculable correc-
tion, and this correction has not been
shown to vanish for atomic energy lev-
els nor has it been calculated for the
one-electron Bloch (periodic) states of 
a solid. Therefore, we have to rely on a
comparison with experimental data to
determine how close the LDA-calculated
energies are to the electron removal 
energies measured from photoemission
experiments. Any disagreements do not
mean that the theory is wrong. 

Finally, we remind the reader that 
all one-electron methods automatically
predict the hybridization between the 
s, p, d, and f states when those states
overlap. The LDA results we reported
here agree with experimental data at 
the 90 percent level, whereas full-
potential calculations, such as those in
the article “Actinide Ground-State
Properties” on page 128, are often in
better agreement. However, it is not
only the calculated values that are 
important but also the deeper under-
standing that LDA calculations enable.
Because these calculations are efficient,
we can repeat them for many variations
of the parameters, thereby uncovering
detailed bonding features that determine
the structures and bulk properties of 
all the metals in the periodic table. 

Low-Symmetry Structures
from Narrow Bands

One of the striking anomalies of
plutonium metal is its very low symme-
try crystal structure. In fact, the light
actinides exhibit the lowest-symmetry
ground states of all elemental metals:
from orthorhombic for α-uranium to
monoclinic for α-plutonium. Figure 9

shows the room-temperature monoclinic
crystal structure of α-plutonium and its
departure from a hexagonal structure. 

In contrast, the transition metals, 
despite their relatively complex behavior,
form high-symmetry cubic ground states
such as bcc (body-centered cubic), fcc,
or hcp (a hexagonal close-packed varia-
tion of fcc). These high-symmetry struc-
tures look like spheres stacked in an 
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Figure 9. The Crystal Structure of α-Plutonium
The α-phase, the equilibrium phase of pure plutonium at room temperature and below,

has a monoclinic crystal structure. The parallelogram outlining the 16-atom unit cell

shows 2 flat layers (or planes) of atoms, and 8 distinct atomic sites. The larger num-

bers label the distinct sites in the top plane of atoms, and the smaller numbers label

the equivalent sites in the next layer down into the crystal. The lines between the

atoms show that the layers are somewhat similar to a hexagonal structure. For atoms

numbered 2 through 7, one side of each atom has only short lengths to its nearest

neighbors (2.57–2.78 Å), and the other side has only longer lengths (3.19–3.71 Å). This

pattern could be viewed as a strange packing of individual “half dimers,” which is what

a three-dimensional Peierls distortion might be.



efficient space-filling manner with no 
directional bonding (increased electron
density) between the atoms. Once metal-
lurgists know the stacking pattern (or
crystal structure), they can predict many
of the metallurgical properties. To illus-
trate the connection between electronic

structure and crystal structure, we show
how LDA electronic-structure calcula-
tions correctly predict the sequence of
ground-state crystal structures for all 
the transition metals. 

The LDA calculations predict that
the one-electron density-of-states func-

tions for the fcc and hcp transition-
metal structures are very similar. For
this discussion, we will treat those crys-
tal structures as equivalent and compare
the one-electron energy contributions of
the bcc structures with those of the fcc
(or hcp) structures. The one-electron
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Figure 10. Stability of bcc, fcc, and
hcp 4d Transition Metal Structures
Determined from the Density of
States 
(Top) The LDA fcc (hcp) and bcc elec-

tronic density of states for the d conduc-

tion band of the 4d transition metals are

plotted as a function of energy and dis-

play their unique signatures. For peda-

gogical purposes, we ignore the relatively

small differences between the fcc and

hcp density of states. The d-band density

of states is the same for all 4d elements,

but the Fermi level, or highest occupied

level, for each element (dashed vertical

lines shown for Zr and Mo) increases

with the number of 4d electrons. (Bottom)

The total one-electron energy contribu-

tions for each element in both the fcc

(hcp) and bcc structures were calculated

from the first moment, ∫ εD(ε)dε for that

crystal structure, where each ε is a one-

electron energy eigenvalue from LDA cal-

culations. The fcc (hcp) results are the

reference line, the bcc results are plotted

relative to that reference, and the lower

value of the two is the prediction of the

stable structure for that element. Note

that the predicted sequence of structures

matches the observed sequence (listed

below each element) if we ignore the dif-

ference between fcc and hcp. The lines

through the top and bottom figures mark

the level of band filling ( EF) at which the

crystal stability changes from fcc (hcp) to

bcc or vice versa. In Region I, the number

of 4d electrons per atom contributing to

the band increases from 1 to 3. For each

element in Region I, the fcc centroid 

(average value of ε) for the filled states is

always lower in energy (farther away from

the highest filled level at EF ) than the bcc centroid. Therefore, for those elements, there is more bonding in the fcc (hcp) phase. 

In Region II, the situation is reversed because the EF for these elements goes above the first bcc density-of-states peak, and there-

fore the bcc centroid goes below the fcc (hcp) centroid. Finally, for the elements in Region III, EF reaches the second bcc peak, 

the bcc centroid shifts closer to EF than the fcc centroid, and so the fcc (hcp) phases become more stable again. Thus, the d band

filling and the unique signatures of the electronic density of states determine the crystal structures of the 4d transition meta ls.
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energy contribution for a given element
is equal to the one-electron energy ε
averaged over the portion of the one-
electron density-of-states function D(ε)
that is filled for that particular element
(∫εD(ε)dε). The upper half of Figure 10
shows the approximate forms of D(ε)
for the 4d transition-metal series in the
bcc and fcc (or hcp) crystal structures.
The lower half of that figure presents
the one-electron energy contribution for
the 4d series, with the fcc (hcp) results
plotted as the horizontal reference line
and the bcc results plotted relative to
that line. The structure that gives the
lower-energy value for each element is
the LDA prediction for that element’s
ground-state structure. In all cases, the
LDA prediction agrees with the ob-
served structure. The same methods
yield similar agreement between pre-
dicted and observed crystal structures
for the 3d and 5d metals. 

We remind the reader that the total
internal energy is equal to this one-elec-
tron contribution plus other terms (dou-
ble counting, exchange, and correlation
terms). Our results suggest, however,
that the one-electron contribution is the
dominant factor in determining the crys-
tal structure. The physical reason for its
dominance is that the states at the bot-
tom of the conduction band are the most
bonding, so the crystal structure whose
average one-electron energy is lowest,
or closest to the bottom of the band,
should be the most stable. 

Figure 10 shows that one-electron
theory predicts the right crystal struc-
tures for the transition metals, and it
also illustrates why crystal structures in
the 4d series occur in the sequences ob-
served. In principle, we could perform
the same calculations for the low-sym-
metry structures of the actinide series,
but the density-of-states functions for

those elements are more complicated,
so those calculations would not be as
easy to interpret. 

Because electronic structure deter-
mines crystal structure, we will consider
how the electronic structure of the light
actinides, of plutonium in particular, 
differs from that of the transition metals.
An obvious difference is the angular
character and symmetry of the orbitals
associated with their dominant electron
bands—that is, d orbitals with even
symmetry for the transition metals vs 
f orbitals with odd symmetry for the
light actinides. Perhaps the odd symme-
try of the f orbitals causes the ground
states to have low symmetry, as do 
p-bonded metals such as indium, tin, 
antimony, and tellurium. In these metals,
the odd-symmetry p orbitals seem to
produce directional covalent-like bonds
and low-symmetry noncubic structures.
With no way to check this conjecture
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Figure 11. Internal Ground-State Energies as a Function of Bandwidth 
DFT results for bonding energy vs bandwidth demonstrate that narrow bands produce low-symmetry ground states and wide bands

produce high-symmetry ground states. Results are shown here for niobium (a d-bonded metal), and uranium (an f-bonded metal).

The atomic number, crystal structure, and lattice constant (or volume) are inputs to these calculations, and the bandwidth and ener-

gy are outputs. The input structures are bcc, bct, and orthorhombic, and in the case of uranium, fcc. The results for the bcc s truc-

ture are plotted as the horizontal reference line, and those for the other structures are plotted relative to the bcc results. 

Thus, a structure is more stable than bcc when its bonding energy appears below the reference line. Note that for niobium, the low-

symmetry orthorhombic structure becomes stable when we force the d band to be narrower than 3 eV by decreasing the input 

volume. Likewise, when we force the f band in uranium to be broader than 7 eV by increasing the input volume, the high-symmetry

bcc structure becomes stable. The calculated bandwidth at the experimental equilibrium volume is labeled Weq. The results in 

the figure suggest that transition metals have broad bandwidths and symmetric structures, whereas the light actinides have narro w

bandwidths and low-symmetry structures. (This figure was reproduced courtesy of Nature .)



for plutonium, metallurgists and physi-
cists alike long held on to the notion
that directional bonding plays the domi-
nant role in explaining the low symme-
try of the light actinides.

Recent LDA electronic-structure cal-
culations of ground-state properties
have demonstrated that the narrow
width (approximately 2 to 4 eV) of the
f bands leads to the low-symmetry
ground states of the actinides. The d
bands of the transition metals are much
broader—approximately 5 to 10 eV.
From our discussion of band formation,
one intuitively knows that bandwidths
are a function of volume. They become
narrower for large volumes (the wave
functions barely overlap between lattice
sites), they turn into a single energy
value for fully separated atoms, and
they become broader for small vol-
umes. Using the LDA, one can calcu-
late the total bonding energy of a given
element in any crystal structure and
across a range of volumes (with their
concomitant bandwidths) and thereby
demonstrate the dependence of energy
on bandwidth. 

The results of such calculations are
plotted in Figure 11. The ground-state
(or internal) energy is plotted as a func-
tion of bandwidth for niobium and 
uranium in several structures: the bct
(body-centered tetragonal) and ort 
(orthorhombic) structures for niobium
and the bct, ort, and fcc structures for
uranium. In both plots, the ground-state
energy of the bcc (body-centered cubic)
phase is the horizontal reference line. A
structure is more stable than bcc when
its internal energy goes below the refer-
ence line. Figure 11 shows that, when
the d band is forced to be narrower than
3 eV because an expanded volume is
used as input to the calculation, the low-
symmetry orthorhombic structure 
becomes stable. Likewise, when the 
f band in uranium is forced to be broad-
er than 7 eV, the high-symmetry bcc
structure becomes stable. This is simply
a demonstration that narrow bands favor
lower-symmetry structures, not that nio-
bium would form in the orthorhombic
structure of α-uranium. That particular

structure is used only for convenience in
the calculations, and we expect that
some other low-symmetry structure
would be even more stable. Figure 11
also indicates that the true equilibrium
bandwidths (Weq) are broad (small 
volumes) for the transition metals 
and narrow (larger volumes) for the
light actinides. 

Lowering the Electronic Energy
through a Peierls-like Distortion. In
metals, narrow bandwidths (and their
high density-of-states functions) lead 
to low-symmetry structures through a
Peierls-like distortion. The original
Peierls-distortion model occurs in a one-
dimensional lattice: A row of perfectly
spaced atoms can lower the total energy
by forming pairs (or dimers). The lower
periodicity causes the otherwise degen-
erate electronic-energy levels to split,
some becoming lower and others 
becoming higher in energy. The lowered
levels are occupied by electrons, and
therefore the distortion increases the
bonding and lowers the total energy of
the system. In this one-dimensional sys-
tem, the distortion opens an energy gap
at the Fermi level and makes the system
an insulator. In the higher dimensional
systems, which we will discuss next, 
the material remains a metal after the
distortion because there are other Bloch
states that fill this gap.

In real three-dimensional lattices, the
energy levels are degenerate along
high-symmetry directions. If those lev-
els lie close to EF, a crystal structure
distortion (Peierls-like) would increase
the one-electron contribution to bond-
ing, again because the degenerate levels
in the band would split, pushing some
levels above EF and others below EF.
This mechanism is very effective if
there are many degenerate levels near
EF—that is, if the energy bands are nar-
row and therefore the density of states
is large. Materials with broad bands
(wider than 4 eV), gain less energy
from level splitting because there are
fewer levels near EF, and therefore
symmetry-lowering distortions are rare
in these materials. 

Stabilizing Wide Bands into High-
Symmetry Structures. Besides the
one-electron contribution, there is 
another important contribution to the
ground-state energy, namely, the elec-
trostatic Madelung energy. This term is
generated because the conduction elec-
trons do not completely shield the ions
on the lattice sites. The unshielded pos-
itive charge leads to a long-range 
attractive force on the conduction 
electrons that lowers their energy. This
negative Madelung energy is largest for
high-symmetry crystals, opposing the
Peierls-like term. So, for the broad s-p2

and d band metals with few degenerate
levels near EF, the Madelung term
dominates the effects of the Peierls-like
distortion, and these metals are stabi-
lized in high-symmetry structures. 
Although the Madelung term stabilizes
these high-symmetry structures, remem-
ber from our discussion of crystal struc-
tures that the one-electron contribution
determines which structure (fcc, hcp, 
or bcc) will be stable. For the light 
actinides with their narrow 5f bands
and a very high density of states near
EF, the Peierls distortion wins out, and
these metals form low-symmetry struc-
tures. A closer look at Figure 9, for 
example, shows that six of the eight
different atoms in the α-plutonium unit
cell have neighboring atoms that fall
into near distances on one side and far
distances on the other. It is as if one
hemisphere around the atom were
smaller and the other larger, and it is
difficult to imagine how to pack such
objects efficiently. But this type of
problem is just what one might expect
to solve with the three-dimensional 
version of the Peierls distortion. 

Why Are the 5f Bands Narrow?
By considering the contribution of each
energy band (s, p, d, and f) to the bond-
ing curve of the universal bonding pic-
ture, we can understand why the 5f
bands are narrow at the ground-state
equilibria of the light actinides. 
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2The broad s and p bands often mix strongly and
are therefore referred to as the s-p band.



We used the atomic-sphere approxima-
tion to calculate the contributions from
individual bands, and for simplicity, we
performed those calculations in the fcc
phase. Figure 12 shows the results for
plutonium. To understand this figure,
consider that, if the metal had only one
energy band, the lattice constant in the
ground state would be given by the
point at which the bonding curve for
that band crossed the zero pressure line.
From Figure 12, you can see that, if
plutonium had only an f band contribu-
tion, its equilibrium lattice constant

would be smaller than it actually is, its
f band would be wider, and this metal
would stabilize in a high-symmetry
crystal structure. In reality, the contri-
bution from the s-p band (a repulsive
term at true equilibrium) helps to stabi-
lize plutonium at a larger volume; the 
f band is narrow at that larger volume,
and the narrowness leads to the low-
symmetry crystal structure. This argu-
ment is universal for multiband metals.
In the transition metals, the s-p band is
repulsive at equilibrium and leads to
slightly larger volumes than would be

the case if these metals had only 
d bands. 

We conclude that the width of the
dominant band determines the symme-
try of the ground state, and one does
not need to invoke directional bonding
to obtain low-symmetry structures.
When Willie Zachariasen and Finley
Ellinger first identified the crystal struc-
ture of α-plutonium in 1957, they
called it a covalent structure, suggestive
of directional bonds, but they never 
repeated that name. (We note that this
was one of the most difficult structure
identifications ever done because single
crystals were not available, the x-ray
pattern had many lines, other phases in
the samples contributed to the pattern,
and the x-ray lines were terribly broad-
ened by strain.) In recent years, John
Wills and collaborators (see the article
“Actinide Ground-State Properties” on
page 128) have been able to calculate 
the charge density for several actinides
using the full-potential DFT method.
They find no dominant directional 
5f bonds and, most important, no
charge buildup between atoms. Instead,
the calculated ground-state properties 
of α-plutonium indicate that this metal
is quite average. 

We already have hinted, however,
that plutonium may not be so average.
The strong competition between the 
repulsive s-p band contribution and the
attractive f band term in Figure 12 is 
the first sign of instability near the
ground state. The second sign is the fact
that the density-of-states functions for
different low-symmetry crystal struc-
tures are very similar. Thus, the total
energies for different low-symmetry
crystal structures are likely to be very
close to each other—that is, many states
lie close to the ground state. 

The Landscape of Actinide
Phases

Knowing that the ground states of
the light actinides are in a very shallow
minimum of energy, we might expect
these metals to change phase as they 
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Figure 12. Contributions of Different Electrons to δ-Pu Bonding 
LDA predictions for the bonding curves of δ-Pu (fcc structure) are plotted as a function

of the interatomic spacing x = ln(a/a0). The figure includes the curve for the total cohe-

sive energy per atom, as well as the individual contributions from the s, p, d, and f 

energy bands. Note that, if the bonding came from the f band alone, the equilibrium lat-

tice constant of Pu would correspond to the value of x at which the f band contribution

crosses the horizontal axis; that is, the lattice constant would be well below a0. At this

smaller volume, the f band would be wider, and Pu would stabilize in a high-symmetry

crystal structure. In the true equilibrium represented by the vertical line at x = 0, the 

s-p bands contribute a repulsive term and therefore help stabilize Pu at the larger vol-

ume. The f band is narrow at that larger volume, and the narrowness leads to the low-

symmetry ground-state crystal structure of δ-Pu. It may seem strange that the s-p bands

are not bonding at equilibrium, but we must remember that they are also not bonding 

in d-electron transition metals, which form the bulk of metals in the periodic table.



are perturbed by heating or alloying.
An atomic argument leads to the same
conclusion. In the actinides, two or
three different shells of electrons in an
atom are partially filled, producing
more states to compete with the lowest-
energy ground state. Also, the heavier
the atom (or the higher the value for Z),
the smaller the energy difference 
between the last few valence electrons
in different shells, and hence the greater
the chance for metamorphosis.

A composite phase diagram for the
entire actinide series is drawn in Figure
13. This plot was constructed from 
individual-alloy phase diagrams for 
the actinide neighboring-element pairs.
Each original diagram showed the

change in phase as the temperature and
the binary composition were varied. 
In Figure 13, these diagrams have been
simplified and drawn side by side. The
gray areas represent guesses for uniden-
tified details. The resulting “landscape”
of the actinides has been reprinted
widely since Smith and Kmetko drew it
in 1980 because anything with such a
pretty pattern was something the ac-
tinide community needed to understand.

Phase Instability and the f-f Inter-
action. One striking feature of Figure
13 is the large number of allotropes, or
solid-state phases. In fact, the actinides
have the largest number of allotropes of
any series in the periodic table. Note

also that most of the allotropes occur at
neptunium and plutonium, the elements
having the highest number of bonding 
f electrons. Figure 14, a replotting of
the actinide metallic radii in Figure 5
that now includes some of the 
allotropes, emphasizes the effects of the
f electrons on bonding. The f electron
bonding begins at thorium, with a frac-
tion of an f electron in the energy
bands, and increases all the way to plu-
tonium, which has the highest phase 
instability. Thus, in the ground-state
phases of the early actinides, each addi-
tional f electron increases the bonding
and decreases the interatomic distance.
At americium, the f electrons localize
completely and become nonbonding 
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This phase diagram connects individual binary alloy diagrams of the light actinide series. The black areas are two-phase region s; the

brown are regions where the details are unknown. Whereas the trend in phases is rather ordinary at either end of this series, t he phase
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Melting in Plutonium” on page 190). In these two elements, the 5f electrons play a major role in bonding because they are so nu merous.

This widely reproduced and compelling figure shows nature in action, and we have yet to match it with an equally appealing theor y.



because Coulomb forces have at last 
become strong enough to pull the 
f electrons inside the valence shell, 
leaving only the three (or sometimes
two) valence electrons in the s-p and 
d bands to form the glue that holds 
the atoms together for the rest of the 
actinides. The metallic radii increase 
at this crossover to localization, and 
as shown in Figure 14, the low-
temperature phases of the heavier 
actinides (beginning with americium)
form close-packed or bcc structures. 

The upper (high-temperature) part of
Figure 13 shows the liquid phase, and
the melting curve separating the liquid
from the solid state goes through a min-
imum between neptunium and plutoni-
um, at which point the crystal structures
are least stable. In its broadest features,
the pattern shows the light actinides
forming low-symmetry ground states

but melting out of high-symmetry struc-
tures as the heavy actinides and most
other metals do. This observation is
striking, but the really difficult aspect to
explain is that the transition from low
symmetry to high symmetry occurs over
an extremely small temperature range,
small enough that the f band remains
narrow. What property of narrow bands
(or, specifically, narrow f bands) enables
them to stabilize high-symmetry struc-
tures at modest temperatures? 

We know from standard Wigner-
Seitz rules that, for electrons in narrow
bands, the radial portion of the elec-
tronic wave function measured from a
given lattice site must change rapidly as
a function of energy. These rules also
tell us that the electrons in the upper
half of a band are less bonding, so we
can use the molecular concept of bond-
ing and antibonding orbitals to under-

stand the Bloch states of solids.3 Also,
the electronic wave functions of atoms
on different lattice sites overlap less for
narrow bands than for wide bands.
Cerium, the only 4f metal with a nar-
row f band, is a good example. 
The f-electron wave functions overlap
only the nearest-neighbor sites, whereas
the s-p and d wave functions, which are 
associated with wide bands, overlap
sites that are far from a given site. 
In other words, narrow f bands imply a
short-range, rapidly changing interac-
tion among the f electrons. This means
less overlap between f electrons on dif-
ferent sites and also weaker hybridiza-
tion of electrons in f orbitals with elec-
trons in s, p, and d orbitals. 

The many phase transformations in
the center of the actinide landscape sug-
gest that the f-f interaction varies dra-
matically with very small changes in the
interatomic distances, such as those pro-
duced by lattice vibrations or heating.
Also, electron-phonon coupling appears
to be very strong in these narrow bands.
We would even suggest that the varia-
tion with temperature in the f-f interac-
tion (and f-spd interactions) might cause
some of the f orbitals to become local-
ized as plutonium transforms from the
α- to the δ-phase. The situation is com-
plicated by several different interatomic
distances in the low-symmetry structures
of the light actinides (see the crystal
structure of plutonium in Figure 9). 
Unlike the phase transformations in 
the transition metals, which follow sim-
ple, well-understood routes, such as the
Bain path (fcc↔bcc) or the fcc↔hcp
path, the individual transformations in
plutonium (say, α↔β or β↔γ) are diffi-
cult to characterize. And the whole path
from the α- to the δ-phase is even more
difficult to characterize. We need more
detailed analysis and many more calcu-
lations to work out the details of these
phase transformations. But we do know

Plutonium Condensed-Matter Physics

110 Los Alamos ScienceNumber 26  2000

1.9

1.8

1.7

1.6

1.5

Ac Pa Np
Element

M
et

al
lic

 r
ad

iu
s 

(Å
)

Am Cm Bk CfTh U Pu

β
α α

β

β
α

γ, ε

γ

δ, δ′

Figure 14. Metallic Radii of Actinide Allotropes
Here, we have replotted Figure 5 to include additional allotropes (red) of the actinides.

As in Figure 5, the metallic radius is half the average distance between the atoms in

the solid, and the line represents simple trivalent metals with nonbonding f electrons.

The points falling below the line show the involvement of the f electrons in the bond-

ing, which pulls the atoms closer together. Notice that the various allotropes of 

uranium and neptunium have similar metallic radii. In contrast, the radii of the phases

from α- to δ-plutonium increase monotonically. The δ-phase still departs from the triva-

lent line but is much larger than the α-phase, indicating that the f electrons are not

completely localized and therefore still contribute to bonding. 

3According to the Wigner-Seitz rules, the radial
part of the wave function at the top of the band 
is zero at the Wigner-Seitz radius (a radius that 
is roughly half the interatomic distance). At the 
bottom of the band, the derivative of that radial
part is zero at that same radius.



that the short-range nature of the 
f-f interaction in the light actinides and
the partial transition from bonding (itin-
erancy) to localization (rather than di-
rectional bonding) are key ingredients
for a better understanding of plutonium. 

The Role of Entropy in Phase Sta-
bility. To understand fully the stability
of these different phases as a function
of temperature, we must go beyond 
the one-electron methods. Remember
that those methods determine only 
the internal energies of solids (they 
describe the system at T = 0), whereas
phase stability depends on the free 
energy, which is the internal energy
plus the entropy of the system. So far,
theorists have not been able to calculate
the free energy from first principles.
Nevertheless, we can make some gener-
al comments about the role of entropy. 

For the low-symmetry structures of
the light actinides, which have similar
density-of-states functions and therefore
similar internal energies, the internal-
energy path between different low-
symmetry phases is very shallow. That
is, the lower-energy phase sits in a rela-
tively flat potential well connecting it 
to the higher-energy phase. For that
reason, it often has very soft (low-
frequency) vibrational modes in its
phonon spectrum. Low-frequency
modes imply large numbers of phonons
per mode and therefore lots of entropy.
For example, entropy is a driver in the
first three solid-to-solid phase transfor-
mations in plutonium (α to β, β to γ,
and γ to δ), in which low-symmetry
structures are involved. (A recent 
measurement on phonons in uranium
gave the entropies for uranium. See 
the article “Vibrational Softening in 
α-Uranium” on page 202). 

The δ- to ε-phase transformation 
in plutonium is between two high-
symmetry structures, following the
standard Bain’s path (fcc↔bcc) seen 
in most transition metals. Typically, 
the internal-energy path between cubic
structures is not shallow. However, 
experimental data indicate that this path
is shallow in plutonium. In Figure 15,

we show the Bain’s path for a few typi-
cal transition metals and the postulated
path for the δ- to ε-phase in plutonium.
When the internal-energy path between
phases is shallow and the entropy is
large, the range of stability of a phase
can be small. And that is exactly what
is seen in the δ- to ε-phase transforma-
tion. The δ-phase remains stable for

only 160°C, whereas in a typical transi-
tion metal, the fcc phase remains stable
for around 1000°C before becoming
bcc. (See the article “Elasticity, 
Entropy, and the Phase Stability of 
Plutonium” on page 208 for a discus-
sion of how to estimate the vibrational
entropy through measurements of 
elastic constants.) 

The actinides are not unique in hav-
ing shallow internal-energy paths 
between them. The same is true of
some transition metals (see Figure 15)
and even simple metals such as lithium. 
In all these metals, entropy plays a big
a role. We emphasize, however, that 
in all the actinides, and particularly in
plutonium, the initial instabilities (lead-
ing to high entropy and frequent phase
changes) are due to the role of the 
f electrons and the existence of many
internal-energy states whose energy 
values are very close. 

Low Melting Temperatures and
Electron-Phonon Coupling. The last
remarkable feature of Figure 13 that we
will comment on is the pronounced dip
in the melting curve at neptunium and
plutonium. We suggest that two effects
may lead to this reduction in melting
temperature: the strong electron-phonon
coupling in narrow-band materials
(which in a one-electron theory would
be seen as the large variation of the f-f
interaction with temperature) and the 
instability of the phases due to the large
entropy term. Strong electron-phonon
coupling implies that small temperature
changes lead to larger-than-usual elec-
tronic changes. As a result, the effective
temperature is larger than the actual
one, and therefore the material melts at
a relatively low temperature. Evidence
for strong electron-phonon coupling 
is seen in the strong temperature depen-
dence of the elastic constants of 
gallium-stabilized δ-plutonium deduced
from neutron diffraction measurements
(see the article “Atomic Vibrations and
Melting in Plutonium” on page 190).
Strong electron-phonon coupling is also
implied by the high resistivity of pure
plutonium just below room temperature. 
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Typical Transition Metals and for
the δ- to ε-Plutonium Transformation 
We performed these calculations by

varying the c/a ratio in the bct structure

to go from the fcc to the bcc phase. 

The calculated internal energy as a

function of the c/a ratio yields the path

the solid must follow to get from the fcc

to the bcc phase. As shown, the Bain’s

paths for typical transition metals (5d),

such as osmium and iridium, are steep.

The platinum path is very shallow, 

and we use it as our model for the plu-

tonium path (red dotted lines). The 

shallow well in the fcc phase for plat-

inum and plutonium leads to soft modes

and large entropy. The observation that

plutonium goes through the δ′-phase

(bct) in going from δ- to ε-phase implies

that the Bain’s path for plutonium is flat

enough to make the δ′-phase metastable

at least at some value of c/a.



The large entropies (soft vibrational
modes) in these materials also imply 
that relatively small temperature changes
produce relatively large changes in free
energy. As a result, the average tempera-
ture change between phases in plutoni-
um is 85°C, whereas in typical transition
metals, it is around 1000°C. In other
words, a free-energy change large
enough to cause melting requires only a
small temperature change—that is, the
melting temperature is relatively low.
These general insights notwithstanding,
Migliori is right to emphasize that much
more work is needed to quantify the 
vibrational energy and entropy contribu-
tions to the free energy and phase stabil-
ity. We now return to the problem of
how electronic structure affects the
phase stability of plutonium, especially
its δ-phase. 

Delta Plutonium, f Electron 
Localization, and Plutonium

Metallurgy

Delta-phase plutonium is of special
interest because its fcc structure allows
plutonium to be formed into shapes as
easily as aluminum. Used in building
nuclear weapons, this phase is most im-
portant to understand from first princi-
ples. Ironically, although electronic-
structure calculations of plutonium have
improved, the δ-phase has been the
toughest one to get right in spite of its
simple cubic structure because its f elec-
tron behavior does not fit the usual cate-
gories. The plot of metallic radii in Fig-
ure 14 indicates the dramatic increase in
the metallic radius (decrease in density)
of the δ-phase, suggesting that f electron
bonding decreases markedly from the 
α- to the δ-phase. On the other hand, 
f electron localization is not complete
because the interatomic distance for 
δ-plutonium is still below the trivalent
line defined by actinium and the heavier
actinides, whose f electrons are fully 
localized. (The side a0 of the cube of the
unit cell is 4.637 angstroms in 
δ-plutonium and 4.894 angstroms in
cubic americium.) Thus, the f electrons

in δ-plutonium are in limbo between 
localization and itinerancy, a state that
has yet to be modeled in any convincing
way. Plutonium can easily change its
crystal structure and density in response
to its surroundings, and the δ-phase is
the most sensitive. 

The only other transformation that
comes close to producing the 26 percent
volume expansion seen in the transfor-
mation fromα- to δ-plutonium is the
isostructural expansion from the fcc α-
phase to the fcc γ-phase of cerium. This
transition produces a 20 percent volume
expansion. Before f bands were known

to exist, the reverse transition in ceri-
um—the collapse from the fcc γ-phase
to the denser fcc α-phase near room
temperature and under pressure—was 
attributed to a change of an f electron
(localized) to a d electron (itinerant),
which would explain the volume change
and the magnetic properties. However,
accumulating data showed no change 
in the number of f electrons through the
change in volume. In 1974, Börje 
Johansson suggested that the collapse in
cerium involved a Mott transition. Mott
had described how the localization of
conducting electrons turned conductors
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Figure 16. Stacking Close-Packed Crystal Structures 
The red and blue layers of the fcc and hcp crystal structures are stacked identically. 

In the fcc structure, the third layer (yellow) is in a new position; in the hcp structure, it is

perfectly aligned with the first layer (both are red). The ability of one plane to slide (slip)

over another leads to the ductility of fcc metals. It takes a bit of practice to visualize 

the close-packed planes (shaded) within the fcc unit cell. The many slip systems in 

fcc metals are discussed in the box “Atomic Packing and Slip Systems in Metals” on

page 308.

fcc structure hcp structure



into insulators, and delocalization did the
reverse. Johansson saw that cerium’s fcc
isostructural expansion involved local-
ization and its collapse involved delocal-
ization just as in the Mott metal-
insulator transition, but for cerium, only
the f electrons were involved. The s-p
and d electrons remain conducting in
both fcc phases, and thus this Mott-like
transformation is between two metallic
phases of cerium. Many theorists believe
that a similar localization mechanism 
is probably responsible for the series 
of phase transitions from α- to 
δ-plutonium, except that the net result
falls short of the more complete transfor-
mation to localization seen in the trans-
formation from α- to γ-cerium because
five, instead of one, f electrons are 
involved (see the article “A Possible
Model for δ-Plutonium” on page 154).

Despite its weird electronic state, 
δ-plutonium signals the return of the 
actinides to the typical metallic close-
packed crystal structures. That is, it
forms the tip of the “iceberg” of the fcc
phases at the right in Figure 13. The fcc
structure is what makes metals such as
copper, aluminum, stainless steel, and 
δ-plutonium very useful. It is a high-
symmetry, close-packed structure that
one can easily construct by stacking
marbles, as in Figure 16. The first layer
of marbles (red) forms hexagons made
of triangles. The second layer (blue)
falls naturally into a set of first-layer 
depressions. The marbles in the third
layer can be either directly above those
in the first layer (red) or in a third set of
positions not found in the layers below
(yellow). The hcp structure is formed if
the third layer is on top of the first one;
the fcc structure, if the third layer is in
the third position. Notice that, in all
cases, it would be fairly easy to slide
one layer across the next one because
the marbles do not have to move up and
down too much in order to land into the
next set of holes. Sliding them across
some other plane would not work as
well because there are fewer atoms in all
other nonequivalent planes and the wells
are deeper. It is precisely because one
plane can easily slide across the next

one that fcc metals are ductile and there-
fore easy to shape. 

Ductility, a remarkable feature of
metals, is not necessarily long lasting.
As a plane of atoms slides, some of the
atoms may not move uniformly. And as
more and more planes “misslide” in this
way, the misfits accumulate, and the
metal gets stronger—that is, it takes
greater force to deform it or to make it
fail. This process is called work harden-
ing. Alpha plutonium is an example of a
naturally brittle and strong material.

From the α-plutonium structure shown
in Figure 9, it is easy to see that sliding
planes across each other in any direction
would be extremely difficult because the
atoms would no longer fit. In contrast,
the planes of δ-plutonium slide very eas-
ily, like those of aluminum. 

On the other hand, new single crys-
tals of very pure α-uranium were shown
to bend easily when squeezed by hand.
Single crystals are expected to be easier
to bend because there are no grain
boundaries and dislocations to pin 
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Figure 17. Thermal Expansion of Plutonium 
The percentages by which the lengths of plutonium and iron have changed are 

shown as a function of temperature for 0°C to 660°C. Abrupt changes in the curve 

for plutonium denote phase transitions, and each of the smooth segments is in 

the labeled structures. The crystal structures and densities of each phase are also 

listed. Note that plutonium’s thermal expansion is very large, the material goes through

six solid-state phases before melting, the δ-phase contracts as it is heated, and pluto-

nium contracts as it melts. These features are in stark contrast to the small linear 

expansion of iron and most metals. 



the sliding. However, these uranium
crystals seem softer than expected. We
do know that uranium deforms by mak-
ing twins, which are structures that look
like mirror images of each other sepa-
rated by planar boundaries. In general,
low-symmetry structures have more
planes across which twins can form, and
this may mean that, if we had single
crystals of very pure α-plutonium, they
would be far softer than any crystals we
have ever seen. For a more complete
description of these metallurgical prop-
erties, see the article “Plutonium and Its 
Alloys” on page 290. 

Unfortunately, δ-plutonium is not
very stable. It takes only about 1 kilobar
of pressure to transform δ-plutonium
into a lower-symmetry phase such as α-
plutonium. A fascinating reversal of this
transformation was seen during the frac-
ture of α-plutonium and is described in
“Plutonium and Its Alloys.” The surface
of fractured typical-purity α-plutonium
appears jagged and broken, as would be
expected for a brittle monoclinic metal.
However, under a scanning electron 
microscope, the surface looks covered
by ductile dimples, like a peanut butter
sandwich that has been pulled apart.
Such dimples are never seen in brittle
materials because the plastic flow 
needed to make them does not occur.
So, where did the dimples come from?
Although the following explanation has
not been proved so far, it is believed that
a region of hydrostatic expansion preced-
ing the tip of the crack is created during
the fracture of α-plutonium. The expan-
sion, or effective negative pressure, in
this region instantaneously transforms
the α- into the δ-phase. After the frac-
ture has propagated through the region,
the material relaxes and returns to the 
α-phase. These fracture results show that
plutonium easily moves back and forth
from the α- to the δ-phase and that
spreading out the atoms (during hydro-
static expansion) stabilizes the fcc phase,
as one would guess. Yet, this quick
transformation to the δ-phase increases
the volume by 26 percent. 

Figure 17 shows the complex pattern
of length changes produced by heating

plutonium metal. Plutonium goes
through six solid phases before it reach-
es its melting point, with the δ-phase
having the lowest density (and the most-
localized f electrons) of all the phases
including the liquid state. These changes
in volume are not only challenging for
physicists to explain but also extremely
troublesome to metallurgists. For exam-
ple, when castings are made from pluto-
nium in the liquid state, the metal 
expands as it solidifies (see the box
“Plutonium in the Liquid State”) and
thus helps fill a mold. During subsequent
cooling, however, the many changes in
volume lead to the formation of voids,
which reduce the structural integrity of
cast plutonium. 

Another surprising feature is that δ-
plutonium contracts when heated, as re-
vealed in Figure 17. Remember that
thermal expansion is an anharmonic ef-
fect and therefore not predicted by the
usual harmonic models of a solid. In
harmonic models, a solid is described as
a set of masses held together by springs.
That is, the potential energy as a func-
tion of distance between neighboring
atoms is a parabola, and the forces are
linear in the displacement from equilibri-
um, as they are for springs. In these
models, the coefficient of thermal expan-
sion is always zero, and this is true for
all even powers of the potential energy

as a function of interatomic spacing. 
So, the common belief that atoms 

vibrate more at higher temperatures and
therefore take up more room is not
correct. Instead, when atomic excursions
become large enough to run into the
“hard core” of the filled-shell electrons of
the neighboring ions, the interatomic 
potential becomes steeper than a 
parabola, and this anharmonicity, or 
increase in pressure, leads to an expan-
sion in volume with increasing tempera-
ture. Conversely, a potential that increas-
es more slowly than a parabola
(including higher even powers) at large
atomic excursions yields a contraction in
volume with increasing temperature and
reflects a change in electronic structure.
We will return to this topic when we dis-
cuss magnetism. For the moment, we can
say that a negative thermal-expansion 
coefficient may be due to a conversion of
magnetic into bonding energy as in Invar
(see the box “Itinerant Magnetism, Invar,
and δ-Plutonium” on page 120).

New Models for Delta 
Plutonium

As yet, there has been no estab-
lished model for the unusual features of
the fcc δ-phase. Here, we suggest that
both the unusual thermal properties and
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Plutonium in the Liquid State

Plutonium must be happier (have lower energy) in the liquid because it has a higher

density than the phase from which it melts. It seems likely that plutonium forms clus-

ters in the liquid (as water does) because it has the highest viscosity of any molten

metal and because it forms complexes, as discussed in the article “The Complex

Chemistry of Plutonium” on page 364. We note that the bcc crystal structure has its

second-nearest neighbor atoms almost as close as the closest neighbor atoms and has

little shear strength; that is, it is the most liquidlike crystal structure and the highest-

temperature solid phase for most metals. That is why bcc sodium cuts with a butter

knife. Because water and plutonium are both good solvents, it may be fair to draw a

comparison between the polar molecules of water and the atomic misfits of plutonium.

To find the nature of liquid plutonium, we therefore need to use neutrons or some other

probe. We remind the reader that, if plutonium were not such a good solvent, we would 

have more usable containers in which to put it while we make measurements at 

high temperatures. 



the absence of measured magnetism in
δ-plutonium may be related to the deli-
cate balance of forces between the repul-
sive s-p bands and the attractive f band
(and the sensitivity of the f-f interac-
tions) shown in Figure 12. First princi-
ples ground-state calculations have
shown that all five 5f electrons are bond-
ing in the α-phase. Because it has never
been demonstrated that plutonium has
less than five 5f electrons in its atoms,
molecules, and solids, we must assume
that the δ-phase also has five.

In the δ-phase, some or all of these
electrons may be localized, a fact consis-
tent with Figure 12. Localization would
reduce the contribution of the five 5f
electrons to pressure, and the lattice
would expand. If their number were 
reduced from five to, say, one, then 
the three electrons in the spd broad
bands would become more important 
in determining the crystal structure 
(see Figure 18). And because broad
bands favor cubic structures, the δ-phase
is a reasonable outcome of localization.
The real problem, however, is to deter-
mine a mechanism for such localization
in the f shell. 

Wills and Eriksson (see the article
“Actinide Ground-State Properties” on
page 128) have used one-electron cal-
culations to show that localizing four of
the five 5f electrons leads to a correct
prediction of the δ-phase volume.
Through a separate atomic calculation,
they show that the energy gain from lo-
calizing those four electrons yields the
lowest-energy state at the δ-phase vol-
ume. However, those calculations pro-
vide no mechanism for the localization.

In “A Possible Model for 
δ-Plutonium” (page 154), Cooper pre-
sents the self-induced Anderson localiza-
tion model, a two-electron impurity-like
model. According to this model, all the
5f electrons on some plutonium sites 
become localized. The strong scattering
from these “impurity sites” can disrupt
the coherence of the 5f band states and
drive the whole system toward localized
5f states. The Anderson Hamiltonian, 
as used by Cooper, has both the Hubbard
repulsive Coulomb term and a Kondo-

like two-electron term (originally invent-
ed to treat the spin-spin interaction 
between an electron on an impurity atom
and a conduction electron). The Hubbard
term keeps the 5f electrons localized,
and the two-electron term leads to a par-
tial localization of the conduction elec-
trons. This model has therefore all the
right ingredients for yielding localization
in going from the α- to the δ-phase, but
it may take years before it could be used
for realistic calculations. Moreover, to
start the calculation, one must have some
impurity sites. In effect, this prerequisite
helps avoid the question of how the five
5f electrons become localized. 

Can we obtain a translationally 
invariant solution for fcc plutonium in
which the five 5f electrons are localized
by starting from a calculable Hamilton-

ian? The usual one-electron calculation
(translationally invariant) at the δ-phase
density predicts itinerant 5f electrons.
So, we must modify the Hamiltonian 
to predict localization. In the Anderson
model, the Hubbard term prevents the 
f electrons on other sites from hopping
onto a given site. This is the impurity
view, but as we have pointed out, it 
is almost impossible to obtain transla-
tionally invariant solutions from 
impurity models. Instead, let us find out
what will keep the 5f electrons from
leaving a site. Clearly, we need to add
an attractive Coulomb term. We there-
fore propose a model with a small 
attractive Coulomb term added (in the 
f states only) to the band Hamiltonian 
in a one-electron calculation. Such a 
calculation would have to be performed
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Figure 18. Modified Bonding in Plutonium with Fewer 5f Bonding Electrons 
In this figure, we show how the bonding would change if only one 5f electron is in the

conduction band instead of the usual five, and the other four are localized at lattice

sites. We illustrate the effect of this localization by artificially reducing the f band con-

tribution to bonding by roughly 80% relative to the results plotted in Figure 12. In this

case, the s-p repulsion term is not balanced by the f bonding term, and the lattice must

expand to reach a new equilibrium.



self-consistently so that the hybridization
of the f states with the non-f states could
change in value as the 5f electrons be-
come more localized. We believe such a
calculation is feasible within the standard
codes of electronic-structure calculations.
Having such a solution, we could then
apply the two-electron model to obtain
the dynamics of partial localization. 

A feasible approach closer to the im-
purity models would be an electronic-
structure calculation of an alloy, in
which there are two plutonium sites: One
has an added attractive Coulomb term,
and the other does not. Such a self-con-
sistent calculation would demonstrate
whether random sites with localized f
states could drive all the f states to local-
ization on all sites. The physical basis
for an attractive term may be the poor
screening of the nuclear charge by the 5f
states, as it is by the 4f states in the case
of the lanthanide contraction. As we are
looking at new models for the δ-phase,
we must also consider the alloy-stabi-
lized δ-phase. 

Gallium-Stabilized δ-Plutonium.
Although no one understands the elec-
tronic structure of δ-plutonium, people
in the nuclear weapons program work
with this phase all the time. In fact, the
secret to stabilizing this phase down to
room temperature dates back to the
Manhattan Project. At room tempera-
ture, pure plutonium would be in the
very brittle α-phase, but as luck would
have it, one of the very first “high-puri-
ty” samples made by Manhattan Project
workers had enough impurities to 
become ductile. Those pioneers knew
therefore from the start that they could
deform the new metal into a required
shape. They soon figured out that it was
the addition of a few percent of a triva-
lent metal at high temperature that held
plutonium in the δ-phase down to room
temperature. 

But why should the addition of those
small atoms stabilize a phase with a dra-
matically low density and the desired
malleability? The answer is not known
yet, so we can only make suggestions.
The impurity picture suggests that atoms

at random lattice sites create strong scat-
tering, thereby blurring the periodicity of
the lattice and killing the coherence of
band states. Applying this mechanism to
plutonium, we would say that the addi-
tion of impurity atoms containing no f
electrons would destroy the coherence of
the f band. Without its narrow f band,
plutonium could no longer lower its en-
ergy by lowering its symmetry through a
Peierls-like distortion into the α-phase; it
would therefore remain in the δ-phase.
Another view is that plutonium atoms
relax and move toward the smaller non-f
atoms, thereby reducing the f-f interac-
tions that stabilize the α-phase. So, the
solid remains stable in the high-symme-
try fcc phase even as the temperature is
lowered. In this cubic structure, only 3
atomic percent aluminum or gallium dis-
solved in plutonium (the replacement of
one plutonium atom by a gallium atom
in every three-atom-sided cube) is
enough to hold the fcc structure down to
room temperature. Roughly, any atoms
that are soluble in pure δ-plutonium at
its elevated temperatures and that have
no f electrons should stabilize the 
δ-phase to lower temperatures. (Like plu-
tonium, cerium and americium have 
f electrons, but they also stabilize 
the δ-plutonium. Understanding how
their more-localized f electrons interact
with the itinerant f electrons in 
plutonium, however, is best left to band
or alloy calculations that can include
some of these effects.) 

Our discussion of the plutonium 
δ-phase and other phases highlights the
complexity of the 5f bonding in plutoni-
um and its impact on metallurgical prop-
erties. We believe that improved one-
electron methods, along with new
measurements conducted with modern
techniques, will clarify our understand-
ing of bonding in all plutonium phases.
One might also have to go beyond the
average electron correlations inherent in
one-electron methods to include specific
spin interactions and specific interactions
between more-localized and less-
localized electrons, as in the two-electron
dynamics described in the article 
by Cooper. 

We now leave the topic of phase 
instabilities, the least understood aspect
of the light actinides, and turn to the
low-temperature properties of the light
actinides. Recently, these properties 
have been recognized as similar to 
the low-temperature properties of other
correlated-electron materials. 

A Revised View of the 
Periodic Table

Plutonium is not alone in having its
electrons precariously balanced between
bonding and localized states although it
exhibits this property better than any
other element. If the periodic table is
arranged to show only the d and f elec-
tron series, and the f series are put on
top and squeezed together to fit as in
Figure 19, then the elements highlighted
by the white diagonal stripe are the
rough dividing line between localized
(local moment magnetism) and itinerant
(superconductivity) long-range collective
behavior. This is a good indication that
the f and d electrons of the diagonal ele-
ments may be balanced between being
localized and itinerant, and their behav-
ior is therefore interesting. We will dis-
cuss the “normal metals” off the diago-
nal before we consider the diagonal
elements. 

Normal Behavior off the Diagonal:
Magnetism vs Superconductivity. Fig-
ure 19 indicates that the f and d electron
metals away from the diagonal divide
neatly into two categories. In one catego-
ry, the f and d electrons are itinerant and
fully bonding, and they tend to form a
superconducting ground state at very low
temperatures. In the other category, the f
and d electrons are fully localized, usual-
ly forming local magnetic moments and
ordering into a magnetic ground state at
some temperature. 

This association of localized electrons
with local magnetic moments and of
shared electrons with bonding is familiar
to chemists. When chemists make a
new insulator or organic compound con-
taining an f or d electron atom, they can
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deduce the valence state of that atom by
measuring the magnetic moment of the
compound. The measured value tells
them the number of electrons contribut-
ing to the moment and therefore the
number of electrons localized on the
atom. The remaining f or d electrons are
participating in bonding, and their count
gives the valence. Usually, metals are
not so simple, but it is useful to think 
of electrons as magnetic or bonding. 

So, how do we know if there are
local magnetic moments in a material?
Magnetic susceptibility χ measures the
internal response of a material to an 
applied magnetic field. That is, M = χB,
where M is the magnetization of the ma-
terial and B is the magnetic field intensi-
ty. In 1845, Michael Faraday showed
that some materials were drawn to the
high-field region of his magnet and oth-
ers were repelled. He called the former
behavior paramagnetic with a positive
susceptibility and the latter diamagnetic
with a negative susceptibility. Most com-
mon metals have no magnetic moments
and are weakly paramagnetic or diamag-

netic. As shown in Figure 20, these non-
magnetic metals have low susceptibili-
ties, which are roughly temperature inde-
pendent. Magnetic materials have
positive, much larger susceptibilities, and
because thermal motion counters the ten-
dency for moments to align with the ap-
plied field, this positive susceptibility is
inversely proportional to temperature, as
shown in Figure 21. We can extract the
size of the magnetic moment in a mag-
netic material from the slope of χ vs T. 

In the solid state of metals or insula-
tors, local moments at lattice sites tend
to line up at some temperature as the
material is cooled, producing a state of
long-range order called magnetism. (Fol-
lowing Hund’s rules, the local magnetic
moments at each lattice site are propor-
tional to a vector sum of the total spin
and total orbital angular momentum of
the localized electrons.) In particular,
each magnetic material has a critical
temperature, at which the free energy of
the system is lowered through an align-
ment of the local moments. If the mo-
ments line up parallel to each other,

forming a ferromagnetic state, the transi-
tion temperature is called the Curie point
TC. If the moments line up antiparallel,
forming an antiferromagnetic state, the
temperature is called the Néel tempera-
ture TN. Magnetic transition temperatures
range from close to absolute zero to
about 1000 kelvins, and a ferromagnetic
material whose TC is above room tem-
perature is called a permanent magnet.
Figure 21, a generic plot of the inverse
susceptibility vs temperature, shows how
the temperature intercept can indicate
whether a material will be a ferromagnet
or an antiferromagnet at lower tempera-
tures. If the intercept is at a positive 
temperature, the material should be fer-
romagnetic, and if it is at a negative 
temperature, antiferromagnetic. 

Local moments in one of these mag-
netic ground states in a metal are
arranged following the symmetry of the
lattice, and they do not scatter the con-
duction electrons well. As a crystal is
heated above TC or TN, the magnetic 
ordering disappears, the local moments
point in random directions, and those
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Figure 19. A Revised Periodic Table of the f and d Series 
The periodic table is rearranged with the rare-earth, or lanthanide, elements in the top row, the actinides in the second row, and the

d-electron transition elements below them. Most metals have predictable ground states and become superconducting (blue) or mag-

netic (red) as the temperature is lowered. But the low-temperature metallic properties of the elements along the diagonal are d ifficult

to explain because, in the solid-state, their f or d valence electrons are poised between localization and itinerancy.
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Figure 20. Magnetic Susceptibility
of Plutonium and Other Materials 
The susceptibility of most metals is close

to zero on this plot, but that of UBe 13 is

very large as though this heavy-fermion

compound had local moments. It was

therefore conjectured that UBe 13 would

become an antiferromagnet at low tem-

peratures. Instead, however, UBe 13

becomes a superconductor at low tem-

peratures, and the reason for its high

susceptibility is not well understood. 

The susceptibilities of plutonium’s vari-

ous phases are also higher than those 

of most metals, but they are lower than

those of materials with local moments.

The blowup of the plutonium curve 

(see inset) displays more clearly the 

variation in susceptibility as plutonium

changes phase. Although essentially tem-

perature independent, the susceptibility 

of plutonium appears to increase slightly

as the temperature decreases. It is fair 

to say that plutonium behaves as if it

were almost magnetic.
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Figure 21. Curie-Weiss Plots of 
Inverse Magnetic Susceptibility 
The magnetic susceptibility due to local

moments follows the Curie-Weiss law: It is

inversely proportional to temperature 

because thermal motion tends to wash out

the natural alignment of local moments as

temperature increases. The inverse sus-

ceptibility is plotted for several cases. 

If there is no interaction among local 

moments, the inverse susceptibility extrap-

olates to zero at T = 0. If there is a ferro-

magnetic interaction among the local 

moments, it extrapolates to zero at a posi-

tive temperature intercept, and if there is

an antiferromagnetic interaction, it extrapo-

lates to a negative intercept. The absolute

value of the intercept tends to correlate

with the magnetic ordering temperatures.



moments can now scatter the conduc-
tion electrons. The scattering occurs
through a magnetic interaction that can
flip the spins of the conduction elec-
trons. We shall see that plutonium 
scatters the conduction electrons very
well although it does not have local 
moments. 

Superconductivity is a state of truly
perfect conductivity that can exist in 
an electrical conductor at low tempera-
tures. In general, materials with 
magnetic moments do not become 
superconductors at low temperatures
because magnetism in any form is 
inimical to superconductivity. The typi-
cal superconducting state forms at tem-
peratures of a few kelvins and consists
of pairs of conduction electrons with
opposite spins and momenta that are
bound together through their interaction
with the crystal lattice. These pairs act
like a Bose condensate and travel
through the lattice with no resistance
whatsoever. This low-energy collective
state was explained in the Bardeen-
Cooper-Schrieffer (BCS) theory of 
superconductivity (1957). However, if a
material has ordered moments, a net
magnetization, or spins from random
impurities, the magnetic field resulting
from any of these sources would tend
to flip one of the two opposing spins in
the pair and prevent the pairs from
forming. Thus, elements with localized
d or f electrons typically have magnetic
ground states, and those with conduct-
ing d or f electrons typically have 
superconducting ground states. 

Anomalous Properties of 
Elements on the Diagonal. Now, we
turn our attention to the elements on the
diagonal in Figure 19. On the atomic
level, these elements are like plutonium
because they have two or more incom-
pletely filled atomic shells that are
close in energy. The electrons can
therefore shift between shells relatively
easily. As a result, these elements show
giant resonances in their atomic optical
spectra, reflecting their many close-
lying energy levels. 

These energy levels in the atom

translate into a multiband system with
one relatively narrow band and a high
density of states at the Fermi energy in
the metal. This description is true of the
transition metals on the diagonal, even
though their d bands are not quite as
narrow as the f bands in elements along
the diagonal. Narrow bands tend to mix
or hybridize with other close-lying
bands (a phenomenon that is predicted
by one-electron band calculations).
Moreover, weakening or strengthening
the hybridization can push the d or f
electrons in these narrow bands toward
greater localization or greater itineran-
cy, respectively. Thus, the electrons in
these narrow bands are highly sensitive
to small perturbations. This sensitivity

can lead to many allotropic crystal
structures in the same element and 
to catalytic activity. It can also lead to
the metal’s ability to absorb hydrogen
easily and to spark when struck. Cat-
alytic activity and hydrogen absorption
occur when perturbations can modify
the chemical state, and the diagonal is
the place to look for those behaviors. 

First, let us consider a metal’s ability
to make sparks. All metals shower off
burning pieces when put to a grinding
wheel because the wheel heats the pieces
as they break off, and most hot, finely 
divided metals burn. However, steel, 
cerium, uranium, neptunium, and plutoni-
um make sparks under far more gentle
conditions. For example, it is the cerium
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Figure 22. Resistivity of UBe 13, Plutonium, and Potassium 
Electrical resistance in most metals increases linearly with temperature because 

electrons are scattered by phonons, as shown for potassium. Imperfections such as

foreign atoms, lattice vacancies, and more-complicated defects, which are temperature

independent, also scatter electrons and lead to a finite limiting resistance as T = 0. 

Plutonium has much higher resistivity values at all temperatures, showing enhanced

scattering of the conduction electrons. The electron scattering comes from electron

correlations. The compound UBe 13 yields one of the most extreme examples of 

electron scattering in a metal. 



in a lighter flint that makes the sparks for
lighting fires. We argue without proof
that the high density of states near the
Fermi surface causes the transfer of elec-
trons to or from a tiny piece of highly de-
formed metal as it breaks off from a large
piece, no matter how gently the breaking
occurs. The resulting voltage difference
produces a tiny electrical discharge across

the gap, which then ignites the shard.
Lanthanum, which is mechanically simi-
lar to cerium and is far more chemically
active, does not make sparks because it
has no f electrons and its density of states
is low. The uranium-manganese com-
pound UMn2, which is made of two nar-
row-band elements from the diagonal in
Figure 19, sparks so readily that its pow-

der burns as soon as it is poured in air. 
The most-common anomalous prop-

erty, and the simplest one to measure, is
the departure from the usual linear rela-
tion between electrical resistivity and
temperature that occurs below room tem-
perature. In Figure 22, we compare the
resistivities of potassium and plutonium.
Over the temperature range shown,
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In some magnetic materials such as iron, conduction electrons

rather than localized electrons produce ferromagnetic ground

states. In these “itinerant magnets,” the conduction band splits

into two distinct bands, one composed of spin-up states and the

other of spin-down states. Although those two sets of states exist

in all materials, in most they remain degenerate, except in the

presence of an applied magnetic field. In iron, for example, the

somewhat narrow d band splits spontaneously (without an applied

magnetic field) into spin-up and spin-down bands. As in the

Peierls distortion described in the main text, the separation of 

degenerate states into two bands lowers the total energy of the

filled states. (Note that itinerant magnetism does not follow

Hund’s rules because the orbital angular momentum of conduc-

tion electrons is quenched.) Itinerant magnets are less robust

than local-moment magnets because the split conduction bands

remain close to each other in energy and various perturbations

can easily overwhelm the energy advantage from the split. The

ferromagnetic state of iron, for example, disappears when iron is

alloyed with other elements to make stainless steel.

We note the little-appreciated correlation between corrosion and

magnetism. Most stainless steels are nonmagnetic and, of course,

do not corrode. After welding or deformation, they sometimes rust

in exactly those spots that have converted to a magnetic form of

iron, martensite. Why? We suggest that any electrons that are not

fully participating in bonding, including localized electrons or con-

ducting electrons that are magnetically ordered, are more available

for chemical reaction and thus for corrosion. We also note that, if

the electrons in an itinerant magnet become less bonding and

more magnetic, the lattice becomes bigger and vice versa. It is this

effect that made Invar possible. Invar, as well as being an itinerant

magnet, is an alloy with a zero coefficient of thermal expansion

around room temperature. Accurate pocket watches were made of

Invar a century ago. As an itinerant magnet is heated, thermal mo-

tion interferes with the spin alignment of electrons in the narrow

bands, and this decrease in magnetic ordering makes those elec-

trons a little more bonding (van Schilfgaarde et al. 1999), thus

countering the normal thermal expansion. By choosing the correct

combination of elements, one can make an alloy that maintains its

size over some temperature range because these competing 

effects exactly balance out over that temperature range. It is now

clear that Invar watches had to be kept out of magnetic fields 

because those fields could have bent the parts. We will not dis-

cuss the Invar effect in detail but will give a simple example that 

illustrates the electronic-structure changes leading to this effect.

The energy contained in the magnetic field of a permanent mag-

net can become noticeable on the scale of the cohesive energy.

When dropped, modern neodymium-iron-boron permanent mag-

nets break not because the metal is weak but because the huge

magnetic energy decreases dramatically .

Consider the itinerant magnets iron, cobalt, and nickel. By one-

electron calculations, we can determine the volumes of the true

ferromagnetic state and of the hypothetical paramagnetic state.

We calculate the ferromagnetic state by including spin, and thus

we have spin-up and spin-down bands as mentioned before. In

the paramagnetic calculation, we do not include spin, and the

spin-up and spin-down bands are degenerate. In all cases, the

calculated volume of the paramagnetic state is smaller than that

of the ferromagnetic state. In other words, if the itinerant electrons

contribute to magnetism, their contribution to bonding is reduced.

Can this tradeoff be related to the contraction upon heating that is

seen in the δ-phase of pure plutonium? 

Although plutonium has no local magnetic moments, one might

ask whether its conduction electrons could make it an itinerant

magnet, like iron. There is little evidence now for magnetism in

pure plutonium, but many plutonium compounds are magnetic and

tend to be itinerant magnets. Simply dissolving hydrogen in pluto-

nium is enough to make the electrons localize and the system 

ferromagnetic. Also, a comparison of the light actinides with the

transition metals indicates that the light actinides should be super-

conductors unless they have local moments. So, the fact that 

plutonium is not a superconductor may indicate that plutonium 

is an incipient, weak itinerant magnet and that the loss of 

magnetic ordering with heating plays a role in the contraction 

of the δ-phase. 

Itinerant Magnetism, Invar, and δ-Plutonium



potassium’s resistivity increases linearly
with temperature, as expected from the
interaction of conduction electrons with
lattice vibrations (phonons). Instead of
following this simple linear increase,
plutonium’s resistivity bulges high above
linearity at temperatures below room
temperature and remains extremely high
above room temperature, where it shows
off its many phase transitions. The resis-
tivity of plutonium at the bulge is of the
order of 150 micro-ohm centimeters 
(µΩ cm), which means, microscopically,
that an electron is scattered by roughly
every atom in the lattice. This type of
scattering is considered the highest 
possible simple resistance that can be
seen in a metal and is called the unitary
limit. Many correlated-electron metals
show higher resistivities, which can only
be explained by correlated-electron mod-
els such as the Kondo and Anderson
models for extended systems. These
models add electron interactions and 
correlations beyond those included in
one-electron methods. 

This puzzling enhanced electrical 
resistivity upon cooling began receiving
attention thirty-five years ago, when it
was noticed that a small amount of iron
dissolved in gold showed an increasing
electrical resistance as it was cooled at
temperatures of a few kelvins. At the
same time, the iron atoms had no mag-
netic moments. (The increase in the re-
sistance of plutonium from room temper-
ature down had already been measured,
but this curve was neither as repro-
ducible as the curve for the iron-gold
alloy nor as easy for everyone to check.) 

Jun Kondo was the first scientist to
have come up with an explanation for
the increase in the gold alloy’s resistivi-
ty: The missing magnetic moment in
iron was responsible for it. Kondo then
made a model in which the spins of con-
duction electrons could flip the spins of
the electrons on the iron atoms and
thereby cancel the magnetic moment
within the small volume around each
iron atom impurity. This model predicted
the desired increase in resistivity with
decreasing temperature. In time, theories
with a characteristic Kondo temperature

were used for explaining not only the 
increase in resistivity upon cooling but
also the leveling off in magnetic suscep-
tibility upon further cooling, once a high
value had been reached. They could also
explain why magnetic moments were
missing in so many materials. So, the
Kondo impurity model was expanded 
to a Kondo lattice model, an extended
system, in which crystallographically 
ordered moments could again be made 
to disappear, even though there seemed
not to be enough conduction electrons to
do the job. The most extreme example
are the “Kondo insulators,” in which no
conduction electrons are present, 
but their spins are assumed to make
magnetic moments vanish. We believe
that these are examples of overworking a
model simply because it fits the data.
Such situations would not occur if we
had a comprehensive theory for these
phenomena. We note that the disappear-
ance of the iron moment in the gold
alloy should have come as no surprise
because that moment is also known to
disappear when iron is alloyed to make
stainless steel. Indeed, it has been well
known since the 1930s that the magnet-
ism of iron is not robust (see the box
“Itinerant Magnetism, Invar, and 
δ-Plutonium” on page 120). However,
we are so used to calling iron a perma-
nent magnet that even today many peo-
ple believe iron is an archetypal example
of a magnetic atom or metal.

Correlated-Electron Materials. De-
spite exaggerated claims, the Kondo
model and all its offshoots have shown
the condensed-matter physics community
that there are very interesting anomalies
going on in metallic systems, especially
the metals on the diagonal in Figure 19,
and this group includes plutonium. 
Although we do not have a simple pre-
dictive model to explain the origin of
high resistivities, the materials exhibiting
these conundrums are now lumped under
the single category of correlated-electron
materials. As shown in Figure 1, apart
from high resistivities, these materials
exhibit high magnetic susceptibilities,
and they have no local moments at low

temperatures. Other anomalies include
tiny magnetic moments (as much as
1000 times smaller than expected), high-
er-than-expected magnetic ordering tem-
peratures, failure to follow the quadratic
temperature dependence of resistivity
predicted by the Fermi-liquid model, and
high specific heats indicating enhanced
electron masses. All the signatures of
correlated-electron materials are believed
to result from strong electron-electron
correlations involving spin and charge
interactions. 

Plutonium is probably the clearest 
example of a pure element in the corre-
lated-electron category. Figure 22 shows
its anomalous resistivity. Plutonium also
has the most enhanced low-temperature
specific heat of any pure element. The
specific heat shown in Figure 23 indi-
cates that the electron effective mass of
plutonium is 10 times larger than that of
most metals. Finally, plutonium has a
relatively large magnetic susceptibility in
all its solid-state phases, as seen in the
inset on Figure 20. 

The relatively large paramagnetic sus-
ceptibilities of the various phases of plu-
tonium suggest that phases with magnetic
moments or itinerant magnetism must
have similar internal energies. Perhaps all
the phases in pure plutonium above the
α-phase have magnetic moments, but 
because the temperature range of each
phase is so narrow, we have not been
able to demonstrate them by magnetic
susceptibility or neutron diffraction mea-
surements. Correlated-electron materials
usually show increases in susceptibility
as they cool, but that susceptibility levels
out within a few kelvins of absolute
zero. Our best chance of finding out
whether plutonium has local moments is
to do synchrotron x-ray and neutron-
scattering experiments on single crystals.
Those measurements would be adequately
sensitive to magnetic moments. We note
that Méot-Raymond and Fournier (1996)
claim to have found the signature of local
moments on top of a huge paramagnetic
background in δ-plutonium. Although 
the presence of local moments is consis-
tent with the model of δ-plutonium 
described in Cooper’s article, we 
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remain somewhat skeptical of this data
interpretation because so many correlat-
ed-electron systems show the same type
of susceptibility even when they do not
have local moments. 

Magnetism and local moments do be-
come manifest in plutonium if we spread
out the plutonium atoms. As mentioned
in the box “Itinerant Magnetism, Invar,
and δ-Plutonium,” plutonium hydride is
ferromagnetic because the increased sep-
aration between plutonium atoms causes
the f electrons to localize and pushes
their behavior across the diagonal limit in

Figure 19 and into the magnetic regime.
This last statement leads us into a discus-
sion of actinide compounds that exhibit
localized 5f states or whose ground states
become superconducting. 

Hill Plots and Actinide 
Compounds

The crossover from itinerant to 
localized electrons can clearly be
achieved if the atoms are spread out. 
Before 1970, investigators could not

guess or understand whether cerium
and uranium compounds would be 
superconducting or magnetic. In 1970,
at Los Alamos, Hunter Hill explained
under what conditions metallic com-
pounds containing f electron elements
would be superconducting or magnetic.
Until then, the light-actinide and lan-
thanide compounds seemed to show
these two collective ground states in an
unpredictable manner. 

Hill realized that in cerium and light-
actinide compounds, the distance 
between the f electron elements deter-
mined whether their ground states were
superconducting or magnetic, usually
quite independently of which atoms con-
taining non-f electrons were separating
them. Figure 24 shows what is now
called a Hill plot for uranium com-
pounds. Superconducting or magnetic
transition temperatures are plotted verti-
cally, and the spacing between the f elec-
tron elements is plotted horizontally. In
Hill’s original plot, the known behaviors
fell into two of the four quadrants—large
spacing correlated with magnetism and
short spacing with superconductivity. 

At the time, it was quite strange to
think that superconductivity did not 
depend on the intervening atoms contain-
ing non-f electrons. Energy band calcula-
tions were just beginning to show that
the f electrons would be in bands, but
those calculations were limited to the
simplest structures. Hill conjectured that
the f electrons could hybridize only with 
f electrons at other sites and that the 
intervening non-f electron atoms were
just spacers to change the degree of over-
lap between the f-electron wave func-
tions. In this way, Hill’s plot became a
major step toward understanding the light
actinides. This picture is far more general
in Figure 19, where we see that elements
on or near the diagonal can have their
properties easily modified. 

Figure 24 shows many more materials
than were plotted in Hill’s original 
version, including two superconducting
compounds that, based on the relatively
large distance between two f-electron
atoms, should have been magnetic. These
two, namely, the uranium-platinum and
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Figure 23. The Specific Heat of Plutonium and Other Metals 
The low-temperature specific heat of a metal is the sum of a lattice term proportional

to T3 and an electronic term γT; that is, CV = γ T + AT3. Hence, when we plot CV divid-

ed by T vs T2, we get a straight line that has an intercept equal to γ at T = 0 and a

slope equal to A. That slope yields the Debye temperature ΘD via the relation ΘD
3 =

1944 A–1 J·mol –1 ·K–1. As we explained in the section on the free-electron model, the

specific-heat coefficient γ is proportional to T/TF, and TF is inversely proportional to

the mass of the electron. So, γ is proportional to the electron mass. In this figure, the

line for copper represents the behavior of most metals whereas the lines for α- and δ-

plutonium have the highest values of γ (intercept values) of any pure element, indicat-

ing that conduction electrons have an enhanced effective mass. The compound UBe 13

has an extremely high electronic specific heat, which continues to increase until it is

cut off by the compound’s transition to superconductivity just below 1 K (not shown).

The superconductivity of UBe 13 proves that its large heat capacity must be associated

with the conduction electrons rather than the local moments and that the anomalously

large values of γ are enhanced electron masses, or heavy-fermion masses, m*.



uranium-beryllium compounds UPt3 and
UBe13, are examples of heavy-fermion
superconductors.

Heavy-Fermion Materials 

Many compounds and alloys contain-
ing elements near the diagonal in Figure
19 are called heavy-fermion materials,
which means that their conduction elec-
trons behave as if they had extremely
heavy masses. The very high heat capac-
ity of UBe13 shown in Figure 23 indi-
cates that the electrons have an effective

mass hundreds of times larger than that
of conduction electrons in normal metals.
Heavy-fermion materials also show very
strange magnetic and superconducting
ground states. All these materials are 
narrow-band metallic systems. So, their
unusual collective ground states arise
from very strong electron correlations 
involving the electrons in their narrow
bands. Also, their low-energy excitations
are associated with the spin and charge
fluctuations in that narrow band. One dif-
ference between these materials and the
light actinides is that the former do not
exhibit crystal structure instabilities 

because their narrow bands are not the
dominant bonding bands. This feature
can be seen in UPt3, whose wide d band
has roughly 27 electrons (9 electrons 
for each platinum atom) and its 
narrow f band has only 3 electrons. 
So, it is the low-energy excitations
(mostly at low temperatures) that make
the heavy-fermion materials resemble 
the light actinides. We will discuss 
the discovery of the heavy-fermion 
materials and the significant role played
by the Los Alamos scientists, as well 
as the exotic properties of these 
materials. 
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Figure 24. Hill Plot for Uranium Compounds
The Hill plot shows the superconducting or magnetic transition temperatures vs interatomic spacing separating the f electron at oms.

We augmented the original Hill plot for uranium compounds to include more data—in particular, the transition temperatures of th e

two superconducting heavy-fermion compounds UPt 3 and UBe 13. Hill conjectured that the overlap of the f-electron wave functions

between the uranium atoms determines whether the f electrons are localized (magnetic) or itinerant (superconducting) independen t

of the intervening atoms. Most compounds behaved as Hill expected. The superconducting compounds occurred at short 

f-electron spacings (blue quadrant), and the magnetic compounds at large f-electron spacings. The heavy-fermion superconducting

compounds are exceptions. Although the spacing between the uranium atoms in those compounds is fairly large, the f electrons ar e

still not fully localized and can condense into a superconducting state.



In the late 1970s, in Cologne, 
Germany, Frank Steglich and cowork-
ers were the first scientists to observe 
an anomalous superconducting ground
state. They were measuring the low-
temperature properties of the cerium-
copper-silicon compound CeCu2Si2.
The behavior of this compound at tem-
peratures above 100 kelvins suggested
that, at very low temperatures,
CeCu2Si2 would become an antiferro-
magnet. That is, this compound showed
the standard inverse temperature depen-
dence of the magnetic susceptibility, as
shown in Figure 21, with a negative 
intercept on the temperature axis. It also
had a huge heat capacity at low temper-

atures, of the order of joules per mole-
kelvin, the size associated with localized
magnetic moments.4 On the other hand,
the magnetic susceptibility of CeCu2Si2
became temperature independent at low
temperatures, implying that magnetic 
ordering never took place. The real sur-
prise was a large jump in the specific
heat, as the compound went supercon-

ducting just below 1 kelvin. The specif-
ic heat of a superconductor at its transi-
tion point is shown in Figure 25. 
The opening of a large gap in the midst
of the huge heat capacity of CeCu2Si2
meant that the electrons that presum-
ably were localized and associated 
with large magnetic moments had 
become superconducting. But that 
conclusion simply did not make sense.
Localized electrons cannot even con-
duct electricity, much less be supercon-
ducting. These properties were 
considered so unlikely that they were
discounted as artifacts of bad samples,
but Steglich defended his results. 

Then, in the early 1980s, Los Alam-
os scientists found that the compounds
UBe13 and UPt3 have the same proper-
ties: very large heat capacities and a 
superconducting transition at low tem-
peratures. The Los Alamos results
made clear that a new ground state of
matter existed, one in which electron
interactions were so highly correlated
that only an extreme quasiparticle pic-
ture could cause that behavior. That is,
the electrons were so heavily clothed
by interactions that they acted as if
their masses were 1000 times larger
than the mass of a free electron. A heat
capacity that should typically belong to
magnetic moments belonged, in this
case, to the electrons moving through
the metal. 

The existence of this new ground
state blurred forever the distinction 
between localized and itinerant elec-
trons. Fully localized electrons, with
their definite energy levels, can be
thought of as belonging to an infinitely
narrow band. Because no energy levels
are near by, those electrons act as if they
had infinite mass—that is, they cannot
move at all. By analogy, the f electrons
in heavy-fermion materials occupy such
a narrow energy band that the electrons
act as if they had a huge mass—that is,
as if they were almost localized.

Zachary Fisk, Hans Ott, Al Giorgi,
Greg Stewart, Joe Thompson, Jeff
Willis, and other Los Alamos scientists
went on to identify more compounds
that had the same heavy-fermion, or 
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Figure 25. Specific Heat Signature of the Superconducting Transition 
in Niobium 
Common superconductors, such as niobium, show a drop in specific heat as the 

superconducting transition temperature is reached because a gap opens in the spec-

trum of possible electronic energies. It is this energy gap that makes the resistance 

of the material vanish. That is, once in the superconducting state, conduction electrons

cannot be scattered as they move through the material because the scattering would

cause them to have energies within the energy gap. If an external magnetic field is 

applied to the material, the superconducting transition will be suppressed, and the spe-

cific heat will vary with temperature as in a normal metal. Note that this plot is not 

a straight line because C, rather than C/T, is plotted on the vertical axis. The same 

specific-heat signatures of superconducting transitions occur in heavy-fermion com-

pounds such as CeCu 2Si2 and UBe 13 but at temperatures that are 10 times lower 

and with changes in specific heat that are 10 times larger.

4The electronic heat capacity of a magnetic ma-
terial is much larger than that of a normal metal
because the moments on all the atoms contribute
to the former whereas only T/TF of the conduc-
tion electrons contribute to the latter. The low-
temperature electronic specific heat of normal
metals is of the order of 1–10 millijoules per
mole-kelvin.



enhanced-mass, behavior but did not
become superconductors. Some of
these heavy-fermion materials became
antiferromagnetic and others, as mea-
sured then, had neither magnetic order-
ing nor superconducting ground states.
Heavy-fermion compounds had been
seen earlier, but until some were seen
to be superconducting, there was no
way to distinguish them from the mag-
netic materials, which have large heat
capacities. Indeed, in the mid 1970s,
Jim Trainor5 and coworkers noticed
that the antiferromagnetism of the nep-
tunium-tin compound NpSn3 showed,
at its magnetic ordering temperature, a
heat capacity anomaly in the shape of a 
superconducting anomaly, similar to 
the one shown in Figure 25 for a 
superconductor. Because they could fit
the shape of a magnetic anomaly with
that of a superconducting one, the sci-
entists knew that something quite 
unusual was occurring. However, no
one was listening then, and the puz-
zling result went unnoticed.

Several many-body theory groups
have tried to understand the unusual
metallic properties of the heavy-fermion
compounds by developing Fermi-liquid
descriptions. In the mid 1990s at Los
Alamos, Kevin Bedell and his cowork-
ers Gerry Brown, David Meltzer, 
Chris Pethick, David Pines, Khandker
Quader, and Carlos Sanchez-Castro 
carried out the most detailed theoretical
study of this kind. They developed very
simplified one- and two-band Fermi-
liquid models of heavy-fermion com-
pounds such as UPt3. The surprise was
that these simplified models yielded
quantitative results in agreement with
the low-energy and low-temperature
physics of these materials. Again, like
the Kondo model, the Fermi-liquid
quasiparticle turns out to be a far more
useful model than originally expected.
Lev Landau’s principle of one-to-one
correspondence between electron and
quasiparticle states continues to be 
correct and to yield profound insights
into systems of strongly interacting
particles. 

The series of discoveries on heavy-
fermion materials established Los
Alamos as an institution for leading-

edge research into condensed-matter
physics and turned the attention of theo-
rists and experimentalists worldwide to
the actinide elements. High interest in
these materials continues today.

High Magnetic Fields for Measur-
ing Enhanced Masses.In the early
1930s, W. J. de Haas and P. M. van
Alphen were measuring the magnetic
susceptibility of a bismuth crystal and
observed oscillations in susceptibility 
as they varied the field. The period of
the oscillations varied as the inverse 
of the applied magnetic field. The 
explanation is now simple. Placing a
metal in a large magnetic field at low
temperatures triggers a new quantiza-
tion condition. The continuum of 
energy levels in the conduction band
becomes a new set of discrete Landau
levels with a splitting between levels
given by heH/2πmc. For most experi-
ments, the number of these levels
ranges from 1 to 1010. This new set of
available states affects all the properties
of the metal, provided the applied field
is very large and the temperature very
low. As the magnetic field increases,
one discrete level at a time rises above
the Fermi energy and causes the fixed
number of electrons (or quasiparticles)
to be redistributed on the remaining
levels. This electron redistribution is
seen as an oscillation in all metallic
properties. By measuring the periodicity
of the oscillations in different crystallo-
graphic directions, we can map the
shape of a metal’s Fermi surface. 
And by measuring the temperature 
dependence of the oscillations, we can
determine the effective masses of 
the electrons on the Fermi surface. 
Figure 26 shows the dHvA oscillations
in ThBe13.

This dHvA effect was used in 
the 1950s and 1960s to show that Fermi
surfaces existed and to measure their
shape for simple metals. Later, 
however, scientists stopped using this
technique because most pure metals 
had been measured. And then, in 
the late 1980s, the dHvA effect became
fashionable again because verifying 
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Figure 26. The de Haas–van Alphen (dHvA) Effect 
At low temperature and in a high magnetic field, the susceptibility of a metal oscillates

with a period that is inversely proportional to the field. This oscillation occurs because

the field imposes a quantization condition on the allowed levels of the electrons. 

The Fermi surface can be extracted in this way. Illustrated here are the oscillations 

for the ThBe 13 compound, which is a noncorrelated-electron counterpart of UBe.
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5At that time, Trainor was a postdoctoral 
fellow at Argonne National Laboratory.



the heavy-fermion masses in cerium and
uranium compounds was of interest and
the higher magnetic fields necessary for
that work became available at the Na-
tional High Magnetic Field Laboratory
in Tallahassee, Gainesville, and at Los
Alamos. It was thus immediately clear
that dHvA methods would allow mea-
suring the heavy-electron masses in
heavy-fermion compounds. In the early
1990s, at the Cavendish Laboratory in
Cambridge, England, Gil Lonzarich,
Stephen Julian, and Louis Taillefer res-
urrected the 20-year-old technique and
used high magnetic fields (up to 20
tesla) and the very low temperatures of a
dilution refrigerator (down to 10 mil-
likelvins). After much work, they saw
effective electron masses as high as 210
in UPt3. This mass is so large that the
highest oscillations visible at a tempera-
ture of 10 millikelvins were gone by 30
millikelvins. This means that the highest
fields, lowest temperatures, and highest-
quality samples are a must. Although
many groups have looked for similar os-
cillations in UBe13, such oscillations
have never been reported in credible
work because UBe13 masses are much
larger than UPt3 masses, and the oscilla-
tions are already gone at the lowest tem-
perature attainable at this time. 

In 1998, Jason Detwiler, George
Schmeideshoff, and Neil Harrison 
observed dHvA oscillations in the
praseodymium-beryllium and thorium-
beryllium compounds PrBe13 and
ThBe13 by working with a 70-tesla
pulsed magnet at the National High-
Magnet Laboratory at Los Alamos.
These compounds do not have the heavy
electrons of UBe13, and so the scientists
focused on measuring the Fermi surface
and showed that their results agreed with
one-electron calculations. Then, to try
and sneak up on UBe13, they next tried
the thorium-uranium-beryllium com-
pound Th0.95U0.05Be13 and saw nothing.
They did, however, see oscillations in
Th0.995U0.005Be13, but much work lies
ahead before the masses of UBe13 can
be seen. We will have to create the fol-
lowing mandatory conditions: very low
temperatures, very high fields, and sam-

ples of even higher quality. Because 
the one-electron behavior of PrBe13 and
ThBe13 has already been confirmed, 
the natural next step is to measure the
clothed masses in UBe13. 

Future Steps

If researchers think of narrow-band
phenomena when thinking of plutonium,
we have succeeded in making our point.
The narrow 5f bands lead to all the un-
usual behaviors of plutonium at all ener-
gy scales. At higher energies, the narrow
bands predicted by one-electron DFT
calculations lead to low-symmetry crystal
structures but normal elastic properties.
At low temperatures and energies, strong
spin and charge fluctuations connected to
the excitations from those narrow bands
lead to all the anomalous heavy-fermion-
like behaviors. The strong electron-
phonon coupling of narrow-band 
electrons may lead to higher effective
temperatures, which form a depressed
melting curve in the light actinides. 
The instability of these band states 
(due to the small radial overlap of the 
f-electron wave functions and the many
states with similar energies) leads to the
many-phase transitions in these materials.
This instability most likely leads to the
partial localization of these 5f states sus-
pected to exist in δ-plutonium. 

For the past 40 years, we focused 
on the difference between the angular
character of d and f wave functions as
the key to understanding the light ac-
tinides although, for most of that time,
we knew that the 5f electrons go from
being itinerant in plutonium to being 
localized in americium. That change to
localization occurs only because of a
change in the radial part of the wave
function. We have also known for almost
10 years that the low-symmetry crystal
structures are less related to the angular
character than to the narrow bonding
bands in these metals. Therefore, we
need to study other features, such as the
short-range nature of the f-f interactions
in Bloch states. How can we construct
states with partial localization, that is,

with two kinds of 5f electrons (localized
and itinerant) in the same metal? 

Over the next few years, improved
one-electron theories will better describe
the short-range nature of the 5f interac-
tions. To determine the range of the f-f
interactions, these theories might involve
some Slater-Koster fitting of the f bands.
Such a scheme could also be used in
determining the variation of the f-f inter-
action as a function of volume. Some
calculations of this nature have been per-
formed, but details of the f-f interactions
have not yet been extracted. Also, the
modern electronic-structure calculations
have only demonstrated that the angular
character of the single-atom orbitals is
not a main factor in determining crystal
structures. Indeed, it appears to be
washed out when a large number of
states build up to form bands, and for
that reason little or no charge buildup is
seen between atoms in the actinide met-
als. However, improved calculations may
show some small charge buildup, and
then we would have to reconsider this
feature. Models of localization of the 
5f states need to be developed. 

Many low-energy properties are still
so poorly understood that existing 
correlated-electron theories need to be
improved and new theories might have to
be developed. Theorists are still unable
to predict the collective ground states in
many of these materials. Also, we cannot
explain why neptunium and plutonium
are the only f electron elements that do
not develop a collective magnetic or 
superconducting state. After examining
heavy-fermion materials more closely,
we now believe that all may have a mag-
netic ground state. By using the most-
modern experimental tools, we now can
try and measure magnetic moments that
are 1000 times smaller than they should
be. From this work, we hope that new 
insights into plutonium will emerge.

But right now, the most-modern 
experimental techniques cannot be 
applied to plutonium because they 
require large single crystals, and those
are not yet available for plutonium.
Learning how to grow such crystals in a
repeatable fashion would be a real break-
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through in plutonium studies. One could
then use the crystals in neutron-scattering
experiments to measure the entire
phonon spectrum of plutonium and in
photoemission experiments to measure
its energy bands as a function of crystal
momentum. Photoemission (photon in
and electron out) is now sufficiently 
accurate to determine the widths and
structure of the narrow 5f bands in mate-
rials such as plutonium. In all the earlier
photoemission experiments, the instru-
ment resolution for x-rays was so poor
and the surface contamination for ultravi-
olet rays so high that the result was
merely featureless spectra. Now, with
some of the new photoemission 
machines and improved surface-cleaning
techniques, we should obtain actinide
spectra that show the structure predicted
by the electronic-structure calculations.
At Los Alamos, we are currently making
tiny single crystals of plutonium and 
related materials with techniques that 
had been used decades ago at Rocky
Flats and Argonne National Laboratory.
As reported in this volume, we are 
measuring these tiny samples with 
ultrasound, neutrons, and x-rays.

Although we may eventually 
understand the electronic structure of
plutonium single crystals, the landscape
of close-lying but different states cannot
be removed to give homogeneity when
we make a large plutonium casting. 
And because plutonium is radioactive, its
atoms will always be converted into 
impurities, and this process damages 
the lattice. Nevertheless, if we know how
single crystals behave, it is much simpler
to model a collection of them in a large
casting than to reverse-engineer a large
piece to see its components. This is why
we are looking forward to more progress
in these areas.

We must study plutonium and its
neighbors, alloys, and compounds 
because we deal with them all in
weapons. We may never know what ideal
plutonium is. However, the gift from 
nature is that this most-complicated 
element teaches us about all the elements
and shows us that there still is new 
science to discover. �
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