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Behavior 
Nonlinear Systems 

Universal numbers, 
6 = 4.6692016 ... 

and 
a = 2.502907875 ..., 

determine quantitatively 
the  transition  from 

smooth to turbulent or 
erratic behavior 

for a large  class of 
nonlinear systems. 

4 

I here exist in nature processes that 
can be described  as  complex or 
chaotic  and processes that  are 

simple or  orderly.  Technology  attempts 
to  create devices of the simple variety: 
an  idea is to be implemented,  and 
various parts executing  orderly  motions 
are  assembled. For example,  cars,  air- 
planes,  radios,  and  clocks are all con- 
structed  from  a  variety  of  elementary 
parts  each of which,  ideally,  implements 
one  ordered  aspect of the  device. 
Technology  also  tries  to  control  or 
minimize the  impact  of seemingly disor- 
dered  processes,  such  as the complex 
weather  patterns  of  the  atmosphere,  the 
myriad  whorls of turmoil in a  turbulent 
fluid,  the  erratic noise in an  electronic 
signal, and  other such  phenomena. It is 
the  complex  phenomena that interest us 
here. 

When  a  signal is noisy,  its  behavior 
from  moment to moment is irregular  ahd 
has no  simple  pattern of prediction. 
However, if  we analyze  a sufficiently 
long  record  of  the signal, we may find 
that signal amplitudes  occur within 
narrow  ranges  a  definite  fraction  of  the 
time.  Analysis of another  record of the 
signal  may  reveal  the  same  fraction. In 
this  case,  the  noise  can  be given a 
statistical description.  This  means that 
while it is impossible  to say what  am- 
plitude will appear  next in succession,  it 
is possible  to  estimate  the  probability or 
likelihood that  the  signal will attain  some 
specified range  of values. Indeed,  for  the 
last  hundred years disorderly  processes 
have been taken to be statistical  (one  has 

given up  asking  for  a  precise  causal 
prediction), so that  the  goal  of  a  descrip- 
t ion  is   to   determine  what   the 
probabilities  are,  and  from  this  informa- 
tion to determine  various  behaviors of 
interest-for example, how air  tur- 
bulence modifies the  drag  on an airplane. 

We  know that perfectly  definite  causal 
and simple rules can have  statistical  (or 
random)  behaviors.  Thus,  modern  com- 
puters  possess  “random  number 
generators’’ that provide  the  statistical 
ingredient in a  simulation  of an erratic 
process.  However,  this  generator  does 
nothing  more than shift  the  decimal 
point in  a rational  number  whose 
repeating  block is suitably long. Accor- 
dingly, it  is possible to predict  what  the 
nth  generated  number will  be. Yet, in a 
list of successive  generated  numbers 
there is such  a seeming lack of order  that 
all statistical  tests will confer  upon  the 
numbers  a  pedigree of randomness. 
Technically,  the  term  “pseudorandom” 
is used to indicate  this  nature.  One now 
may ask  whether  the  various  complex 
processes of nature themselves might not 
be merely pseudorandom, with the full 
import of randomness, which is un- 
testable,  a  historic but misleading con- 
cept.  Indeed our purpose  here is to ex- 
plore  this  possibility. What will prove 
altogether  remarkable is that some very 
simple schemes to produce  erratic  num- 
bers  behave identicalb to  some of the 
erratic  aspects of natural  phenomena. 
More  specifically,  there is now  cogent 
evidence that the  problem of how a  fluid 
changes  over  from  smooth to turbulent 
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flow can be solved  through  its  relation  to 
the simple scheme  described in this  arti- 
cle.  Other  natural  problems  that  can  be 
treated in the  same  way  are  the  behavior 
of a  population  from  generation  to 
generation  and  the  noisiness of a  large 
variety of mechanical,  electrical, and 
chemical  oscillators.  Also,  there is now 
evidence  that  various  Hamiltonian 
systems-those subscribing to classical 
m e c h a n i c s ,   s u c h   a s   t h e   s o l a r  
system-can come under  this  discipline. 

The  feature  common  to  these 
phenomena is that,  as  some external 
parameter  (temperature,  for  example) is 
varied,  the  behavior of the  system 
changes  from  simple  to  erratic.  More 
precisely,  for some  range of parameter 
values,  the  system  exhibits an orderly 
periodic behavior;  that  is,  the  system's 
behavior  reproduces itself every period 
of  time  T.  Beyond  this  range,  the 
behavior  fails to reproduce itself after T 
seconds;  it  almost  does so, but in fact it 
requires two intervals of T  to repeat it- 
self. That is,  the  period has doubZed to 
2T.  This new periodicity  remains  over 
some  range of parameter  values until 
another  critical  parameter  value is 
reached  after  which  the  behavior almost 
reproduces itself after 2T, but in fact,  it 
now requires 4T for  reproduction.  This 
process  of  successive  period  doubling 
recurs  continually  (with  the  range of 
parameter  values  for which the  period is 
2"T becoming  successively  smaller as n 
increases)  until, at  a certain  value  of  the 
parameter, it has doubled ad inJinitum, 
so that  the  behavior is no longer 
periodic.  Period  doubling is then  a 
characteristic  route  for  a  system  to 
follow as it changes  over  from simple 
periodic to complex  aperiodic  motion. 
All the  phenomena mentioned  above  ex- 
hibit  period  doubling.  In  the limit of 
aperiodic  behavior,  there is a  unique  and 
hence universal solution common  to all 
systems  undergoing  period  doubling. 
This  fact  implies  remarkable  conse- 
quences. For a given system, if  we 

denote by A, the  value of the  parameter 
at which its  period  doubles  for  the  nth 
time, we find that the  values A, converge ' 

to A w  (at which the  motion is aperiodic) 
geometrically for  large  n.  This  means 
that 

for  a fixed value of 6 (the rate of onset  of 
complex  behavior) as  n becomes large. 
Put  differently, if we define 

6,  (quickly)  approaches  the  constant 
value 6 .  (Typically, 6,  will agree with 6 
to several  significant  figures  after  just  a 
few period  doublings.) What is quite 
remarkable  (beyond  the  fact  that  there is 
always  a  geometric  convergence) is that, 
for all systems  undergoing  this  period 
doubling,  the  value of 6 is predetermined 
at the  universal  value 

6 = 4.6692016 ... . (3) 

Thus,  this  definite  number  must  appear 
as a  natural  rate in oscillators,  popula- 
tions,  fluids,  and all systems exhibiting a 
period-doubling  route  to  turbulence!  In 
fact,  most  measurable  properties  of any 
such  system in this  aperiodic limit now 
can be determined, in a  way that essen- 
tially bypasses  the  details of the  equa- 
tions  governing  each  specific  system 
because  the  theory of this  behavior is 
universal  over  such  details. That is, so 
long as  a  system  possesses  certain 
qualitative properties that enable it to 
undergo  this  route to complexity,  its 
quantitative properties are determined. 
(This  result is analogous  to the  results of 
t h e   m o d e r n   t h e o r y  of c r i t i ca l  
phenomena,  where  a few qualitative 
properties of the  system  undergoing  a 
phase  transition,  notably  the  dimen- 
sionality,  determine universal critical ex- 

ponents.  Indeed at  a formal level the  two 
theories  are  identical in that they  are 
fixed-point  theories, and the  number 6, 
for  example,  can be viewed as  a critical 
exponent.)  Accordingly, it is sufficient to 
study  the  simplest  system  exhibiting  this 
phenomenon to comprehend  the  general 
case. 

Functional Iteration 

A  random number  generator is an ex- 
ample of a simple iteration  scheme that 
has  complex  behavior.  Such  a  scheme 
generates  the  next  pseudorandom  num- 
ber  by a definite transformation  upon the 
present  pseudorandom  number.  In  other I 
words,  a  certain  function is reevaluated 
successively to produce  a  sequence of 
such  numbers.  Thus,'if f is the  function 
and x. is a  starting  number  (or "seed"), 
then  xo,  x], ..., x,, ..., where 

x1 = f(X0) 

x2 = K.1) 

x,+ 1 = f(XJ 

is the  sequence of generated  pseudoran- 
dom  numbers.  That  is,  they  are 
generated by functional iteration. The 
nth  element in the  sequence is 

x, = f(f( ... f(f(x,)) ...)) 3 f"(X,) , ( 5 )  

where n is the  total  number  of  applica- 
tions of f. [f"(x) is not  the  nth power of 
f(x); it is the  nth iterate off.]  A property 
of iterates  worthy  of  mention is 

F(f"(x)) = f"(f"(X)) = frn+"(X) , (6) 

since each  expression is simply m + n 
applications of f. It is understood that 
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fyx) = x . (7) 

It is also useful to have  a  symbbl, o , 
for functional  iteration  (or  composition), 
so that 

Po f r n = f r n O  f"=frn+".  (8) 

Now  f" in Eq. ( 5 )  is itself a  definite and 
computable  function, so that x, as  a 
function of x. is known in principle. 

If the function f is linear as,  for  exam- 
ple, 

f(x) = ax (9) 

for some  constant  a,  it is easy to see that 

f"(x) = a"x , (10) 

so that, for  this f, 

x, = anxO (11) 

is the  solution of the recurrence  relation 
defined in Eq. (4), 

x,+~ = ax,. ( 12) 

Should la1 < 1, then x, geometrically 
converges  to zero  at the  rate  l/a. This 
example is special in that  the linearity  of 
f  allows  for  the  explicit  computation of 
f". 

We  must  choose  a nonlinear f to 
generate  a  pseudorandom  sequence of 
numbers. If we choose  for  our nonlinear 
f 

f(x) = a - x2 , (13) 

then  it turns  out  that f" is a  polynominal 
in x of order 2". This  polynomial  rapidly 
becomes  unmanageably  large;  moreover, 
its,  coefficients  are  polynomials in a  of 
order  up to 2"-' and become  equally dif- 
ficult to compute. Thus even if x. = 0, x, 
is  a  polynomial in a  of  order 2"-'. These 
polynomials are nontrivial as  can be sur- 
mised from  the  fact  that  for  certain 

6 

values of a, the  sequence of numbers 
generated  for  almost all starting  points in 
the  range  (a - a2,a)  possess all the 
mathematical  properties of a  random 
sequence. To illustrate  this,  the  figure  on 
the  cover  depicts  the  iterates  of  a  similar 
system in two  dimensions: 

2 
Xn+1 = Yn - X, 

Y n + l =  a - X, ' (14) 

Analogous to Eq. (4),  a  starting  coor- 
dinate  pair  (xo,yo) is used in Eq. (14) to 
determine  the  next  coordinate  (xl,yl). 
Equation (14) is reapplied  to  determine 
(x2,y2) and so on. For some  initial  points, 
all iterates lie along  a  definite elliptic 
curve,  whereas  for others the  iterates  are 
distributed  "randomly"  over  a  certain 
region. It should  be  obvious that  no ex- 
plicit formula will account  for  the  vastly 
rich  behavior  shown in the figure. That 
is, while the  iteration  scheme of Eq. (14) 
is trivial to specify,  its  nth  iterate  as  a 
function of (xo,yo) is unavailable.  Put dif- 
ferently,  applying  the  simplest of 
nonlinear iteration  schemes to itself suf- 
ficiently many times  can  create  vastly 
complex  behavior. Yet, precisely  because 
the  same  operation is reapplied,  it is con- 
ceivable that only  a  select few  self- 
consistent  patterns  might  emerge  where 
the  consistency is determined by the key 
notion of iteration  and not by the  par- 
ticular  function  performing  the  iterates. 
These  self-consistent  patterns do occur 
in the limit  of infinite  period  doubling 
and in a well-defined intricate  organiza- 
tion that  can be determined a priori 
amidst  the  immense  complexity  depicted 
in the  cover figure. 

The  Fixed-point   Behavior of 
Functional Iterations 

Let us now make  a  direct  onslaught 
against Eq. (1  3) to see  what  it  possesses. 
We  want  to  know  the  behavior of the 
system  after  many  iterations. As we 

already  know, high iterates .of f  rapidly 
become  very  complicated. One way  this 
growth  can be prevented is to have  the 
first  iterate of x. be precisely x. itself. 
Generally,  this is impossible.  Rather  this 
condition determines possible ~0)s.  Such 
a  self-reproducing  point is called afixed 
point of f. The  sequence  of  iterates is 
then  xo,  xo, xo, ... so that the  behavior is 
static, or if viewed as periodic,  it  has 
period 1. 

It is elementary to determine  the fixed 
points of Eq. (13). For  future con- 
venience we shall  use  a modified form  of 
Eq. (13) obtained by a  translation in x 
and  some  redefinitions: 

f(x) = 4hx( 1 - x) , (15) 

so that  as h is varied,  x = 0 is always  a 
fixed point.  Indeed,  the  fixed-point  con- 
dition  for Eq. (1 5) ,  

x* = f(x*) = 4hx*( 1 - x*) , (16) 

gives as the  two fixed points 

X* = 0, X: = 1 - 1/41. (17) 

The  maximum  value of  f(x)  in Eq. (1 5 )  
is attained  at  x = X and is equal  to h. 
Also,  for h > 0 and  x in the  interval 
(O,l), f(x) is always positive. Thus, if h is 
anywhere in the  range [0,1], then any 
iterate  of  any x in (0,l) is also  always in 
(0,l). Accordingly, in all that follows we 
shall  consider  only  values of x  and h ly- 
ing between 0 and 1.  By Eq. (1  6) for 0 I 
h < x, only x* = 0 is within range, 
whereas  for f /4  I h I 1, both fixed points 
are within the range. For example, if  we 
set h = X and we start  at the fixed point 
x: = (that  is, we set x,, = X), then x1 = 
x2 = ... = 1/2; similarly if x. = 0, x1 = x2 
= ... = 0, and  the  problem of computing 
the  nth  iterate is obviously  trivial. 

What if  we choose  an x. not at  a fixed 
point?  The  easiest  way to see  what  hap- 
pens is to perform  a  graphical  analysis. 
We  graph  y = f(x) together with y = x. 
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Where the lines intersect we have  x = y 
= f(x), so that the  intersections are 
precisely  the fixed points.  Now, if  we 
choose  an x. and plot  it on  the x-axis,  the 
ordinate  of f(x) at x. is xl. To obtain x*, 
we must  transfer  x1 to the  x-axis  before 
reapplying f. Reflection  through the 
straight  line y = x accomplishes 
precisely  this  operation.  Altogether, to 
iterate an initial x. successively, 

1. move vertically to the  graph of f(x), 
2. move horizontally to the  graph  of  y = 

3. repeat  steps 1, 2, etc. 
x, and 

Figure 1 depicts  this  process  for h = ’/. 
The  two fixed points are circled, and  the 
first  several  iterates  of an  arbitrarily 
chosen  point xq are shown. What should 
be obvious is that if  we start  from  any x. 
in (0,l) (x = 0 and x = 1 excluded), upon 
continued  iteration x,  will converge to 
the fixed point a t  x = x. No matter  how 
close x,, is to  the fixed point at x = 0, the 
iterates  diverge away  from it. Such  a 
fured point  is  termed unstable. Alter- 
natively, for  almost all x. near  enough to 
x = [in  this  case, gll x. in (0,1)], the 
iterates  converge  towards x = x. Such a 
fued point is termed stable or is referred 
to  as  an attractor of period 1. 

Now, if  we don’t care  about the tran- 
sient behavior  of  the  iterates of xo,  but 
only about  some regular  behavior that 
will emerge  eventually,  then  knowledge 
of the  stable fixed point at x = ;/2 satisfies 
our  concern  for  the eventual behavior of 
the  iterates.  In  this  restricted  sense of 
eventual  behavior,  the  existence  of an at- 
tractor determines  the  solution indepen- 
dently of the initial  condition x,, provided 
that x. is within the basin of attraction of 
the attractor;  that is, that it is attracted. 
The  attractor satisfies Eq. (16), which is 
explicitly independent of xo. This  condi- 
tion  is the  basic  theme  of  universal 
behavior: if an  attractor exists,  the even- 
tual  behavior  is  independent of the 
starting  point. 

Fig. 1. Iterates of x. at h = 0.5. 

What  makes x = 0 unstable,  but  x = 
stable?  The  reader  should be able to 

convince himself that x = 0 is  unstable 
because the  slope of f(x) at x = 0 is 
greater than 1. Indeed, if x* is a fixed 
point  of f and  the  derivative  of  f at x*, 
f’(x*), is  smaller than 1 in absolute value, 
then x* is  stable. If I f‘(x*) I is greater 
than 1, then x* is unstable.  Also,  only 
stable fured points  can  account  for  the 
eventual  behavior of the  iterates of an  ar- 
bitrary  point. 

We now must  ask,  “For  what values 
of h are  the fured points  attracting?” By 
Eq. (15), f’(x) = 4h(l -’ 2x) so that 

f‘(0) = 4h (18) 

and 

f’(x*,) = 2 - 4h. (19) 

For 0 < h < x, only x* = 0 is stable.  At 
h = x, x: = 0 and  f(x*,) = 1. For ‘/4 < h 
< x, x* is unstable and x: is stable, 
while at h = x, f‘(x*,) = -1 and x: also 
has become  unstable. Thus, for 0 < h < x, the eventual  behavior is known. 
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Period 2 from the Fixed Point 

What  happens to  the  system when h is 
in the  range X < h < 1, where  there  are 
no  attracting fixed points?  We will see 
that  as h increases  slightly  beyond h = x, f  undergoes  period  doubling. That is, 
instead of having  a  stable  cycle  of  period 
1 corresponding to one fixed point,  the 
system has  a stable  cycle  of  period 2; 
that is, the  cycle  contains  two  points. 
Since  these  two  points are fixed points of 
the  function f2  (f applied twice) and since 
stability is determined  by  the  slope  of  a 
function at  itsfixed points, we must now 
focus  on  f2.  First, we examine  a  graph of 
f2  at h just below X.  Figures 2a  and  b 
show f and f2, respectively, at h = 0.7. 

To understand  Fig.  2b,  observe  first 
that, since  f  is  symmetric about  its max- 
imum at  x = x, f2  is also  symmetric 
about  x = x. Also, f2 must  have  a fixed 
point  whenever f does  because  the 
second  iterate of a fwed point is still that 
same  point.  The  main  ingredient that 
determines  the  period-doubling  behavior 
of  f as h increases is the relationship  of 
the  slope of f 2  to the  slope of f. This 
relationship is a  consequence of the 
chain  rule. By definition 

where 

x1 = f(xo), x2 = f(X1) . 
We leave  it to the  reader to verify by the 
chain  rule  that 

f2’(xo) = f’(X,)f’(X,) 

and 

an elementary  result that determines 
period  doubling. If we start  at a fured 
point of f and  apply Eq. (20)  to x. = x*, 
so that  x2 = x1 ,= x*, then 

Fig. 2. h = 0.7. x* is the  stable fuced point.  The  extrema off  are located  in (a) by 

fZ’(X*) = fyx*)fyx*) = [f’(X*)]’ (22)  constructing  the  inverse  iterates of x = O S .  
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Fig. 3. h = 0.75. (a) &picts  the slow convergence to the f iedpoint .  f osculates about 
the fucedpoint. 

Since at h = 0.7, IfT(x*) I < 1, it follows 
from Eq. (22) that 

0 < f2/(x*) < 1 . 
Also, if we start  at the  extremum off, so 
that x,, = X and f(x,) = 0, it follows 
from Eq. (21) that 

for all  n. In particular, f2  is  extreme  (and 
a  minimum) at x. Also,  by Eq. (20), f2 
will be extreme  (and  a  maximum) at the 
x,, that will iterate  under  f  to  x = x, since 
then x1 = and f'(x,) = 0. These  points, 
the inverses of x = x, are  found  by going 
vertically down  along  x = X to y = x 
and  then horizontally to y = <x). 
(Reverse  the  arrows in Fig. 1, and see 
Fig. 2a.) Since f has a  maximum,  there 
are two horizontal  intersections  and, 
hence,  the  two  maxima  of  Fig. 2b. The 
ability o f f  to  have  complex  behaviors  is 
precisely  the  consequence of -its  double- 
valued  inverse, which is in turn a reflec- 
tion of its  possession  of an extremum.  A 
monotone f, one that always  increases, 
always has simple behaviors,  whether or 
not  the  behaviors  are  easy to compute.  A 
linear f is always  monotone.  The f s  we 
care  about  always fold over  and so are 
strongly nonlinear.  This folding non- 
linearity gives rise to  universality.  Just as 
linearity in any  system implies a  definite 
method of solution, folding nonlinearity 
in any  system  also implies a definite 
method of solution. In  fact folding  non- 
linearity in the  aperiodic limit of period 
doubling in any system is solvable, and 
many systems,  such as  various coupled 
nonlinear  differential  equations,  possess 
this  nonlinearity. 

To return to Fig.  2b, as h ---f and 
the  maximum  value o f f  increases to x, 
f'(x*) + -1 and f2'(x*) -+ f l .  As h in- 
creases  beyond x, I f'(x*)l > 1 and 
f2'(x*) > 1, so that f2  must  develop two 
new fixed points  beyond  those  of f; that 
is, f2 will cross  y = x at  two more  points. 
This  transition is depicted in Figs. 3a 
and  b  for f and f2, respectively, at h = 
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