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High explosives—explosives
with very high energy density
—are used to drive the implo-

sion of the primary in a nuclear
weapon. That circumstance demands
precision in the action of the high
explosive. To predict with high accura-
cy the course of energy release under
various conditions is therefore an
important problem that we face in cer-
tifying the safety, reliability, and per-
formance of nuclear weapons in the
stockpile. Here we survey our progress
on the problem of explosives perform-
ance: predicting the outcome of inten-
tional detonation of high explosives in
complex three-dimensional (3-D)
geometries. The problems of safety
(accidental initiation) and reliability
(reproducible response to a prescribed
stimulus) are also under investigation
but will be only briefly mentioned here. 

Explosives belong to the class of
combustibles known as energetic
materials, which means that they con-
tain both fuel and oxidizer premixed
on a molecular level. Such materials
can support a whole range of combus-
tion, including ordinary combustion

such as that in a match head. Ordinary
combustion is a coupled physico-
chemical process in which the inter-
face separating fresh from burnt ener-
getic material travels as a wave
through the sample. Exothermic
chemical reactions begin on the sur-
face of the match head and burn the
outer layer of material. The heat
released is transferred through thermal
conduction to an adjacent unreacted
layer until that second layer ignites,
and this layer-by-layer process contin-
ues until the entire sample is con-
sumed. The speed of the combustion
wave is relatively low, depending on
both the rate of energy transport from
one layer to the next and the rate of
the local exothermic chemical reac-
tions in each layer. 

Explosives, in contrast, support
very high speed combustion known as
detonation. Like an ordinary combus-
tion wave, a detonation wave derives
its energy from the chemical reactions
in the material, but the energy trans-
port occurs not by thermal conduction
but rather by a high-speed compres-
sion, or shock, wave. The high-pres-

sure detonation wave streaks through
the material at supersonic speeds,
turning the material into high-pres-
sure, high-temperature gaseous prod-
ucts that can do mechanical work at
an awesome rate. Figure 1 shows the
initiation of a detonation wave from
shock compression through the forma-
tion of a self-sustaining Zeldovich
–von Neumann–Doring (ZND) deto-
nation reaction zone behind the shock.
The power delivered by an explosive
depends on its energy density and its
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The pressure plot on this opening page
shows a steady-state detonation wave
propagating through a cylindrical explo-
sive (gray) confined by a low-density
inert material (yellow). Red is the high-
est pressure; purple, the lowest. The
reaction starts along the shock (red
curve) and ends along the sonic surface
(white curve). A large pressure drop at
the edge of the explosive leads to a sig-
nificant lengthening of the chemical
reaction zone near the edges of the deto-
nating explosive, a reduction in the
speed of the detonation wave, and the
development of a curved detonation
shock front. 



detonation wave speed. Solid high
explosives, like those used in nuclear
weapons, have a detonation speed of
about 8000 meters per second (m/s),
or three times the speed of sound in
the explosive, a high liberated energy
density of about 5 megajoules per
kilogram (MJ/kg), and an initial mate-
rial density of about 2000 kilograms
per cubic meter (kg/m3). The product
of these three quantities yields the
enormous power density of
80,000,000 MJ/m2/s or 8 × 109 watts
per centimeter squared (W/cm2). By
comparison, a detonation with a sur-
face area of 100 centimeters squared
operates at a power level equal to the
total electric generating capacity of

the United States! This very rapid rate
of energy liberation is what makes
solid explosives unique and useful.

The legacy weapons codes have
long used the simple Chapman-
Jouguet (CJ) model to compute the
performance of high explosives. In
this classical, one-dimensional (1-D)
model of detonation, it is assumed
that the chemical reaction rate is infi-
nite (and therefore the length of the
reaction zone is zero rather than finite,
as in the opening figure and Figure 1).
That assumption leads to the predic-
tion that the detonation speed is con-
stant. Moreover, the values of the det-
onation speed, DCJ, as well as the det-
onation pressure, PCJ, are independent

of the initiating shock strength and
depend on only certain properties of
the explosive before and after passage
of the detonation front, namely, the
initial density of the unreacted materi-
al, the liberated energy density of the
explosive, and the pressure–volume
(P-v) response function of the reacted
material (called the mechanical equa-
tion of state, or EOS). In this CJ limit,
the explosive performance problem is
reduced to providing an accurate
mechanical EOS for the gaseous prod-
ucts of detonation, Eg (P,v)—see
Figure 2. 

In this article, we focus on another
aspect of the performance problem:
creating accurate 3-D detonation mod-
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Figure 1. Initiation and Propagation of a ZND Detonation Wave
(a) A schematic 1-D (planar) experiment is shown at different times. In the
experiment, the impact of a plate thrown on one face of a cube of explosive
(t = t0) produces a planar shock wave (t = t1) that gradually accelerates (t =
t2) to a steady-state detonation (t = t3) as the shock sweeps through the
explosive and causes chemical energy to be released to the flow at a finite
rate. (b) The corresponding pressure-vs-distance snapshots show the evolu-
tion of an essentially inert shock wave at t = t1 growing into a classical 1-D
ZND detonation structure at t = t3, namely, a shock, or pressure, discontinu-
ity at the ZND point followed by decreasing pressure through the reaction
zone, ending at the CJ point, the pressure predicted by the simple CJ model
(see text). (c) Pressure-vs-time plots for material particles originally at the shock front locations in (b) show the particle pres-
sure (or velocity) histories in the form measured in actual experiments (see Figures 5, 6, and 7). Only at the location of the right-
most particle has a ZND detonation fully formed. Note: The point of maximum acceleration of the shock, called the point of deto-
nation formation, coincides with the shape change in the pressure profile and the first appearance of a choked flow condition
(sonic condition). Refer to Figure 3.



els that account for the effects of
finite chemical reaction rates (and
therefore a finite reaction-zone
length behind the detonation front).
The finite length of the reaction zone
has many effects. For example, it can
affect the detonation speed and
therefore the power level at which a
detonation engine operates on inert
materials. It also places limits on the
minimum size of the explosive and
the minimum input pressure that will
lead to detonation, especially in
geometries that cause detonation

waves to go around corners, say, near
a small detonator. The models we
have been developing are specifically
designed for adaptation to the legacy
codes and to the Advanced Simulation
and Computing (ASCI) high-fidelity
codes used to study weapons perform-
ance. Known as detonation shock
dynamics (DSD), these are subscale
(or subgrid) models that capture the
physics of the reaction zone without
explicitly modeling that zone and,
therefore, without requiring enormous
computing time. Although they are

state of the art for modeling 3-D deto-
nation flows, our models predict deto-
nation propagation only in homoge-
neous explosives under standard con-
ditions. That is, they do not fully
account for the effects that the hetero-
geneity of the real explosives we use
today have on detonation. We there-
fore conclude this article with our
vision for the future of detonation
propagation modeling—one that
accounts for that heterogeneity yet
remains practical for weapons per-
formance studies.

The Detonation Process

How does a detonation wave reach
and then maintain such enormous
power levels as it sweeps through the
explosive? The enormous pressures (a
few hundred thousand atmospheres, or
a few hundred kilobars) and tempera-
tures (2000 to 4000 kelvins) behind
the detonation front originate from the
very rapid release of chemical energy.
Reactions are 90 percent complete in
less than a millionth of a second. As a
result of this rapid release, the reac-
tion zone is very short. But how are
the pressures sustained?

As shown in Figure 3, the reaction
zone is bounded by two surfaces that
isolate it from the regions ahead and
behind it and thereby maintain its
extreme pressure. First is the shock
surface, which initiates the reaction.
Because it travels at supersonic speed
relative to the unreacted material, it
prevents any leakage of pressure
ahead of the shock. Second is the
sonic surface (labeled choked-flow
state), which moves at the local
speed of sound in the frame of the
moving shock front. To explain the
effect of this surface, we consider an
observer riding with the shock and
looking back. The observer sees an
increasing amount of energy release
back into the reaction zone as a func-
tion of distance. This energy release
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Figure 2. Maximum Work Obtainable from a CJ Detonation
The Eg(P, v) mechanical equation of state (EOS) is required to model explosive per-
formance. Most often, it is measured along a restricted curve—an isentrope, PS(v),
or a shock Hugoniot curve, PH(v)—in the state space defined by the thermodynamic
variables Eg, P, and v. To characterize the maximum work that a detonation can per-
form (shaded area above), we need determine only the principal or CJ expansion
isentrope of the detonation products, PSCJ(v), given that we know DCJ, and PCJ. The
two curves shown above are the detonation Rayleigh line, shown in red (detonation
process), and the detonation products expansion isentrope, PSCJ(v). The area under
the isentrope (to some cut-off pressure) minus the area under the Rayleigh line
(work done by the shock in compressing the explosive) is the maximum mechanical
work that can be obtained from the explosive. For our high-performance, mono-
molecular explosives, such as HMX, this work compared with the available explo-
sive energy can be very high (more than 90%). We perform experiments to measure
this isentrope and then construct the Eg(P, v) mechanical EOS for the products of
detonation, which is an essential ingredient in every model of how detonations do
work on their surroundings. We are working on both better theoretical (Shaw 2002)
and experimental (Hill 2002) methods for determining the Eg(P, v) EOS.



serves to accelerate the flow away
from the shock front and reduce the
pressure, in much the same way as a
rocket nozzle accelerates the gas
ejected from a rocket and thereby
propels the rocket forward. As the
reaction is completed, the flow speed
at the end of the reaction zone
becomes equal to the local speed of
sound in the frame moving with the
shock, CCJ. As a result, the flow
becomes choked and thereby stops
any further pressure decrease in the
reaction zone. Collectively, these two
effects are referred to as inertial con-
finement.

Another way to understand inertial
confinement at the sonic surface is to
note that the postreaction-zone flow
(left of the sonic surface) in the ref-
erence frame of the shock is super-
sonic. Consequently, the reaction
zone is essentially isolated from dis-
turbances originating in the flow
behind it. Insulated from its surround-
ings, detonation is self-propagating,
depending only on what is happening
in the reaction zone.

Real vs Idealized Explosives

If an explosive is to be useful in
engineering applications—be they
mining, nuclear weapons, or modern
“smart” munitions—its chemical reac-
tion rate must be essentially zero at
the ambient state and must become
extremely fast once passage of a
shock wave substantially increases the
pressure and temperature in the mate-
rial. As mentioned above, in the clas-
sical CJ model, the chemical reaction
rate after the shock front has passed is
infinite, the reaction-zone length goes
to zero, and the detonation wave trav-
els through the material at a constant
speed and pressure. In reality, the
explosives we use in practical applica-
tions do not behave like the ideal CJ
model but have finite reaction rates.
This situation is indeed fortunate. If
the reaction rate were infinite and the
reaction zone of length zero, then sub-
jecting even a tiny region of the
explosive to a high pressure or high
temperature would initiate detonation
of the entire sample. The extreme sen-

sitivity of explosives such as nitro-
glycerine is legendary in this regard. 

Because the reaction rate and reac-
tion-zone length of practical explo-
sives depend significantly on pressure
and temperature, a sample subjected
to a weak initial shock will experience
transients during initiation of detona-
tion. If the sample is a slab of finite
thickness (L1 in Figure 1) but infinite
lateral extent (L2→∞), the shock can
pass through the slab in a short time
compared with the duration of the
transient, and no detonation occurs.
Conversely, to initiate detonation in a
sample of finite thickness with finite
reaction-zone length, the shock must
have a finite strength. That decrease in
sensitivity caused by a finite reaction-
zone length is what makes practical
explosives safe enough to handle. 

The fact that real explosive sam-
ples have a finite lateral extent (L2 in
Figure 1) also contributes to reducing
sensitivity. Some of the energy
released in the reaction zone leaks out
of the sides of the explosive trans-
verse to the direction of detonation
propagation and thereby reduces the
support for the forward motion of the
shock. If that energy loss is too great,
detonation dies out. Thus, the longer
the reaction zone in practical explo-
sives, the more difficult they are to
detonate—or, in other words, the
more insensitive (and safer) they are.

One way to control sensitivity is
to control the “effective,” or global,
reaction rate as opposed to the local
reaction rates. Alfred Nobel used
this technique to turn the liquid
explosive nitroglycerine into dyna-
mite. Nitroglycerine is an extremely
sensitive explosive because its high
viscosity allows it to form bubbles
easily. When these bubbles collapse,
they generate localized high pres-
sures and temperatures called
hotspots. The hotspots serve as initi-
ation sites for localized, rapid reac-
tion, leading to the establishment of
localized detonation that spreads
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Figure 3. The Finite-Length, Self-Sustaining Reaction Zone
In many respects, the self-sustaining detonation reaction zone operates like a
rocket motor. The reaction zone is bounded by the shock surface at the detonation
front and the choked flow-state surface some distance behind. Those two surfaces
isolate the reaction zone from the regions in front of it and behind it and thereby
maintain its extreme pressure. Looking backward in the frame that moves with the
detonation shock front, one observes that an increasing amount of heat added to
the flow with increasing distance into the reaction zone acts like a nozzle in a
rocket, accelerating the flow to sonic speeds, CCJ.



through the otherwise cool material
and consumes it all. By adding a
highly porous silica to nitroglycerine,
Nobel turned the material into a
paste, thereby suppressing small bub-
ble formation and dramatically
reducing its sensitivity.

At Los Alamos, we have followed
the reverse path. We start from a very
insensitive explosive and increase its
sensitivity by using it in the form of
small granules that serve as centers for
initiation of chemical reaction hotspots
and subsequent detonation. A typical
example of these insensitive, high-
mass, high-energy-density solid explo-
sives is HMX. To detonate a single
crystal of this material, a few centime-
ters on a side and free of most physi-
cal defects, requires an input shock
pressure of hundreds of kilobars
(Campbell and Travis 1985). To

increase the effective, average global
reaction rate, we formulate a mixture
of small, heterogeneous HMX gran-
ules and polymeric binder and then
press the mixture to a density
approaching that of pure, crystalline
HMX. By controlling the size of the
granules and the final pressed density,
we can vary the sensitivity of the
explosive. The granular HMX explo-
sive PBX 9501 requires only tens of
kilobars of pressure to initiate detona-
tion within a fraction of a centimeter.

Despite our control over the manu-
facturing and thus the reproducibility
of explosive detonation, we cannot
predict the effective reaction rates in
such heterogeneous HMX explosives
from first principles. One reason is
that we have been unable to measure
the chemical route by which the solid
explosives decompose to gaseous

products under the extreme condi-
tions of detonation (about 0.5
megabar in pressure at temperatures
of 3000 kelvins). Only recently did
we acquire appropriate techniques to
address those questions. In particular,
we can now generate and characterize
planar shocks using a combination of
ultrafast lasers and interferometers. In
the future, we hope to use ultrafast
laser spectroscopy to observe, in real
time, the chemistry behind those
laser-generated shocks (McGrane et
al. 2003).

We also have little understanding
of how the fine-scale substructures
and hotspots in the detonation reac-
tion zone affect detonation initiation
and propagation. Figure 4(a) shows a
photomicrograph of the granular sub-
structure of PBX 9501. Research on
the complex, micromechanical, hydro-
dynamic interactions that develop
when such a material is subjected to a
shock wave is still in its infancy—see
Figures 4(b) and 4(c). 

Measuring 
Reaction-Zone Effects

Because the length of the effec-
tive reaction zone affects the sensi-
tivity to initiation as well as the det-
onation speed and extinction rates,
we would like to predict its size.
Since we cannot predict the reaction
scale ab initio, we have taken a more
phenomenological approach. That is,
we have performed macroscale con-
tinuum experiments to measure the
effects of the reaction-zone length,
and we have developed continuum
theories and models that, when
forced to match those measurements,
allow us to infer the global reaction-
zone lengths and reaction rates. 

The experiments are done on sam-
ples whose dimensions run from a few
to many centimeters. Some experi-
ments subject the explosive sample to
1-D detonation hydrodynamic flows
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Figure 4. Substructure of Heterogeneous High Explosives
(a) The photomicrograph shows the granular substructure of PBX 9501 (Skidmore et
al. 1998). (b) A numerical simulation shows the temperature distribution that devel-
ops in a heterogeneous material subjected to rapid, compressive loading (Menikoff
and Kober 1999). (c) The drawing shows a detailed view of the hotspots that develop
when explosives such as PBX 9501 are subjected to a shock wave. We are not yet
able to accurately model such complex, micromechanical hydrodynamic interactions.
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(planar impacts in simple explosive
geometries), whereas others generate
and measure fully 3-D flows (result-
ing mostly from complex explosive
geometries). Although the reaction-
zone length can be quite short—
about 0.01 millimeter for some of the
sensitive explosives—its effects can
be detected because detonation
hydrodynamics tends to amplify any
changes in initial or boundary condi-
tions. (This property can be seen in
Figure 1, where the transients occur
over a distance of many reaction-
zone lengths and later in Figure 10,
where the overall displacement of the
multidimensional detonation shock is
measured in a number of reaction-
zone lengths.) Still, the experiments
must be capable of nanosecond time
resolution in order to characterize the
hydrodynamic response of these
explosives.

In the high-resolution 1-D experi-
ment shown in Figure 5, a nested set of
10 magnetic velocity gauges made of
thin conducting wires is embedded
obliquely, relative to the faces of an
explosive sample, and the sample is
placed in a magnetic field (Sheffield et
al. 1999). A planar projectile impacts
one of its faces as shown, and the qui-
escent sample begins to react and ulti-
mately detonates. The active elements
in the gauge package, shown in red,
maintain their shape as they move with
the explosive flow in the direction of
the detonation front. As they move,
they cut through the magnetic flux
lines, producing a voltage directly pro-
portional to the velocity of the flow at
each gauge location. Thus, the 10
active elements track the history of 10
different particles in the explosive. The
gauge package has a thickness of 60
micrometers and is capable of a time
resolution of 20 nanoseconds. Note
that, because the multiple-gauge pack-
age is mounted obliquely to the princi-
pal flow direction, the gauges farther
upstream are not perturbed by those
downstream. 
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Figure 5. Magnetic Gauge Measurement of 1-D Detonation Flows 
(a) A nested set of 10 magnetic gauges made of thin conducting wires is embedded
obliquely relative to the faces of an explosive sample, and the sample is placed in a
magnetic field of strength B. (b) The impact of a planar projectile initiates detonation.
When the active elements in the gauge package, of length L and shown in red, are
moved by the explosive flow, they cut the magnetic flux lines, thereby producing a volt-
age directly proportional to the velocity of the flow, up, at each gauge location.Thus,
the 10 active elements track the history of 10 different particles in the explosive.The
gauge package has a thickness of 60 µm and is capable of a time resolution of 20 ns
(Sheffield et al. 1999).
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Shown here are the results from a magnetic gauge experiment on the insensitive
high explosive PBX 9502. The input pressure was 0.135 Mbar. The experimental
traces follow the transformation of a planar shock wave into a detonation. (Point A is
the input state, point B indicates an interior velocity maximum, and point C is the
ZND point. The shape change in the particle velocity profile (from an interior velocity
maximum to a maximum at the shock) coincides with the first appearance of a
choked flow condition, or sonic condition (Sheffield et al. 1998).

(a)

(b)



Figure 6 shows 10 particle-velocity
histories, one from each magnetic
gauge, for the insensitive high explo-
sive PBX 9502 subjected to a planar
impact with an initial pressure of
0.135 megabar (Sheffield et al. 1998).
The series of particle histories (from
left to right) reflects the transforma-
tion of a planar shock wave supported
by the energy from the projectile
impact into detonation supported by
the energy release in the explosive.
The gauges nearest the impact sur-
face (leftmost trace) record the
progress of what is essentially an
inert shock wave passing through the
explosive, whereas the later gauges
show what, at least at first glance,
resembles a classical ZND detonation
structure (a shock followed by
decreasing particle velocity through
the reaction zone, as in Figure 1).
The shock speed, also recorded in
these experiments, shows an initial
constant-velocity shock that then
accelerates rapidly to a new, higher
speed (approaching the detonation
speed). The point of maximum accel-
eration, called the point of detonation
formation, coincides with the shape
change in the particle-velocity profile
and the first appearance of the condi-
tion of choked flow (sonic condition).

Modeling the Detonation
Reaction Zone

To infer more specific information
on the global heat-release rate and the
detonation reaction-zone length from
these and other hydrodynamic meas-
urements, we must model the detona-
tion process. We first discuss the stan-
dard modeling paradigm. By compar-
ing its predictions with experiment,
we show that it can model 1-D flows
fairly well but has serious shortcom-
ings when applied to 3-D flows.
Finally, we show how we have altered
the standard paradigm to create the
DSD model that not only solves some

of those shortcomings but also is com-
putationally efficient and suitable for
use in the ASCI codes.

In the standard models, a detonating
explosive is described as a continuous
medium that obeys the conservation of
mass, momentum, and energy for an
Euler fluid:

1) (1)

(2)

(3)

where I is the identity matrix, u is the
particle velocity in the laboratory
frame, P is the pressure, ρ = v–1 is the
density, e = E + u ⋅ u/2, and E is the
specific internal energy of the reacting
explosive as a function of density and
pressure. The energy E as a function
of pressure and specific volume, E(P,
v), is the particular constitutive law (a
law determined solely by the intrinsic
properties of the material) that we
introduced earlier as the mechanical
EOS, and it must be provided as input
to the fluid equations. 

Because the much used Chapman-
Jouguet theory requires as input a
mechanical EOS of the form, Eg(Pg,
vg), where the subscript g denotes det-
onation product gas, some realizations
of Eg(Pg, vg) are available. To obtain
an analogous expression for unreacted
solid explosive, Es(Ps, vs), one can
start from a simple Mie-Gruneisen
EOS and calibrate it to replicate the
measured jump-off (shock state) value
of the particle velocity seen with the
magnetic gauges (as in Figure 6) and
the measured shock velocity. To con-
struct a mechanical EOS for the react-
ing mixture of solid and gas, one typi-
cally assumes pressure equilibrium
between the solid and the gas, P = Ps
= Pg. Then, to interpolate between the
equations of state for the gas and the

solid, one assumes that the internal
energy and density of the mixture are
given by 

by                                            (4)

and

(5)

where λ is the mass fraction of reac-
tion product gases.

Closure is brought to this system of
equations, namely, Equations (1)–(5),
with two additional assumptions.
First, by extending the mechanical
equations of state to include a simple
temperature dependence and then
assuming that the temperatures of the
two phases are equal, T = Ts = Tg, one
can relate vs and vg and thereby elimi-
nate these intermediate variables from
the problem. Second, one assumes
that the rate of conversion of solid to
gas in the reaction zone is given by an
average, effective global heat-release
rate law of the form

(6)

where the heat-release rate function
R(P, v, λ) is constituted so that the
gauge data in Figure 6 and other rate-
dependent data are reproduced.

The Lee-Tarver Ignition and Growth
model (Tarver and McGuire 2002) is an
example of the standard modeling para-
digm. It uses an empirical EOS for
each of the components and takes
appropriate account of the detonation
energy in the unreacted explosive. It
also uses an empirical form for the
global heat-release rate function in
Equation (6). The sets of constants for
the equations of state of each explosive
have been calibrated to a suite of
hydrodynamic experiments performed
on each explosive (see the box on the
opposite page).

The authors and Ashwani Kapila of
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Rensselaer Politechnic Institute (private
communication—2003), used the Lee-
Tarver Ignition and Growth model to
predict the results of the magnetic gauge
experiment for PBX 9502 shown in
Figure 6. To solve Equations (1)–(6),
these authors and others have developed
solution algorithms and adaptive mesh
refinement codes (Aslam 2003, Fedkiw
et al. 1999,Quirk 1998, Henshaw and
Schwendeman 2003). Here, we used a
minimum of 1000 computational zones
to model the reaction zone. Figure 7
compares the simulation results with the
experimental data for PBX 9502. The
wave profile that develops far from the
initiating piston surface (that is, to the
far right) clearly shows a nearly steady-
state reaction zone. We see that this phe-
nomenological model—a simple homo-
geneous fluid model with a global reac-
tion rate—mimics a 1-D experiment
reasonably well. However, it does not
describe the complicated interaction
between hydrodynamic hotspots and
fundamental chemical processes, an
interaction that produces the heat
release rate in effective, global, hetero-
geneous explosives. 

Application of Standard
Models to Multidimensional

Flows

The class of models just described
has been applied to problems with
fully 3-D geometries, but our studies
show that the solutions contain fea-
tures that are unsatisfactory for use
in real performance codes. As an
example, we consider the propaga-
tion of a detonation wave in a stack
of right-circular cylinders of explo-
sive—see Figure 8(a). The object is
to predict the progress of detonation
as it diffracts from a smaller to a
larger coaxial cylinder. We simulated
this experiment with a model similar
to that described above but with a
simpler EOS and a simpler rate law
for the reaction zone. The EOS for
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EOS and Rate Law for the Ignition and Growth Model

The empirical Jones-Wilkins-Lee forms are used for both the solid (i = s) and
the gas (i = g)

EOS

where Vi = ρ0/ρi and ωi, CVi, Ai, Bi, R1i, and R2i are calibration parameters.

The internal energy is solved for using the thermodynamic constraint

The heat-release rate law is given by

Rate Law

where 0 ≤ λ ≤ 1 describes the progress of the global heat-release reaction
(λ = 0, is unreacted, and λ = 1 is fully reacted), H(λ*

i – λ) is the unit step
function, and I, a, G1, G2, and λ*

i are parameters. 

Figure 7. Comparison of Model with Experiment for 1-D Detonation
Predictions of the standard modeling paradigm are compared with the measured
particle histories for PBX 9502 shown in Figure 6. The calculations were done using
the Lee-Tarver EOS and a recalibrated rate law. The computing mesh had a mini-
mum of 1000 computational zones in the reaction zone. The agreement is reason-
ably good, but there are noticeable discrepancies.
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the unreacted and reacted explosive is
obtained by setting Ai = Bi = 0 and ωs
= ωg = 2 and by simplifying the rate
law to

(7) 

where k is a constant and µ is set to µ
= 1/2. All constants were selected to
mimic the condensed-phase explosive
PBX 9502. In the experiment, the
explosive is embedded in a low-density
plastic. The plastic does not affect the
flow in the reaction zone; rather the
explosive behaves as it would if it were
totally unconfined (floating in free
space). We simulated the experiment
using the Amrita (Quirk 1998) compu-
tational environment, which provides
adaptive mesh refinement, simulation
scheduling, and documentation of the
results. We also used the Ghost Fluid
interface-tracking algorithm (Fedkiw et
al. 1999) to keep a sharp interface
between the explosive and the confin-
ing inert plastic and a Lax-Friedrichs
solver to update the flow.

Figures 8(b) and 8(c) are compos-
ites. Each shows two solutions for
the pressure—one before and one
after the detonation passes into the
wider (acceptor) section of the explo-
sive. These two figures differ in that
they show solutions for two different
energy-release rate functions R—
Equation (7)—proportional to the
square of the pressure, n = 2, and the
cube of the pressure, n = 3, respec-
tively. The top and bottom halves of
each figure show results for different
resolutions in the steady-state ZND
reaction zone, 72 and 18 points,
respectively, for the n = 2 solution,
and 18 and 9 points, respectively, for
the n = 3 solution. For both rate
laws, the location of the detonation
front depends significantly on numer-
ical resolution. Also, for the n = 3
rate law, the detonation is highly
unstable: There are very large pres-
sure and high-frequency structures in
the acceptor explosive (wider sec-

R P kPn, ,  ,v λ λ( ) = −( )1 µ
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Figure 8. Standard Modeling of Detonation in 3-D Geometries
In (a) we show the setup for detonation wave propagation in a stack of right-circular
cylinders, and in (b) and (c) we show the results from the standard modeling para-
digm with different energy-release rate laws, n = 2 and n = 3 with µ = 1/2 in Equation
(7). In each case, top and bottom figures display the results for different resolutions:
72 and 18 points in the reaction zone for n = 2 and 18 and 9 points in the reaction
zone for n = 3, respectively. In both cases, the results change markedly with increas-
ing resolution. Also, with the more pressure-sensitive rate law, n = 3, the reaction
zone shows high-frequency structure that is an artifact of this modeling paradigm
for heterogeneous explosives.



tion), and the details of the instability
are very much resolution dependent. 

Short et al. (2003) have analyzed
the stability of the classical, steady-
state ZND reaction-zone structure to
small, multi-dimensional disturbances
and shown that it is unstable to even
small perturbations whenever n is
greater than 2.1675 for the model that
we have described here. Figure 9
shows the results of this stability
analysis. Also, the addition of a noz-
zling term to Equation (3) (that term
mimics the energy loss from the reac-
tion zone because of multidimensional
flow effects) leads to a further destabi-
lization of the reaction zone to 1-D
disturbances. (Note: The high-resolu-
tion n = 2 simulation also shows some
signs of instability.) The root of this
instability can be understood with the
following argument. Detonation in this
homogeneous-fluid model is a balance
between shock-initiated energy-releas-
ing reactions and the acoustic transport
of that energy to support the shock.
When a pressure perturbation in the
reaction zone affects the reaction rate
much more than it does the sound
speed, then small pressure fluctuations
can disrupt the balance between ener-
gy liberation and transport, and insta-
bility can be the result.

Problems with the Reaction-
Zone Modeling Paradigm

Both the dependence on numerical
resolution and the appearance of the
high-frequency structure in the accep-
tor region of the explosive represent a
significant problem for this modeling
paradigm. In independent studies of
this simple model for the n = 2 case,
we have shown that to predict the det-
onation speed in the donor section to
within 10 m/s requires 50 or more
points in the ZND reaction zone.
(Aslam et al. 1998). This number
translates into a very computationally
intensive problem for typical 3-D

engineering scale problems, where
the reaction-zone length is very much
shorter than the dimension of the
explosive piece. At any instant, about
1010 relatively small computational
nodes would be needed in the reac-
tion zone, and the computational time
on a large parallel processing com-
puter would be about 100 days.
Second, the high-frequency, acousti-
cally based transverse wave structure
is an artifact of this simple homoge-
neous-fluid model and is not
observed in our heterogeneous explo-
sives. The substructure associated
with the granular structure of real het-
erogeneous explosives derives from
the material particles, not acoustic
waves. In fact, the granularity inhibits
the formation of large transverse
acoustic waves. Thus, although the
simple homogeneous-fluid model
reproduces reasonably well the lead-
ing-order features of detonation, such
as the ZND structure, it fails to
describe higher-order features of real
heterogeneous explosives.

DSD, a Subscale Model 
of Detonation

We have championed an approach
to the performance problem that is
philosophically different from the stan-
dard paradigm just described (Aslam et
al. 1996). In the DSD approach, we
exploit the fact that the explosive
pieces of engineering interest are large
compared with the reaction-zone
length and substitute a subscale model
for the detailed model of the reaction
zone. To construct this subscale model,
we consider how the detonation reac-
tion zone is influenced by weak curva-
ture of the shock front and derive a
constraint equation relating the speed
of the detonation front to the shape of
that front. We then derive a boundary
condition on that equation that relates
edge effects to the detonation wave
shape. Thus, on the scale of the explo-
sive, the reaction zone becomes a front,
a discontinuity, separating fresh from
burnt explosive. In this way, DSD
focuses on the two primary goals of
the performance problem: accurate pre-
diction of (1) the local detonation
speed and detonation arrival times in a
weapons simulation and (2) the P-v
(pressure-volume) work that the high-
pressure detonation products can per-
form on the inert materials with which
the explosive is in contact. As we will
see, this approach also filters out the
high-frequency features and vastly
reduces the computational require-
ments by comparison with the standard
modeling paradigm described above.

Figure 10 shows a detailed view of
the reaction zone and shock front,
with unburnt explosive above and
burnt explosive below. The reaction-
zone length is short compared with
the explosive charge dimension, L. In
place of Cartesian coordinates, we use
coordinates that are attached to the
shock surface (see the upper inset in
Figure 10). The constant η is the dis-
tance through the reaction zone nor-
mal to the shock surface, and ξ is the
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Figure 9. Stability Analysis
Results for the Standard
Detonation Modeling Paradigm
The vertical axis is the pressure expo-
nent of the heat-release rate R, and
the horizontal axis is the wave number
of the perturbing transverse distur-
bance. For any state above the curve,
the ZND detonation is unstable. For µ
= 0.5, a ZND detonation is unstable to
two-dimensional disturbances when-
ever n > 2.1675.



distance along the shock measured
from the centerline of the explosive.
Thus, curves of constant η are parallel
to the shock, and the lines of constant
ξ are in the direction of the local nor-
mal to the shock surface. Because the
features of interest are on the scale of
the explosive, we define a dimension-
less scale, ε = ηrz/L << 1, where ηrz
is the scale of the detonation reaction-
zone length. This scale aids in the der-
ivation of the subscale model.

DSD assumes that the detonation
reaction zone departs from its 1-D
(planar) steady-state ZND form by a
small amount. That small departure is
determined by both the size of the
shock curvature κ measured in units
of the reaction-zone length scale ηrz,
(ηrzκ = O(ε) << 1) and the departure
of Dn, the detonation speed in the
direction of the shock normal vector,
from DCJ, the detonation speed for a
1-D steady-state wave. The relevant

scaled detonation speed is (Dn/DCJ –
1) = D = εD

~
. 

To construct an asymptotic solu-
tion—a solution in the limit that ε <<
1 —for the multidimensional detona-
tion reaction-zone flow, we first intro-
duce into the standard detonation
model, Equations (1)–(3) and (6), the
following slowly changing, scaled,
independent variables:

(8)

where φ is the shock normal angle
defined in Figure 10. We then expand
the solution vector Y = (ρ, uη P)T as 

(9)

(10)

The leading order term in the solution
vector (designated with a superscript
0) represents the 1-D ZND solution,
whereas the terms proportional to
powers of ε bring in the effects of
multidimensionality and time depend-
ence. A compatibility constraint
emerges on the solution that forces a
relationship between the shock curva-
ture κ and various derivatives of the
scaled detonation speed D

(11)

where F (D ) is a decreasing function
of D with F (0) = 0, A (D ) > 0 and
B (D ) > 0. A term-by-term examina-
tion of the right-hand side of this
equation shows that (1) increasing κ
(shock curvature) slows the detonation
wave, (2) the acceleration term
A (D )(DD /Dt) acts like inertia and
resists changes in the front speed and
shape, and (3) the dissipative term
B (D )(∂2D /∂ξ2) damps high fre-
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Figure 10. Multidimensional Reaction Zone and the DSD Shock-
Attached Coordinates 
A multidimensional reaction zone in a cylindrical detonating explosive (gray) is
weakly confined at its edges by a low-density inert material (yellow). As shown, the
reaction zone is typically short compared with the dimension of the explosive
charge, L. The upper inset depicts a segment of the 3-D reaction zone with the
intrinsic shock-attached coordinates used in DSD analysis. In the DSD limit, the
ratio of the reaction-zone thickness to the scale of the explosive charge is very, very
small, ηrz/L = O(ε) << 1, and a subscale front model takes the place of the detailed
reaction-zone model. The crosshatched area, approximately the width of the reaction
zone and straddling the explosive–inert material interface, defines the region where
an analysis of the boundary region is performed. As explained in the text, that
analysis leads to boundary conditions for the subscale model.



quencies and thus the formation of
kinks on the wave front. The disper-
sion relation for the linearized form of
Equation (11) 

(12)

reveals that, at low transverse frequen-
cies (small values of the wave number
k), Equation (11) predicts dissipative,
transverse waves moving along the
front. On the other hand, at high
transverse frequencies (large k),
Equation (11) is purely dissipative.
Thus, by adopting the scaled variables
of Equation (8), high-frequency fea-
tures such as kinks on the front will
not form.

Thus, on the scale of the explosive
piece, the detonation reaction zone
looks like a discontinuity separating
fresh and burnt explosive. Moreover,
this discontinuity occurs along a sur-
face that propagates according to the
dynamics given by Equation (11),
which can be viewed as an intrinsic
detonation propagation law for an
explosive. It is important to recognize
that the forms of the coefficient func-
tions F (D ), A (D ), and B (D )
depend on the material description of
the explosive (the EOS and the global
heat-release rate).

In addition to specifying a propa-
gation law such as Equation (11), we
need to prescribe a boundary condi-
tion on the front, where the front
meets the edge of the explosive piece
(see the right portion of Figure 10).
Just as we constructed a subscale
model to mimic the effects of the
reaction zone on the front motion, we
construct a subscale model to mimic
the effect of confinement by adjacent
inert materials on the detonation
speed. Roughly speaking, the more
compliant the inert materials, the
greater the deflection of explosive
streamlines and shock angle φ and the

greater the pressure drop. A boundary
layer analysis performed within a dis-
tance of one reaction-zone length on
either side of the explosive–inert
material interface reveals (see cross-
hatched region) that this interaction
establishes a unique shock-edge angle,
φc, which is a function of the explo-
sive and inert material pair consid-
ered. That angle serves as a boundary
condition for Equation (11). The
weaker the confinement, the greater
the value of φc, up to the point where
the lateral expansion of the detonation
products becomes choked (the devel-
opment of a sonic state behind the
shock, as shown in Figure 10), halting
any further drop in pressure at the
shock. This phenomenon occurs at a
value of φ called the sonic angle, φs,
which depends solely on the proper-
ties of the explosive and is about 45°
for our explosives (Aslam and Bdzil
2002, Bdzil 1981). 

DSD Calibration 
and Propagation 

of Detonation Front 

To validate the DSD approach, we
used it to compute the detonation
front shapes for the rate law of
Equation (7) and compared the DSD
results with numerical results from the
standard paradigm, Equations (1)–(3),
(6), and (7). The good agreement vali-
dates the DSD approach, at least for n
<2.1675, for which the standard
approach is fairly accurate (Aslam et
al. 1998). Although we could have
derived a detonation propagation law
directly from a calibrated shock-initia-
tion model, such as the Lee-Tarver
Ignition and Growth model, we chose,
instead, to derive Equation (11) more
generically and calibrate it from
experimental data on multidimension-
al detonation. In that way, we
bypassed artifacts of the homoge-
neous-fluid model paradigm and built
in features faithful to real, heteroge-

neous explosives but not easily mod-
eled with the standard paradigm.

Calibration data are often obtained
from measurements of the detonation
speed and front curvature in explosive
cylinders of various sizes (see Figure
11). For explosives such as PBX
9502, those data can be fit reasonably
well with just the leading term in the
propagation law of Equation (11):

(13)

which specifies a simple relationship
between the detonation speed and the
detonation shock-front curvature. The
propagation law so obtained for PBX
9502 predicts that the shock-normal
detonation speed decreases substan-
tially with increasing shock-front cur-
vature (see Figure 12). Figure 13(a)
shows a DSD prediction for the deto-
nation front shape at initiation and
two later times as the detonation prop-
agates through an arc of PBX 9502.
Figure 13(b), a top-down view, shows
the DSD solution lagging behind the
simple constant-velocity CJ solution.
The significant differences between
these two argue for the importance of
including reaction-zone effects. The
DSD shapes and velocities are in very
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Figure 11. Detonation Front
Measurement in a Cylinder of
Explosive
This image, taken by a streak camera,
shows the detonation front arrival time
vs radius at the planar face of the
explosive cylinder (Hill 1998).

HE 
edge
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good agreement with experiment 
To obtain the DSD solution shown

in Figure 13, we start from the front
propagation law and edge boundary
conditions and use level-set methods
to compute the propagation of the
front. These methods work by embed-
ding the detonation front in a level-set
function, Ψ, and then evolving this
function according to

(14)

By our definition, the level surface ψ =
0 corresponds to the detonation front
initially and at any subsequent time. We
compute the actual detonation front by
finding the ψ = 0 contour. The level-set
methodology offers significant compu-
tational advantages because it enables
easy handling of complex explosive
topologies and detonation interactions.

This past year, we have developed
a first-order accurate, 3-D computa-
tional algorithm that uses the level-
set method and that runs on parallel
computing platforms. Results from
that method are shown in Figure 14,
which  displays a detonation initiated
simultaneously at the ends of two
symmetrical legs and propagating
through a piece of PBX 9502 with
complex geometry. The detonation
fronts are shown at four different

times. The shape of the explosive,
two protruding legs on one side and a
cylindrical hole on the other, forces
the detonation fronts to merge (t = t3)
and then bifurcate (t = t4). Merging
and bifurcation of different detona-
tion fronts are automatically treated
with the level-set-based DSD
approach. For comparison, the CJ
wave is also shown (as ahead) in the
last snapshot (t = t4). 

New Modeling Paradigms for
Detonation Reaction Zones

The methods just described repre-
sent the state of the art in detonation
modeling for engineering applications.
In closing, we outline our vision for
the future. 

The modeling paradigm represented
by Equations (1)–(6) has serious short-
comings. Principally, such a continuum

∂ψ ∂ ψt Dn+ ∇ = 0  .
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Figure 13. DSD Detonation through an Arc of PBX 9502
(a) The 3-D composite image shows the progress of the DSD front through an explo-
sive arc. Each detonation front is colored by the local instantaneous normal detona-
tion speed.The slowing of the detonation near the edges is apparent by the change in
color from red to green. Shown in the inset are plots of the DSD (green) and experi-
mental (black) times of arrival of the detonation front along the midline of the planar
edge of the arc (measured in units of the cylinder radius).The resulting curves show
the similarity between the DSD and measured wave-front shapes.The DSD and experi-
mental plots are set off to display results. (b) This top-down view shows the intersec-
tion of the DSD and CJ fronts with a plane passing through the middle of the arc.The
DSD detonation speed slows down by 10% relative to its initial value, whereas the CJ
detonation speed is constant. Consequently, there is a growing separation of DSD and
CJ fronts.The phase velocities of the DSD wave along the inner and outer surfaces of
the arc agree well with the experimental values.
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The DSD propagation law predicts that
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Dn decreases substantially with increas-
ing shock-front curvature κ.



model does not include any phenome-
non that might be important for hetero-
geneous materials, such as scattering or
dispersion of acoustic waves and dissi-
pation of energy from the reaction-zone
scale to the subreaction-zone scales of
the hotspots. Current models are effec-
tive for homogeneous explosives. As
we better understand the details of the
hotspots and reaction chemistry under
detonation conditions, we will need to
develop better continuum models. If
subnano-scale measurements support
our current view that the chemical reac-
tions important in detonation are
extremely state sensitive, then very

short scale regions where the hotspot
temperatures are most extreme will
have a disproportionate effect toward
accelerating the reaction chemistry
(Bdzil et al. 1999, Menikoff and Kober
1999). These would be subgrain scales,
related more to details of the grain
shape than the grain volume (Figure 4
shows how complex this substructure
can be). The notion of doing numeri-
cally resolved meso-scale simulations
of detonation in granular explosives
and then somehow averaging those
results to develop appropriate continu-
um-level engineering models seems to
be many years away.

Given our lack of detailed informa-
tion about the relationship between
the geometry of explosive grains and
the constitutive properties of our
materials (including, for example,
heat conductivity) under detonation
conditions, a more realistic midterm
goal is to develop subscale models for
the reaction zone in which behaviors
on the grain and subgrain scales are
parameterized in terms of longer
wavelength variables. We are work-
ing to develop rational asymptotic
models that indicate not only how the
explosives’ global heat-release rate
should be modeled but also how the
presence of granularity and hotspots
in these materials affects the basic
modeling structure—that is, what
modifications need to be made to
Equations (1)–(6). For example, sig-
nificant density variations in a mate-
rial on a short-wavelength scale will
appear on the long-wavelength con-
tinuum scale as dispersion terms
added to the basic conservation
laws—refer to Equations (1)–(3). The
presence of such terms could be
expected to scatter acoustic waves
and inhibit the detonation modeling
instabilities that we have observed in
our homogeneous-explosive models.
Whatever improved modeling para-
digms are developed for the continu-
um response of heterogeneous explo-
sives, we expect that, for the foresee-
able future, models will have to be
calibrated to experiments if they are
to make the accurate predictions of
detonation propagation necessary for
weapons simulations. �
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Figure 14. A 3-D DSD Calculation
This example shows how DSD can handle the merging of separated detonation
fronts, the acceleration of the detonation in regions where the fronts converge, and
the bifurcation of the detonation wave around obstacles. Detonation starts in the two
legs (left side of the figure) and progresses toward the cylindrical hole on the right.
Four snapshots show the progress of the detonation waves through the sample, and
the DSD and CJ calculations are compared on the fourth snapshot. The detonation
front is colored with the local value of the detonation speed. The inset shows an
oblique view.
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