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During the Cold War, the
nuclear weapons complex
produced thousands of com-

ponents each year to support the
stockpile. The manufacturing
process stream—a unique combina-
tion of equipment, people, “quali-
fied” processes, and plant
idiosyncrasies—had high production
capacity but not always high yields.
Figure 1(a) shows the elements that
define a qualified manufacturing
process: Inputs are controlled, all
procedures are followed, and the end
product is found to be satisfactory
through statistical sampling involv-
ing inspection and destructive test-
ing. Products made by use of
qualified processes were then “certi-
fied” as capable of entering the
active stockpile, if they met military
characteristics (demanding in-service
requirements) and stockpile-to-target
requirements (that is, they would
operate as expected from the time
they were taken out of the stockpile
to the time they would reach their
target) when tested. However, the
manufacturing process was treated as
a series of black boxes whose inter-
nal process dynamics were poorly
understood and not monitored.
Nevertheless, this method of process
qualification and product certifica-
tion served the nation well for four
decades.

The current Los Alamos approach
to pit manufacturing follows this old
paradigm. It tries to recreate as
closely as possible the original man-
ufacturing stream used at Rocky
Flats but on a smaller scale because
the production volume is much
lower. Here, we explain why this

approach is problematic for small
production volumes and outline,
through a real example, a modern
approach to quality manufacturing
by process monitoring and control in
real time.

The Problem: Small-Lot
Manufacturing

Figure 1(b) outlines problems that
can arise when one tries to develop
qualified processes with lots that are
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Challenges Faced by Los Alamos Manufacturing Processes

•  Overall mission scope has shifted after the demise of the Soviet Union.
•  Manufacturing operations suffered a long period of inactivity.
•  Tremendous upheaval was felt in transferring operations to new sites.
•  More than 90 percent of the key personnel have changed.
•  Many remaining process experts are retiring.
•  Significant changes in equipment, processes, and process flow have

been implemented.
•  Plant features and layout have been significantly changed.
•  Prior continuous operations were fragmented. 
•  Quality requirements are the same as in the past.

Figure 1. A Qualified Process and What Can Go Wrong
(a) Elements of a qualified process are shown. (b) Qualified processes can be
adversely affected (red areas) by hidden factors such as human error caused by
insufficient process knowledge; inadequate procedures or incomplete documenta-
tion; material variations resulting from changes in processing history, minor ele-
ment-composition differences, and changes in surface condition and oxidation state;
dimensional deviations or residual stresses in work pieces; equipment and tooling
degradation; inadequate maintenance or calibration; tooling wear and fixture dis-
tress; and marginally stable parameters of process qualification.

Train operators and
maintain equipment

Control
materials
and work
pieces

Control direct
process
inputs

Other
factors

Accept

Reject

Rework

Process Inspect

(a) (b)



64 Los Alamos Science Number 28  2003

Strategy for Small-Lot Manufacturing

down, say, from thousands per year to
tens per year. Key interaction terms
and intermittent or sporadic process
dynamics may be missed entirely. The
resultant processes, which are suppos-
edly qualified, could manifest spurious
process dynamics in seemingly unpre-
dictable patterns over time. Such
processes may therefore be incapable
of holding the product in a state of sta-
tistical process control in the absence
of further process understanding.
Manufacturing at Los Alamos has
already reached this position. 

The Solution: In-Process
Monitoring and Control

In the new approach, we shift our
frame of reference from an outside
view, in which the operations are
items on a work instruction sheet, to
an inside view, in which physical
processes are interrogated and con-
trolled as they happen. In-process data

are interpreted through pattern recog-
nition and classification algorithms
that are trained not only to identify
processing faults but also to classify
the root causes of those faults. The
shift is somewhat analogous to going
from alchemy to chemistry, from a
black art to a predictive science based
on underlying physical principles.

Various steps are required to create
in-process assurance of part quality.

First, we identify critical in-process
physical behaviors determining part
quality and the means to measure
them. We then find out how those
behaviors are correlated to specific
attributes that constitute quality.
Typically, in-process raw data cannot
be directly correlated to specific faults
in part quality or process integrity. We
must therefore employ data reduction
methods to find those key signatures
that might identify the presence of
specific faults. We then use those sig-
natures to develop learning algorithms
that not only identify the faults but
also classify their causes. We train the
algorithms during process develop-
ment by intentionally creating fault
conditions. We then establish an oper-
ating window, or range of values of
allowed in-process behavior. Finally,
we deploy an in-process control sys-
tem based on this operating window.
The results of this methodology can
be spectacular: In the F-22 Advanced
Tactical Fighter Program, there are
engine components that have never
been inspected after having been man-

ufactured and are flying as built. The
elements of in-process quality assur-
ance shown in Figure 2 can be com-
pared with those of traditional process
qualification shown in Figure 1(b). 

Practical Example:
A Welding Problem

Inertia welding, or the solid-state
friction welding of two parts, is a
process used on certain defense and
aerospace components (see Figure 3).
Several defects (hidden factors) are of
concern in inertia welding: insuffi-
cient or excessive speed or pressure
resulting in inadequate joint strength,
angular offset in grips or at bond
plane resulting in variations in resid-
ual stress, and machining defects,
handling damage, or contamination at
the bond plane. 

Here, we describe our in-process
approach for detection of bond plane
contamination in inertia welds made
between copper and stainless steel.
Contamination is the most difficult
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Figure 2. In-Process Monitoring
and Control

One piece set in motion

Pieces are brought together under pressure

Heated and deformed material expelled
from interface

Final weld exhibiting flash

Figure 3. Steps in Inertia Welding
(a) The steps of the welding process are listed, and a photo of the final welding step
is shown in (b).

(a) (b)



problem to diagnose because thermo-
mechanical material flow during the
weld expels the original interfacial
material. Nevertheless, as shown in
Figure 4, even minor amounts of
contamination can have dramatic
effects on the bond. The three very
different weld qualities shown were
produced with identical process
parameters (knob settings on the
welding machine). Thus, the only
means to detect conditional or unac-
ceptable welds without destructive
testing is an in-process sensing
approach. Other forms of nondestruc-
tive evaluation have proved to be
inconclusive.

To detect bond-plane contamina-
tion, we collect acoustic and vibra-
tional signals emitted during the
welding process—see Figure 5(a).
Because those signals are not useful
in their raw form, we have applied
various data-reduction procedures to
extract key features, as illustrated in
Figures 5(b) to 5(e). First shown is the
so-called attack and decay descriptor,
an analytical tool typically used in
speech recognition, describing attack
phases, or regions of increasing sound
intensity, and decay phases, or regions
of decreasing sound intensity. Next is
the root-mean-square (rms) intensity
of the acoustic signal. Third is the
total acoustic energy for different por-
tions of the signal, or simply the total
accumulated acoustic counts for given
portions of the signal. Finally, the fre-
quency content of the signal is shown.
It is obtained from the Fourier trans-
form of the time-domain data. The
resulting acoustic power spectrum
showing the relative signal intensities
at various frequencies will, when lin-
early superimposed, reconstitute the
time-based signal.

In the next phase of in-process data
analysis, we want to use the key fea-
tures to make inferences about weld
quality. We need an analytical method
that assigns a unique set of in-process
“signatures” to a good weld and at the
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Figure 4. Acceptable, Conditional, and Unacceptable Welds 
An acceptable bond (90% to 100% of the area is bonded) requires that surfaces be
machined, cleaned, and immediately welded. A conditional bond (50% to 90% of the
area is bonded) results if trace amounts of contamination accumulate on the sur-
faces, and an unacceptable weld (less than 50% of the area is bonded) results if the
surfaces are not well cleaned and therefore residual organic contaminants are left at
the interface.

Figure 5. Typical Acoustic Signature and Reduced Signatures
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same time enables us to classify the
probable root cause for a bad weld.
Many statistical and nonstatistical
approaches are possible. In this
work, we have used an artificial-
intelligence algorithm known as an
artificial neural network. A neural
network is a collection of heuristic
computational architectures and algo-
rithms that are biologically inspired,
nonlinear, massively parallel, distrib-
uted, composed of simple computa-
tional elements, and ideal for pattern
identification and classification in
complex data sets. These architec-
tures and algorithms acquire process

knowledge through a learning
process that uses data sets. The
knowledge is stored in a neural net-
work through interneuron connection
strengths or synaptic weights. 

We train our neural network (see
Figure 6) using feature data repre-
senting good and bad welds, and the
network stores this knowledge
implicitly in its weighting factors.
The network can infer the quality of
the bond and thus distinguish among
acceptable, conditional (or mar-
ginal), and unacceptable welds, and
it performs root cause analysis of
faults, deducing the cause of the
faults. Both capabilities are very
important for small lots that require
precision welding. Table I summa-
rizes the neural network’s ability to
identify the quality of the bond from
the various feature descriptors in
Figure 5. 

In this example, we did not take
the additional step of constructing a
process window because the objective
was to detect and diagnose the occur-
rence of a very problematic defect,
namely, bond-plane contamination. 

In carrying out this work, we made
a conscious tradeoff between less
expensive sensors coupled with
sophisticated data analysis versus
expensive but more capable sensors.
We used an array of low-cost thin-
film piezopolymer sensors and minia-
ture acoustic-emission sensors that
cost less than a dollar a piece in place
of a quartz sensor costing $10,000.

On the Verge of a New
Quality-Control Revolution

By emphasizing in-process dynam-
ics and control, we can significantly
increase our ability to characterize and
control manufacturing processes of
small precision lots. The potent combi-
nation of inexpensive and virtually lim-
itless computational power, inexpensive
sensors, and algorithms capable of
dealing with large, complex data sets
has set the stage for a revolution in our
approach to manufacturing quality. This
effort has sufficient intellectual scope to
be a “grand challenge” for Los Alamos,
in particular, and the weapons complex
of the National Nuclear Security
Administration, in general. If success-
fully implemented, this new approach
could shift the present conformance
and inspection mindset to a predictive
approach that would emphasize funda-
mental process understanding. The new
approach would bring tangible and
quantifiable benefits to Los Alamos
manufacturing. Here is a list of the
most significant ones: process charac-
terization based on what the part expe-
rienced and not just on knob settings on
a machine tool that may be obsolete
within a decade, manufacturing recipes
that can be easily moved from one
machine tool to another, reduced scrap
and rework, automated analysis of root
causes, targeted process improvements,
reduced cycle time to bring new
processes online for new products, and
less work to qualify a new piece of
equipment or process.

For the past 80 years, we have
used final inspection to verify prod-
uct conformance to specifications and
statistics and to quantify the consis-
tency of the process in meeting those
specifications. In-process dynamics,
therefore, represents the first major
new concept in quality control in
almost a century. Its impact may well
be as far-reaching in this century as
statistical process control has been in
the last century. �
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Figure 6. The Neural Network for
the Welding Process

Table I. Ability of Neural Network to Identify Weld Quality

Feature Used

Identification of Weld Quality
(Accuracy, %)

A or U A or C A, C, or U

Attack and decay 85 63 54
Acoustic rms 74 47 50
Acoustic power spectrum 100 100 100
Acoustic energy 100 32 50

Number of Training Instances 19 18 25

A = acceptable bond, C = conditional bond, and U = unacceptable bond
or = exclusive “or” (xor)
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Historical Timeline Leading to In-Process Dynamics Approach

B. C. to 1700s Manufacturing is dominated by the artisan and the guild
structure.

1750s to 1850s The Industrial Revolution reaches both the Old and New
Worlds.

Late 1700s First use of interchangeable parts in manufacturing
assemblies.

1880s to 1900 Thomas Edison literally electrifies America, having profound
influence on industry.

Early 1900s Both the National Bureau of Standards in the United States
and the British Institute of Standards in England are
founded—standards drive improved inspection methods.

1900s to 1920s Ford establishes the production line, the manufacturing
paradigm for the next 100 years.

1920s to 1930s Alfred P. Sloan at General Motors formulates the
management structure for the twentieth-century
manufacturing firm.

1920s Walter A. Shewhart invents statistics for process control.

WW II The U.S. military-industrial complex helps win the war by
using mass production methods, together with inspection to
ensure conformation to specifications.

WW II Stan Ulam, John von Neumann, Nicholas Metropolis, and
others at Los Alamos form the basis for modern digital
computers as well as a scientific computation.

1947 Bell Laboratories invents the transistor.

1950s to 1980s W. Edwards Deming promulgates the modern approach to
statistical process control. The Japanese eagerly adopt it
and experience a manufacturing revolution.

1958 Texas Instruments invents the integrated circuit.

1974 Intel launches the 8080, the first successful commercial
microprocessor.

1960s to 1990s Development of heuristic algorithms, John Holland’s
genetic algorithms, Lotfi Zadeh’s fuzzy logic, the Hopfield
model of neural networks, and data mining and complexity
sciences.

1960s to 1970s ARPANET, the ancestor of the Internet, is developed.

1970s to 1980s The first personal computers arrive on the market.

1980s to 1990s Cheap computing and sensors following Moore’s Law.

1990s to 2000 Six Sigma is widely implemented, representing the
culmination of 80 years of statistical measurement and
control of conformance to specification.

1990s to 2000 First implementations of the in-process approach (for 
example, military engine parts).

21st century A new revolution in quality control is made possible by the
existence of key ingredients: cheap computing and
sensors, as well as advanced data processing algorithms
for large and complex data sets that represent in-process
behavior.

Left to right: Rajendra U. Vaidya, Vivek R.
Davé, Daniel A. Hartman, and Mark J. Cola.

Vivek Davé earned his doctorate degree in
materials engineering from the Massachusetts
Institute of Technology in 1995. After a four-
year stint at Pratt & Whitney, Vivek became a
staff member at Los Alamos. He is now leader
of the Process and Engineering Group in the
Nuclear Materials Technology (NMT) Division.
His expertise is in manufacturing-process
understanding and development, continuous
improvement, and new approaches for weapons
engineering and manufacturing.

Rajendra (Raj) Vaidya received his doctorate
degree in materials science and engineering in
1991. He began his career at Los Alamos as a
postdoctoral fellow. Currently, Raj is deputy
leader of the Manufacturing Process Science
and Technology Group in the NMT Division. 

Mark J. Cola received his master’s degree in
welding engineering from the Ohio State
University in 1992. After having worked as an
aerospace metallurgist and a welding
researcher, Mark joined Los Alamos as a tech-
nical staff member. He is now deputy leader of
the Weapon Component Technology Group in
the NMT Division. 

Daniel Hartman received his Ph.D. in electri-
cal engineering from Vanderbilt University in
1999. Upon graduation, Daniel joined Los
Alamos as a staff member, specializing in
process monitoring and control. 

William (Bill) King earned a master’s degree
in metallurgical engineering from the
University of Washington in 1964. He has spent
most of his career at Pratt & Whitney as an
individual contributor and manager, primarily
in metal-joining process research and develop-
ment and manufacturing technology, with spe-
cial focus on in-process quality assurance. 




