Massively Parallel Multiphysics
Code Development

he Advanced Simulation and
I Computing (ASCI) program is
developing very large massively

parallel multiphysics codes for reliably
simulating nuclear weapons perform-
ance in the absence of nuclear testing.
The task of developing multiphysics
codes for the weapons program has
always been a daunting one. A huge sys-
tem of time-dependent, coupled nonlin-
ear equations must be solved. These
equations model many different types of
physics. It is highly desirable, if not
essential, that the solution process for
such a system be decomposed into a
series of steps, with each step consisting
of the solution of equations associated
with a single type of physics. Such an
approach enables the code to be assem-
bled with largely independent mono-
physics modules. This property is critical
when one considers that essentially no
one on a team is an expert in all the
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types of physics modeled in the code.
Traditionally, only one or two people on
a weapons code team had detailed
knowledge of the coupling required
between all the different types of physics
in the code. Most of the teams consisted
of individual experts in a single type of
physics that contributed to a mono-
physics component. Today, only the size
of the teams is different. An ASCI code
team generally consists of subteams,
rather than individuals, who are respon-
sible for monophysics modules. The
numerical technique that has traditionally
been used to decompose the solution
process into a sequence of essentially
monophysics steps is still used in the cur-
rent generation of ASCI codes. It is
called operator splitting.

To demonstrate this concept, we need
to review some basic concepts of tempo-
ral discretization. Nonlinear systems are
generally solved by using a linearization

process coupled with an iteration on the
nonlinear terms. More specifically, the
nonlinear equations are approximated
with linear equations. After each solu-
tion of the linear equations, the nonlinear
terms are updated. The process is then
repeated until the nonlinear solution is
converged. To understand operator split-
ting, we need consider only a set of lin-
ear equations. However, we must first
review some basic concepts of temporal
discretization. Although equations are
generally discretized in all variables, we
need not explicitly consider the other
discretizations to illustrate the necessary
points. For instance, let us consider a
generic time-dependent linear system:
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where fis the unknown, ¢ is time, and
A is a linear operator. A fully explicit
time discretization is denoted as follows:
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where 7 is the time index, Az = 7t —
is the time step, 7" is the initial time
associated with a time step, and 7**! is
the final time. Solving the explicit equa-
tion is generally inexpensive because
one need only apply the operator A to
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However, explicit methods are gener-
ally unstable unless a sufficiently small
time step is used. This restriction is
acceptable for certain types of physics
(for example, for hydrodynamics calcu-
lations with strong shocks), but it may
be prohibitively expensive for others
(for example, for thermal radiation
transport). To obtain an unconditionally
stable solution technique, one must gen-
erally use a fully implicit temporal dis-
cretization:
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The solution of the implicit equation
is generally much more expensive than
the solution of the explicit equation
because one must invert an operator and

apply it to f™:
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Suppose that we have two coupled
equations. For instance, let us consider
typical equations for the electron and
ion temperatures in a plasma:
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and
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where T, is the electron temperature, T}

is the ion temperature, C,, and Cvi are

the electron and ion heat capacities,
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respectively, K, and K; are the electron
and ion conduction coefficients, respec-
tively, and o is the coupling coefficient
for internal energy exchange between
the electron and ion fields. Modern com-
puters can easily solve this system using
a fully implicit temporal discretization:
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However, this solution was not
always easy to obtain. Operator splitting
was once routinely used to reduce the
solution of Equations (6a) and (6b) to a
sequence of simpler solutions. In partic-
ular, a conduction calculation was first
performed for the electrons,
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followed by a conduction calculation for
the ions,
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followed by a local calculation of the
coupling between the unknowns,
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We refer to Equation (10b) as a local
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calculation because this particular type
of coupling between temperatures leads
to discrete equations that are independ-
ent in each spatial cell, as opposed to
Equations (8) and (9), which involve
coupling between adjacent cells.
Compared with equations containing
spatial coupling, local equations are
generally very easy to solve and highly
amenable to parallelization. If we add
Equations (8) through (10b), we obtain a
set of difference equations that are
“semi-implicit” in that all the operators
are applied to unknowns at advanced
times:
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Because each solution step is fully
implicit, this entire process is uncondi-
tionally stable. In general, the split
solution is nearly as accurate as a fully
implicit solution as long as the contri-
butions from two or more steps are not
nearly equal and opposite. If this is the
case, time steps must be taken that can
be extremely small relative to those
required with a fully implicit discretiza-
tion. Also, difficulties may be encoun-
tered in certain asymptotic limits. In
recent years, an alternative to operator
splitting has emerged that, in principle,
can be used to solve large multiphysics
systems of equations in a fully implicit
manner. This technique is called the
Newton-Krylov method. I will not dis-
cuss this method in detail here, but suf-
fice it to say that it is not sufficiently
mature to be used in an ASCI code
project. However, it is very promising
and may become the solution method
of choice in the long term. In the short
term, ASCI projects will continue to
rely on operator splitting, and ASCI
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researchers will attempt to better under-
stand the deficiencies of operator split-
ting and eliminate them.

Given the previous example, it is not
difficult to see that operator splitting can
also be used to separate coupled multi-
physics calculations into a set of mono-
physics solution steps together with
local coupling steps. For instance, in a
radiation-hydrodynamics calculation,
one might first perform a hydrodynam-
ics calculation, followed by a radiation
transport calculation, followed by a
local calculation of the coupling
between the hydrodynamics and trans-
port unknowns. This approach enables
the development of essentially inde-
pendent hydrodynamics and radiation
transport software modules, together
with a relatively simple module for cou-
pling them. However, the implication
here is not that the hydrodynamics and
radiation transport teams can proceed
completely independently of one
another and then do the coupling after
their respective modules are finished.
Considerable planning and coordination
are required before the software is writ-
ten to ensure that the respective numeri-
cal treatments are compatible. For
instance, if the material temperatures
are assumed to be located at cell centers
in the hydrodynamics equations, it is
much easier to couple the modules and
probably more accurate overall if the
same assumption is made for the radia-
tion transport.

The planning and coordination that
must be achieved to ensure compatibili-
ty between physics modules are much
more complicated with massively paral-
lel computers than they were with serial
and vector computers. The reason is that
on multiprocessor distributed-memory
computers, different physics modules
often require different data partitionings
on the processors for optimal perform-
ance. Distributed-memory machines
store data on each processor. Data parti-
tioning is simply the mapping of data to
the processors on which they will be
stored. In many instances, each datum
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(2) Hydrodynamics

(b) Radiation transport

Figure 1. Spatial Domain Decomposition for Hydrodynamics vs

Radiation Transport

A 3-D rectangular mesh is divided into eight computational domains (denoted by differ-
ent colors), and each is assigned to a different processor. The optimal division for a
hydrodynamics calculation (a) is quite different from that for radiation transport (b).

can be uniquely associated with a single
spatial grid cell. In such instances, all
the data can be partitioned simply by
partitioning the spatial grid itself, that is,
by mapping each spatial cell (and hence
the data associated with that cell) to a
processor. Some of the information
about a spatial grid partitioning is easily
visualized. In particular, we can easily
see what cells are mapped to the same
processor by first assigning a unique
color to each processor and then assign-
ing a processor color to each cell in
accordance with the cell-to-processor
mapping. This information is generally
referred to as the spatial domain decom-
position. For instance, a typical domain
decomposition for a hydrodynamics cal-
culation on a three-dimensional (3-D)
rectangular mesh is shown in Figure
1(a), and a typical domain decomposi-
tion for a radiation transport calculation
on a 3-D rectangular mesh is shown in
Figure 1(b). The partitionings are quite
different. Thus, data that are shared by
the hydrodynamics and transport calcu-
lations must be repartitioned during
every time step at some point between
the hydrodynamics and transport calcu-
lations. This requirement clearly com-
plicates the coupling of physics mod-
ules. At one time, it was thought that
such repartitioning would be prohibi-
tively expensive. However, experience
with ASCI codes indicates that reparti-
tioning is not a problem as long as it
occurs only between the execution of

modules that do a significant amount of
computational work. This is certainly
the case for hydrodynamics and radia-
tion modules.

Another area in which massively
parallel computing has significantly
complicated multiphysics code develop-
ment is the process of programming
itself. On massively parallel computers,
one must be concerned with moving
data between processors while comput-
ing. This requirement adds another layer
of complexity to the programming
process that was not present with scalar
and vector computers. A physicist work-
ing on an ASCI code team today
requires much more computer science
and advanced programming knowledge
than a physicist working on a traditional
serial or vector weapons code. This fea-
ture can be a problem for new hires
coming onto code teams because they
can require considerable training before
being able to contribute effectively.
Although there is a formal education
program for training new designers in
the weapons program, there is no for-
mal education program to train new
software developers. Efforts have been
made to develop software frameworks
that allow individuals to write parallel
programs without a high level of com-
puter science knowledge, but such
approaches have not yet been effective
for the large multiphysics programs
written within the ASCI projects.

Finally, the ASCI program has been
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Teaching Radiation Transport

Radiation transport, a subject rarely taught at universities, is very important to the develop-
ment of the ASCI multiphysics codes for nuclear weapons. To help train young people in
this field, the author initiated a graduate-level class in numerical methods for radiation
transport. The class, offered for credit by the Chemical and Nuclear Engineering Department
of the University of New Mexico, is taught at Los Alamos and is received simultaneously at
three remote sites through a new technology, Access Grid Web-based teleconferencing.
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The Access Grid node at Los Alamos, one of more than 300 nodes worldwide, is run by the

Advanced Computing Laboratory as part of its effort in long-distance communication. The photo shows a class in progress.

On the wall are projected the classrooms at the three remote sites—University of New Mexico and Sandia National Laboratories
at Albuquerque and Livermore. The inset shows node operator Cindy Sievers.

asked to deliver new code capabilities
in a time frame much shorter than that
associated with traditional weapons
code development projects. The
assumption was made that this goal
would be possible because each project
team would consist of several tens of
individuals. However, this increase in
team size was coupled with our tradi-
tional code development processes.
These processes, which worked well for
small teams, have failed to scale with
large teams. No ASCI project team has
yet found a way to efficiently utilize all
its team members. This is really a man-
agement problem rather than a technical
problem, but it is as difficult and as
important as any technical problem
faced in ASCI. Furthermore, this prob-
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lem is clearly exacerbated by the fact
that ASCI project teams often have no
time to investigate new development
processes because they are struggling to
make milestones. However, they may
be struggling to make milestones
because they do not have adequate
processes. The latest ASCI strategy at
the Laboratory calls for the investiga-
tion of new code-development software
environments and associated code-
development processes. We hope to
leverage some of the work done in this
regard by other high-performance com-
puting programs funded by the
Department of Energy, such as the
Scientific Discovery through Advanced
Computing (SIDAC) Program. m
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